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Preface
We have written this book to address people with a profound interest in all approaches to psychotherapy, as well as those interested in a general theory of psychotherapy. We allow two threads of reading, one that is accessible to practitioners and psychotherapists and one that includes mathematical sections and “Info-Boxes,” for advanced psychotherapy researchers and graduate students.
In this book, we have developed an encompassing model of the process of psychotherapy, based on the current state-of-the-art psychotherapy research. Therapeutic interventions are staged in the therapist-client relationship and become effective by the interplay of deterministic (“causation”) and stochastic forces (“chance”). This is modeled using the Fokker-Planck equation and by applying principles of complexity theory. Modern theory in psychotherapy is thus complemented by a structural-mathematical framework. Using this framework, we developed statistical tools, which can be applied to empirical time series of psychotherapeutic processes. We provide numerous empirical examples of such applications, expecting that the approach adopted in this work has the potential to advance psychotherapy research and psychotherapy in general.

              Our modeling approach emphasizes that psychotherapy must explicitly focus on the time dependence of states, i.e., on the dynamics of systems. We need to consider both causation and chance in our model of change processes, and we argue that one-sided theories are insufficient for fundamental reasons. Weighing the benefits of various dynamical modeling approaches, the Fokker-Planck equation is chosen as a framework. The dynamics may even be of an emergent type (novel patterns and attractors may be formed during the change process); thus, we also consult synergetics, i.e., the theory of self-organization (Chap.
              1
              ).
            

              We prefer to view psychopathology as a hierarchical system of continuous variables. Psychopathology must be conceived of as dimensional rather than categorical, and all dimensions range from “normal” to “disordered.” Disorders are constituted by variables that denote signs and symptoms of dysfunctional thought, emotion, and behavior. The disorders are clustered in spectra of pathology (Chap.
              2
              ).
            

              Consistent with this hierarchy of psychopathology, we assume there is also a hierarchy of psychotherapeutic interventions, ranging from technical and specific to contextual and nonspecific. “Common factors” of psychotherapy are defined as the nonspecific qualities and contexts, which are generated by specific intervention techniques and at the same time prepare the context for techniques to be delivered. The common factors (e.g., “self-efficacy”) thus constitute a level above the techniques (e.g., “role play”). Intervention in psychotherapy is generally understood as an interplay of common factors and techniques, not their antagonism (Chap.
              3
              ).
            

              The Fokker-Planck equation describes the joint action of deterministic and stochastic processes (Chap.
              4
              ), thus acknowledging our guiding principle of considering both causation and chance. We discuss deterministic interventions (Chap.
              5
              ) and stochastic impacts (Chap.
              6
              ) on the background of the four major clusters of therapy modalities (behavioral, psychodynamic, humanistic, systemic). Stochastic impacts can be modulated by boundary regulations and by the filtering of environmental fluctuations. The processes underlying the various therapy modalities are quite different, consistent with the diverging philosophies involved, yet they can be fit in our modeling framework. We find that interventions of all modalities are commonly mixtures or sequences of stochastic and deterministic effects, where deterministic interventions may also be unspecific and contextual (Chap.
              7
              ). We transform the antagonism between specific and unspecific factors (the “medical model” versus the “contextual model” of psychotherapy) into a more appropriate schema of three types of interventions: deterministic, contextual deterministic, and stochastic.
            

              When depicting psychotherapy, we need to model the therapeutic alliance, which is seen as the core of treatment. We formulate a one-dimensional “minimal model” of therapeutic action, which views the change of client states, e.g., the client’s psychopathological symptoms, as a function of therapist states and therapist-client coupling constants. Using principles established in synergetics, we elaborate under which conditions a therapist in principle can have an impact on the client. We then capture the therapist-client interaction explicitly as an interpersonal exchange, extending the mathematical model from one-dimensional Fokker-Planck equations to a two-dimensional “minimal model.” This extended model predicts oscillatory and synchronized behavior and thereby supports the current empirical research on interpersonal synchrony, which is commonly based on cross-correlations of the therapist’s and the client’s time series. We connect the cross-correlational approach of synchrony research to the theoretical coupling terms of the two-dimensional minimal model (Chap.
              8
              ).
            

              We subsequently extend our mathematical model to allow the classification and analysis of empirical data produced by therapy systems, creating a toolbox of computer algorithms and running them on exemplary time series. For the analysis of one-dimensional time series, we develop and demonstrate algorithms by which we can reconstruct the attractor landscape based on the time series data (hence, the deterministic term of the Fokker-Planck equation) and the proportion and location of chance events (the stochastic term of the equation). In addition, we also present algorithms that allow estimating the strength and shape of coupling in the two-dimensional model (Chap.
              9
              ).
            

              In the outlook (Chap.
              10
              ), we summarize our findings by stressing the importance of a decidedly dynamical approach, which can even cover the temporal scale of a few seconds, pertaining to the “now” of consciousness. This “high-resolution” approach becomes possible by analyzing variables that represent processes of embodied cognition and emotion. We spell out which interventional types derive from the minimal model to define the “Archimedes” role of the therapist. Therapist personality—resilience and mindfulness—are essential therapist variables; the therapist must also be “slow” compared to the client. This allows the modification of client states by the leverage of an Archimedes-like unmoving mover. We also include the state of research on the synchronization of the therapeutic alliance and discuss the concepts of free energy, affordance, and embodiment. As is often true, there are numerous open questions, and we call for systematic empirical research that we hope will be instigated by the elaborate model and practical toolbox presented in this book.
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Bern, SwitzerlandFreiburg, GermanyStuttgart, Germany
October 2018
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1.1 The Goals of This Book
With this volume, we wish to lay a novel ground for modeling and understanding the process of psychotherapy. Psychotherapy is focused on changing a client’s state, and such change is expected to arise from and in the context of psychological interventions. We do not believe that therapeutic interventions are technical or mechanical, nor do we assume they are incidental—instead we claim that they are mixtures of both, and it is therefore mandatory to integrate causation with chance. Deterministic “technical” interventions commonly go hand in hand with stochastic forces and events. We need both aspects in the modeling of change due to psychotherapy. On top of the deterministic and stochastic forces, there is a third type—contextual interventions. These are indirect influences that affect the process of psychotherapy by altering the context in which it further evolves. Such influences can be expressed by contextual parameters of different qualities, i.e., by the affordances that act on the therapeutic system.
Generally, our goal lies in the modeling of psychotherapy process. This implies that we wish to represent the reality of what happens in the therapy setting (and also between therapy sessions) under explicit consideration of the dimension of time. We are convinced that some kind of quantification is necessary for any kind of modeling. That is to say, we do not believe in a strict dichotomy between quantitative and qualitative modeling, as is sometimes claimed in the discussion of psychotherapy. “Qualitative,” i.e., narrative and single-case approaches, would then focus on description, assuming that “qualitative” means that we can sequentially describe and show what is present and what is not. Yet such description presupposes the distinction between categories, in other words, a basic kind of quantification at the nominal or categorical level. Therefore, as soon as one can categorize events, one can implicitly also count the number of categories. As soon as one can distinguish the recurrence of one category over the recurrence of another, one obtains time series of categories. This of course is the very basis of quantification and of statistics. Mathematics enters the scene inevitably even when we deal with categorical qualities. Mathematical modeling is no end in itself but simply an instrument that allows describing how different quantities can be related and how the change of a quantity can be expressed. Thus even the qualitative description of subjective experiences is amenable to mathematical modeling.
It is a fundamental observation in psychotherapy and psychopathology that states often come as stable states. When somebody or something sets forth to change these states, the change may be only temporary because apparently a “force” is present that draws the system back to its previous original state or forward to a specific novel kind of stability. Dynamical systems theory calls such stable states “attractor” (Guckenheimer & Holmes, 2002). We will have to deal with phenomena of stability when we address causation in the context of psychotherapy.
Each day, we live in a world of coincidences, of uncontrolled and unforeseen events. Such chance events can deeply affect our lives, and they persistently probe the stability of all of our deterministic attractors. This is true also in the context of psychotherapy. Interventions can have the effect of shielding against, or welcoming, chance. Chance diffuses attractors. Therefore we additionally have to deal with stochastic forces and consequently must explicitly address chance.
Another common observation is that stable states and patterns, i.e., attractors, may newly arise in psychotherapy processes—novel behaviors, thoughts, and emotions may emerge from the social interaction and communication in the therapy setting. Such pattern formation is the topic of self-organization theory or synergetics (Haken, 1977). Several mathematical models have been formulated in this field, some of which will be applied to psychotherapy in this volume. The widespread phenomenon of self-organization in what we call contextual interventions rests upon a co-occurrence of causation and chance.
The core of psychotherapy is the social interaction and communication between therapist and client, which altogether makes up the therapeutic alliance (Horvath, Del Re, Flückiger, & Symonds, 2011). Hence we have to model not only the change of relevant single state variables but also the two-dimensional system of therapist and client state variables. In doing so, we may encounter a new type of attractor that can become manifested as therapist-client synchrony. We will have to describe this “minimal model” of dyadic psychotherapy to account for empirical observations of synchrony, coupling, and entrainment in the therapy setting (Ramseyer & Tschacher, 2011).
Finally, we will not rest contented with the theoretical and mathematical modeling of all these mentioned phenomena—we acknowledge that there is a particular need for practical tools and algorithms in addition to just theory and calculus. In the practice of psychotherapy research, premises of mathematical models are not always met: Measurements are usually not infinitely smooth and frequent, and resulting time series can also be truncated or nonstationary. We have developed tools for the assessment of realistic time series and describe their application to real measurements. These tools concern the major goals that we listed above: They allow for assessing the deterministic ingredients and the stochastic ingredients of processes. They can depict causation and attractors and approximate the stochasticity of a time series. Moreover, algorithms were developed for the approximation of the coupling in the two-dimensional alliance system of client and therapist. These can be used to quantify the synchrony of the client’s and therapist’s behavior, hence their collaboration toward beneficial therapy outcome.
1.2 Why Use Mathematical Models and Mathematical Formulae?
Mathematical equations
              
              
             are not overly popular among psychotherapists, not even among psychotherapy researchers. There may be a number of reservations and objections against mathematical modeling. We feel that we should deal with such objections early in this introductory chapter of our book.
The first objection that may come to mind is this: Psychotherapy deals with human subjective emotions, thoughts, and behaviors. As at least the emotions and thoughts are largely private events, how can they be captured mathematically?
The second objection: Psychotherapy addresses problems in the life of a client. The client enters therapy with his or her own particular biography. Thus the object of therapy is a narrative—how can we express semantic and narrative contents by mathematical terms?
The third objection: Mathematical equations are tautological, i.e., what is expressed on the left-hand side is exactly the same as that on the right-hand side of an equation. When an equation is transformed and worked with, it still remains tautological (unless an error occurred). No new evidence can result from a formula, so why bother at all?
The fourth objection: There already exist the field of mathematical psychology and a history of explicit mathematical formulations of learning theory in behaviorism. Why not use the framework of mathematical psychology and instead start with a completely novel ansatz?
The fifth objection: Mathematical equations are actually everyday business in all statistical regression models, in the form of the t-test, analysis of variance, factor analysis, etc. The mathematical structure of statistical methods in current psychology may be largely hidden from view, as researchers commonly use prefabricated statistical software, but nevertheless most published research is based on regression equations. Why not also base our treatment on such regression models?
We wish to reply to all these objections briefly, leaving aside the philosophical intricacies connected to some of the points.
First, emotions and thoughts are experiences in a first-person perspective, and as such cannot be modeled directly and objectively in a third-person perspective. Our approach therefore depends on the transformation of such experiential facts into quantities using measurement theory and scaling assumptions. In Sect. 1.4 we provide some information on this foundational prerequisite of modeling in psychotherapy. We must rely on operationalization as the fundament of psychological measurement, and in this respect our assumptions are the same as the assumptions of all empirical research in psychology. These assumptions amount to the idea that emotions and thoughts are embodied and thus not so “private” after all—there are perceptible signs of emotions and thoughts that can be used for their operationalization and hence measurement. In addition to being the prerequisite for measurement, the embodiment of emotions and thoughts is the very basis of social (and thus also psychotherapeutic) interaction.
Second, it is true that we can do justice to narrative data only to a certain extent. The narrative content of a client’s story concerns semantics, and our mathematical treatment can only concern quantitative variables. This is the problem of pragmatic information in contrast to “meaningless,” but measurable, Shannon information (Haken, 2006). The problem may become tractable by considering the “intentional-like” properties of self-organizing systems (Tschacher, 2017), yet this is largely beyond the scope of the present book (we will come back to it in Chap. 10). Our brief reply is here the same as to the first objection—we need to deal with quantities that translate the semantics to scales based on operationalization conventions. As we have pointed out in the initial section on the goals of this book, we do not believe there is a clear demarcation between qualitative and quantitative approaches.
Third, mathematical models are admittedly tautological. Yet we intend to profit from what may be called the beneficial side effects of tautological transformations
              
              
            . Such side effects are that by using mathematical models, we find out what cannot be concluded from the premises we originally made. Therefore, while tautology may not tell us anything new, mathematical models will definitely point out what is not tautological, i.e., what is plainly a wrong conclusion or statement. In addition, the retained tautological structures of an equation, after any number of legitimate transformations, may inform us about which possible interpretations rest within the scope of the premises that we initially made. In a philosophical sense, mathematical tautologies of equations may serve as structural descriptions of a wide range of very different objects—equations connect variables, and these variables can denote any aspect of reality (mental, behavioral, emotional, always depending on our operationalizations). Maybe it is structural science that will ultimately connect categorically disparate things such as the mental and the physical realms (the mind-body problem). We have put forward this view in the context of psychotherapy before (Tschacher, Haken, & Kyselo, 2015).
Fourth, there is a tradition of mathematical models in psychology, such as the psychophysics of Gustav Theodor Fechner (1889) or the neo-behaviorist modeling of reinforcement by Clark Hull (1952). While this tradition would provide good vantage points for modeling, we chose a more general approach that is not restricted to the intraindividual relationship between physical stimuli and mental ratings (psychophysics) nor to the relationship between response and stimulus intensity, drive, habit strength, and inhibition (neo-behaviorism). We wished on the one hand not to be constrained by the stimulus-response scheme and on the other hand to be open to explicitly model temporal changes and time series. We therefore chose a very general approach that frames the change of probability of (any) state variable as a combination of chance events and causal influences, the Fokker-Planck equation (Risken, 1996).
Fifth, the standard linear regression models that are in use throughout psychological research are mathematical models with deterministic and stochastic components, which is basically also true for the Fokker-Planck approach. Such regression models are however predominantly applied to cross-sectional samples, whereas our interest lies with modeling the temporal evolution of single systems. We are decidedly focusing on the dynamics, on psychotherapy process taken literally. Cross-sectional analysis may be warranted too but only, subsequently, as a second step.
1.3 Modeling the Dynamics of a System
Almost all sciences have one problem in common—how can we make sense of the processes we observe? Be it the behavior of billiard balls colliding, or the execution of voluntary movements of our body, or the behavior of people interacting in a psychotherapeutic setting, the task is comparable: We have to model the dynamics of the entities of interest, using the variables we can connect with these entities. We need a description of the dynamics. Once we have arrived at a valid and reliable model of observed processes, we can apply this model to predict the future development of the observed systems. Seen in this way, the fundamental task of science is to predict the future by using the models we have made of the past. Prediction must always be grounded in description.
For this prediction to be successful, some assumptions must be made that we shall mention briefly. The first assumption is that causation reigns at least to some extent: There are regularities, rules, laws, or correlations, which underlie the processes we have observed for later modeling. This is the deterministic assumption: The dynamics of a system follows deterministic rules. Our second assumption is that in almost all applications, there is a limit to such determinism—all prediction is curbed by chance events.
Chance, i.e., randomness and stochasticity,
              
              
             can enter the description of psychotherapy processes in many different ways.	First, our measurements may be imprecise, resulting in an imperfect description; the measurement apparatus may not allow sufficient temporal and spatial resolution.

	Second, we may have encountered nonstationarity: The causal laws that were in effect in the past, during the modeling period, may not be exactly the same laws that later govern the period to be predicted.

	Third, we may have neglected important variables, which have influenced our measurements of the past processes—we may have neglected some relevant processes in the observation, or may not have cast the processes in appropriate variables.

	And fourth, again, our general assumption is that we are dealing with processes that can be quantified at all. Psychology addresses both behavior (quantifiable motor and physiological processes) and experience (subjective-qualitative emotional and cognitive processes). As already mentioned, to model the latter qualitative processes, we have to define operationalizations, by which the qualities can be translated into numerical or categorical scales (see the next section in this chapter). We must acknowledge that some experiences, and maybe even the very core of experiencing—consciousness—cannot be transferred into quantities completely (Chalmers, 1996). In principle, some important facts may not be directly measurable, but they of course delimit our prediction efforts.




The interplay between description and prediction and the role of causation and chance in this interplay are not only fundamental in modeling the dynamics of psychotherapy. At a different time scale and level, this interplay provides a principle for understanding how people function in the real world (so-called active inference, or the reafference principle: Hobson & Friston, 2014; von Holst & Mittelstaedt, 1950). Thus generally, our description of the world, which gets cast in a model, leads to predictions, which in turn inform new descriptions (Fig. 1.1).[image: ../images/470128_1_En_1_Chapter/470128_1_En_1_Fig1_HTML.png]
Fig. 1.1Modeling the dynamics is based on description, and results in prediction, on the basis of which the agent can act. Prediction accuracy informs new description and modeling


In the context of scientific modeling, different sciences have developed different methods that they use for quantitative modeling, and sometimes scientific disciplines have also produced different terminologies even for more or less identical modeling approaches. Thus, a zoo of modeling methods has evolved, and we will give a short overview of them. This will also equip us with the reasons why we will subsequently focus on only one of these approaches, the Fokker-Planck equation, in this book. We will sketch the basic assumptions of the various methods and how the methods proceed when the goal is to model an observed time series of a state variable x.
Fokker-Planck Equation (FPE)
The FPE is a general modeling approach that combines the deterministic and stochastic contributions to a temporal development. The FPE casts the time-dependent change of the probability distribution of x into a linear partial differential equation. Partial differential equations describe the change of a state as a function of more than one variable. The FPE was derived by the physicists Adriaan Fokker and Max Planck (Max Planck supervised Fokker’s thesis on problems of statistical physics and Brownian motion of a particle). It was previously applied to problems in physics and in synergetics. Because of its potential to model the temporal evolution of a statistical probability distribution, the FPE may be used conveniently in arbitrary fields of dynamical science.

Chaos-Theoretical Models
Chaos theory assumes that erratic and unpredictable processes in nature are nevertheless produced by deterministic dynamics. A justification for this assumption is that the output of some nonlinear mechanisms can be sensitively dependent on very small changes of input variables. Thus what looks like stochastic fluctuations may in fact be the result of chaotic behavior. The fingerprint of many chaotic regimes is that they produce “strange” attractors with fractal properties—the dimension of such attractors is not a natural number. A common procedure of chaos theory is to find this fractal dimension. Chaos of continuous variables is only possible in three- or higher-dimensional systems. Therefore, a one-dimensional time series is considered to be a projection of a higher-dimensional system and can be embedded in a state space of appropriate dimensionality by a method called state space reconstruction. The strange attractor can then be characterized by Lyapunov exponents. There have been a number of attempts to apply chaos theory to psychology and psychotherapy (Schiepek et al., 1997; Tschacher, Scheier, & Hashimoto, 1997; Tschacher, Schiepek, & Brunner, 1992).

Fourier Transformation
An empirical time series may be considered to be the sum of many regular oscillations of different frequencies, expressed, e.g., by sine functions. In all applications, discrete Fourier transforms must be applied because time series are not continuous but sampled at discrete time intervals. By Fourier analysis, the time series is decomposed in the frequency domain, and we can describe (in a periodogram) how much a single frequency, or a frequency band, contributes to the empirical signal. This kind of analysis is straightforward when it is known that the measured time series has originated from unknown periodic oscillators, such as in electroencephalograms (EEG). The Fourier description gives exact information in the frequency domain at the expense of exactness in the time domain (cf. Heisenberg’s uncertainty principle). Deterministic and stochastic influences can be distinguished. Apart from the EEG literature, some recent applications of wavelet analysis were done in projects on interpersonal synchrony (Palumbo et al., 2017).

Autoregressive (AR) Models/Markov Models
A time
                
               series of the variable x can be decomposed in the time domain by computing autocorrelations at each lag, i.e., the time series is correlated with a copy of itself displaced by 1, 2, …, L time steps. The result is an autocorrelation function, which displays the resulting L correlations. AR models give an account of the linear deterministic component (contained in the autocorrelation function) and the remaining stochastic component of an empirical time series. This modeling approach has entailed the most frequent time series applications in psychology, especially in multivariate data, where autocorrelations and cross-correlations
                
               are computed by so-called vector autoregression (VAR). Such modeling has been applied to psychotherapy processes (Tschacher & Ramseyer, 2009). In addition, most current research on interpersonal synchrony in social interaction is based on cross-correlations (Ramseyer & Tschacher, 2011; Tschacher, Rees, & Ramseyer, 2014).

Langevin Equation
This is a stochastic
                
               differential equation, which describes the dynamics of some variable x as a function of external deterministic forces (the potential of the variable) and fluctuating forces. Typically in the application to molecular dynamics in physics and more generally in synergetics, x represents a macroscopic variable, whereas the fluctuating forces result from many microscopic variables. The Langevin equation can be reformulated as a Fokker-Planck equation, which is like a bird’s-eye view of the Langevin approach. This reformulation entails no loss of explanatory power, but can be more convenient mathematically.

Kalman Filter
This filter is often used in real-time engineering applications, where it computes a state space representation of a (usually multivariate) time series and, with every incoming new information, adapts this representation. The Kalman filter models the differences between successive states of the time series in an iterative manner, i.e., each new observation is used to update the (linear) prediction formula and minimize the prediction error. It is thus a linear stochastic difference equation. This predictive coding approach using continuing feedback loops is an application of Bayesian statistics. The Kalman filter describes a supposed mechanism of embodied cognition, namely, active inference in behavior (Adams, Shipp, & Friston, 2013; Tschacher, Giersch, & Friston, 2017). Apart from its frequent use in control systems, it may in principle also be applied as a modeling technique, with results approximating those of VAR models.

Artificial Neural Networks
Neural networks are inspired by the architecture of neuronal networks in the brain; therefore such computational models are called “neural.” They have an input layer consisting of “neurons” (representing, e.g., the activation of all the pixels of a digital image) and an output layer (e.g., the pixel activations of the subsequent image). Between the two layers are one or more hidden layers that connect input to output. The network can “learn” by “training”: Input and output data are presented repeatedly, whereby the neurons of the hidden layer(s) adjust their weights to mediate optimally between the input and output layers; neurons may even be pruned in the learning process. In applications, images can be analyzed because patterns in new input data that are similar to previously learned data can be detected, e.g., faces in input material can be recognized. In the context of artificial intelligence, neural networks have been introduced as an alternative to Turing machines more than half a century ago (as the “perceptron,” Minsky & Papert, 1969) because they realize parallel processing of data. They have again received increased interest recently (under the terms “machine learning” or “deep learning”) because they allow the fast processing of large datasets (“big data”). An application to process data is possible when input data represent the state of a system at time t and output data at t+1. A drawback for psychological modeling purposes is however that the dynamical model generated in this way is implicitly inherent in the hidden layers and cannot directly be interpreted. The “synergetic computer” (Haken, 1987) bridged neural networks with principles of synergetics. In applications to psychopathology, networks consisting only of nodes and connections between nodes (“edges”) have been proposed. The nodes may be identified with symptoms and the edges with the empirically assessed associations among symptoms (Borsboom & Cramer, 2013). In such applications, there are commonly no hidden layers with hidden nodes, and the network analysis amounts to an elaborated graphical display of multivariate regression models. The edges may also be identified with lagged associations between nodes, which constitutes an analog to vector autoregression modeling.

Throughout this book, we have chosen to base our modeling of psychotherapy process on the Fokker-Planck equation—it is the simplest and most general model that can mathematically mediate between deterministic and stochastic components of processes. Although an appropriate ansatz, the FPE modeling approach is virtually unknown in psychology and the social sciences. Starting in Chap. 4, we will elaborate the application of the FPE in some mathematical detail and, toward the end of this volume, in Chap. 9, propose algorithms that allow the estimation of FPE parameters on the basis of measured empirical time series.
1.4 Measurement in Psychology
Problems of measurement are often left unconsidered in psychology and psychotherapy. Even scientific researchers seldom reflect extensively this fundamental question: how does psychological reality enter the descriptive data that we ultimately model and analyze—how can this specific reality be mapped onto datasets?
It is everyday scientific practice in psychotherapy research to use scaling methods for the measurement of psychological variables. We may distinguish between variables of a purely qualitative nature and those that can be quantified. Qualitative variables are expressed by statements such as “When I talk to other people, I notice what feelings I am experiencing” (a statement representing an emotional process, taken from the CHIME questionnaire assessing mindfulness: Bergomi, Tschacher, & Kupper, 2013), “Things tend to fall apart in my mind” (a cognitive self-report from the DACOBS assessing psychotic symptoms: van der Gaag et al., 2013), or “The client and I are working on shared goals” (an assessment of behavior, from a psychotherapy session report assessing the therapeutic alliance).
In a second step, toward quantification, statements such as these are then assessed on a bipolar dimension that is provided together with the respective statement in a questionnaire instrument (see the examples in Fig. 1.2). In psychology such statements, which in some instruments are also phrased as questions, are called “items” or “rating scales.” Several items developed to address different aspects of the same psychological variable are then combined to constitute a “scale.” Scaling is often done by simply averaging over all the items (generating a so-called Likert-type scale). Other scales are defined in a more sophisticated fashion, which can also consider the psychometric properties of the single items, e.g., how well an item discriminates between high and low levels of the underlying hypothetical construct.[image: ../images/470128_1_En_1_Chapter/470128_1_En_1_Fig2_HTML.png]
Fig. 1.2Five examples of rating scale items used in psychological questionnaires


The construction of a scale based on several items has the obvious advantage of refining the quantitative value that is attached to the construct in the measurement process. Thus the resolution of the integrated scale is more fine-grained than the resolution of the single items, which may have only five or seven options (cf. Fig. 1.2). High resolution is important for the mathematical models we are going to develop in Chap. 4—a differential equation such as the Fokker-Planck equation assumes smooth data, i.e., data that in mathematical terms are differentiable.
How do psychological phenomena of interest lead to a mark on such items? How can one arrive at a quantitative value of a qualitative psychological variable? Measurement in psychology, like in any scientific discipline, rests on axioms and assumptions.
A working definition of psychological measurement may be this: We must map empirical psychological facts onto symbols and numbers in such a way that the relations between the facts are preserved in the relations between the numbers and symbols. For instance, we may posit that psychotherapy approaches can be summarized in four categories only—cognitive-behavioral, psychodynamic, humanistic, and systemic (Kriz, 2007). We will use this fourfold clustering later in this book. Accordingly, the variable “psychotherapy approach” is a categorical variable (also called nominal variable) with four values, which may be represented by symbols a, b, c, and d. In the same way as symbols are different, the relationship between any two psychotherapies that are mapped onto this variable can only be “identical” or “different.” This is also true for the computations that can be performed on the basis of categorical data. It is worth mentioning that even this very rudimentary type of scale allows for time series analysis in circumstances where sequences of a categorical variable are available (Reisch, Ebner-Priemer, Tschacher, Bohus, & Linehan, 2008).
A further type of scale results from the assumption that binary distinctions are possible, so that we may determine that a variable is expressed more strongly in one person compared to another person. For example, four different clients of a therapist may experience anxiety in social environments, and the therapist measures this variable “social phobia” by extended diagnostic interviews. This therapist may then be able to compare his clients A, B, C, and D and state that B < C < A < D with respect to their anxiety levels in certain social contexts. In this case, the variable “social phobia” possesses ordinal scaling. The measurement procedure, however, will not allow inferring that the anxiety difference between B and C equals the difference between C and A. We just know who is more phobic.
More refined scales can be based on subjective statements of a client, e.g., his or her “anxiety” on a scale ranging from 1 to 10, or on a visual analog scale without preset steps (see Fig. 1.2). The metric of a visual analog scale is the length (in mm) of the section marked by the user of this scale, which allows conclusions on the equality of differences, characterizing interval scaling. Another example of interval scaling is the measurement of body movement with the method of motion energy analysis (MEA)
              
              
            , as proposed by Grammer, Honda, Schmitt, and Jütte (1999) and applied in Ramseyer and Tschacher (2011). MEA has recently gained importance in the context of assessing synchronization phenomena in the nonverbal exchange between therapist and client (Chap. 8). MEA is based on counting the numbers of frame-by-frame pixel changes in a digital video recording (Fig. 1.3). The variable “movement” can thus be operationalized in such a way that we may state that 100 pixel changes in the movement that have occurred during the time interval t1 of the video correspond to the same magnitude of change by 100 pixels in time interval t2 of the video, which defines an interval scale. Because of the existence of an absolute zero (no movement corresponds to 0 pixel changes in MEA), the variable even has the properties of a ratio scale. 1000 pixel changes may be considered to represent double the movement of 500 pixel changes (here, we neglect validity limitations of the MEA method for the sake of the present definitions of scaling types).[image: ../images/470128_1_En_1_Chapter/470128_1_En_1_Fig3_HTML.png]
Fig. 1.3Body movement measured by pixel changes in video recordings: an example of a ratio scale. Upper panel: two situations in a video recording of dyadic interaction (left) and highlighted pixel changes during the situations (right). Lower panel: time series of numbers of pixel changes throughout the video and the time intervals of the two situations marked by rectangles. RoI region of interest


Yet, this “best” scaling level of preserved ratios is rather scarce in psychological research. It is given, for example, when one is measuring temporal durations, as in response times. Scales that are derived from questionnaire items are commonly not of the ratio type. Still, when variables are questionnaire-based rating scales composed of several single items, there is reason to believe that in the limit their scaling properties can approach that of an interval or even ratio scale. Time series of such variables after smoothing (by splines or like methods) may be treated as if they were differentiable.
Novel developments of data acquisition hold the promise that the availability of large longitudinal datasets with appropriate scaling properties will increase. Monitoring of physiological and behavioral time series in the field has become technically feasible using less invasive sensors (Fahrenberg & Myrtek, 1996; Tröndle, Greenwood, Kirchberg, & Tschacher, 2014). The “big data” aspect
              
              
             of such monitoring is that it can be run for extended periods of time, which alleviates the extraction of temporal information from time series. Thus the new technologies with miniature wireless sensors and cameras in connection with sophisticated data processing do support one of the main goals of this book, the focus on dynamical patterns. The implementation of “experience sampling” and “ecological momentary assessment” allows the measurement of longitudinal datasets and also of psychological variables with increased temporal resolution (Ebner-Priemer & Trull, 2009).
In this book, we will demonstrate how we may arrive at quantitative or semiquantitative models of psychological processes. This requires specific scaling types underlying the measured data. In a first step, we consider interval-scaled variables, yet not ordinal variables. Interval-scaled variables can be characterized by their mean and standard deviation, which is requested by much of inference statistics (Info-Box 1.1). In the following, we will therefore commonly make the assumption that we are dealing with at least this level of scaling. This corresponds, by the way, to a broad convention in empirical psychology and social science.
Info-Box 1.1
An interval-scaled variable x has measured values [image: $$ {x}_1,{x}_2,\underset{\leftharpoondown }{\rightharpoonup },{x}_N $$] and corresponding relative frequencies [image: $$ {p}_1,{p}_2,\underset{\leftharpoondown }{\rightharpoonup },{p}_N $$]. The mean of x is [image: $$ \overline{x}=\sum \limits_{j=1}^N{x}_j{p}_j $$] and its variance [image: $$ {s}_x^2=\sum \limits_{j=1}^N{\left({x}_j-\overline{x}\right)}^2/N $$].

1.5 Statistics
Stochastic science describes all empirical data as based on probability. The measurement of phenomena using variables commonly results not in one single value per phenomenon but in varying, distributed values. The Gaussian normal distribution
              
              
              
             (Fig. 1.4) describes the fact that measured values of a variable are distributed around an expected value [image: $$ \overline{x} $$], the mean, with a standard deviation sx. This is true for ensembles, i.e., many measured independent cases, and also for many independent measurements of the same case. The axiom behind this approach is that there are “true values” of each measurement but that chance, i.e., random errors, insufficient reliability of the measurement apparatus or rating scale, and uncontrolled environmental inputs necessarily lead to a distortion of the measured signal. All these influences blur the true signal, but when they can be assumed to occur randomly, all influences together result in a symmetrical distribution of measurements, such as given in the Gaussian. Furthermore, at least qualitatively, the shape of the Gaussian can be understood as follows. Let the ideal error-free value be at x = 0 (Fig. 1.4). Each error causes a small deviation from x = 0, but the larger the measured deviation from that value, the more errors must have piled up, and the less probable is such a “joint event” that may drive the measurement away from the true value. This entails a decay of the Gaussian with increasing deviation of x from 0. In practice, depending on the scaling properties of the measurement instruments, the true value can be expected to lie close to the mean of the distribution in the case of interval scales and close to the median in the case of ordinal scales.[image: ../images/470128_1_En_1_Chapter/470128_1_En_1_Fig4_HTML.png]
Fig. 1.4Gaussian normal distribution. Abscissa: x denotes the measure of some variable that is centered in 0; the ordinate y gives the respective frequencies by which the values of x are observed


Natural science has followed the premise that one exact true value definitely exists for all facts of nature. This was however only believed by philosophers and scientists until the full formulation of quantum mechanics in the 1920s. Quantum theory
              
             marked a distinct departure from the notion of the true value, which may be supposed to give rise to a more or less veridical measurement: Some facts, especially at atomic and subatomic scales, may have no true value because of the complementarity of wavelike and particle-like properties of quantum phenomena. Which of these properties becomes realized in an experiment can in principle only be known after the fact, respectively, only after the measurement. Thus, probabilities in fundamental physics are nonnegotiable in that they cannot be influenced by better measurement or more reliable instruments (Griffiths, 2004; Zeilinger, 2004).
Probability of this kind is a fundamental attribute of nature, a principle that is expressed in Heisenberg’s uncertainly principle: In quantum systems, the simultaneous measurement of position and momentum of the system cannot both be exact, and a more accurate representation of position goes at the expense of the accurate representation of momentum. The reason for the uncertainty principle rests in the wave properties of matter, i.e., in the complementarity of wave and particle descriptions of matter. Quantum theory represents a freely moving “particle” with a fixed momentum by a wave with a fixed wavelength. Since the wave does not prefer any position, the position of the “particle” is entirely uncertain. In order to prefer a specific region in space, waves with different wavelengths must be superimposed to form a “wave packet.” The sharper the localization, the more different wavelengths are needed. But “wavelength” corresponds to “momentum,” and with the different wavelengths the momenta become spread, they are now “uncertain.”
Due to Heisenberg’s uncertainty principle, random events are “intrinsic,” as they are not just the results of bad measurement or insufficient knowledge. For example, a particle can suddenly come into being in a vacuum—such so-called vacuum fluctuations occur “out of nothing”; they cannot, in principle, be explained or foreseen. Nevertheless, vacuum fluctuations may have significant effects for subsequent processes—they may irreversibly switch the tracks on which all further evolution of a system runs.
Complementarity also underlies the measurement of mental processes because the mind can be viewed either from a neuronal-physicalist or an experiential-phenomenological perspective (following the dual-aspect theory of the philosophy of mind, Atmanspacher, 2014). Therefore one may speculate that intrinsic stochasticity of the Heisenberg type likewise applies to the mind. This point however may be questioned: The in-principle uncertainty of nature that holds in quantum systems entails only minimal uncertainties in macroscopic systems. As long as we maintain that the variables of psychology are macroscopic, the probability of the quantum world can be neglected. On the other hand, we have to mention here that some theorists argue that consciousness is a correlate of quantum processes in neurons (Hameroff & Penrose, 2014).
Even if we put aside the quantum-theoretical discussion on brain processes and consciousness, or complementarity due to dual-aspect theory, we may still acknowledge that probability plays a dominating role in psychology and the social sciences for the simple reason that psychological measurement is almost always prone to limitations concerning objectivity, reliability, and validity. Chance and probability are therefore also a mundane topic of the imperfections of psychological measurement and the problem of shielding measurement against environmental fluctuations. For this reason, probability has always been a key concept in psychological research, with statistical methodology as its dominant modeling tool. Psychological research is generally aimed at reducing chance and the statistical noise and at enhancing the deterministic signal in the data. Psychodiagnostics aims at a steady improvement of the quality of the scales—measurement tools must be objective (different users should arrive at the same scores), reliable (retesting should reproduce previous results), and valid (measurement should address the construct that it is supposed to address).
In addition to this, psychological research engages in a continuous struggle to minimize uncontrolled biases of the data. A bias is defined as the nonrandom distortion of a dataset. Hence observational and experimental designs must be developed in such a way as to limit unwanted but well-known biases—such as the “experimenter bias” and the “allegiance effect” of psychotherapy research (Munder, Brutsch, Leonhart, Gerger, & Barth, 2013), which both tend to favor the hypotheses held by the investigator. Biases further result from the effects of dropouts and missing data, which can be systematic and one-sided, the “social desirability” attitude of participants who (unconsciously) wish to please the investigator, and several more. Again, statistical analysis is the only means to curb biases or at least estimate the degree of their impact.
Figure 1.4 depicts a Gaussian normal distribution or “bell curve” that shows how often or how likely a certain value of an observable x (abscissa) is measured. The area under the curve (mathematically, its integral) represents the probability of all observations, i.e., P = 1. Obviously, an observation of x = 3, for example, is highly unlikely, because the area under the curve for observations of 3 or larger (x ≥ 3) is quite small. This is the simple idea on which most significance testing in statistical inference rests. If after some experimental intervention the mean sampled values of x have reached the value of, say, 3, it appears quite unlikely that this result can be explained by the original distribution, and the intervention is then called “significant.” If other explanations, such as biases, can be ruled out, it is reasonable to assume that the intervention entailed a significant change in the sample, i.e., a dislocation or “drift” of the mean of the new distribution.
1.6 Causation: Deterministic Processes and Goals
In the context of psychotherapy, it is common practice to define the goals of treatment during the early phase of therapy. The attainment of goals at the end of therapy is therefore an important indicator of therapy success (so-called therapy outcome); the degree of goal attainment can be measured using rating scales. When goals are reached, we would call the respective process “deterministic” because the outcome can be distinguished from mere chance events. Goal, intention, and wish are examples of intentionalistic language, which is the hallmark of folk psychology. In scientific terminology, we need a more general terminology to cover deterministic processes.
Many macroscopic processes in nature are approximately purely deterministic, whereas the Gaussian results from chance events. Especially mechanics, the field that concerns the movement of material bodies that are subject to forces provides us with examples of deterministic behavior that can easily be visualized. We may imagine a hilly landscape with a valley and a stone sliding down one of the grassy slopes (Fig. 1.5). Clearly, from whatever position uphill the stone may start, it will ultimately reach the bottom of the valley. In dynamical systems theory (DST),
              
              
              
             this final position is called 
              attractor
              
              
            . All positions from which an attractor can be reached (here by sliding down the gradient of a hill) form the basin of attraction. In a concrete example, the position of the stone represents and visualizes the value of a state variable.[image: ../images/470128_1_En_1_Chapter/470128_1_En_1_Fig5_HTML.png]
Fig. 1.5Attractor together with a metaphorical stone: example of a deterministic process


Our mechanistic example is also applicable to many biological and psychological processes, where we may encounter an interplay between a driving force and a resisting force. In the stone example, the driving force is the gravitational force, and the resisting effect may be produced by friction, by the soil and grass on the slope. The friction is assumed to be so large that the sliding stone comes to a rest at the attractor, instead of swinging endlessly.
We may add here a clarification in advance: We may occasionally invoke mechanical interpretations for illustration purposes, yet we do not harbor physicalist intentions of reducing biological or psychological processes to mechanics. In the context of psychology, the metaphorical character of our wording “force” and “friction” is obvious, yet we are free to replace these terms by, for example, “approach tendency” and “avoidance” or “resistance” from motivational psychology, respectively. Thus the use of deterministic mechanics does not imply an ontological statement.
1.7 Chance and Causation
The statistical approach and the dynamical systems approach are quite different. It is however a central tenet of our book that both are necessary in the modeling of psychotherapeutic processes and change—we wish to consider both chance and causation. The structural science of synergetics (Haken, 1977) rests exactly on this combination of stochastic with deterministic modeling. Viewed from a purely phenomenological angle, we may already observe a strong resemblance of the curves of Figs. 1.4 and 1.5, provided the Gaussian of Fig. 1.4 is mirrored at a horizontal axis (cf. Fig. 1.6).[image: ../images/470128_1_En_1_Chapter/470128_1_En_1_Fig6_HTML.png]
Fig. 1.6Mirror resemblance of the Gaussian and the attractor


This relation between the Gaussian and the attractor has a deeper root than just superficial resemblance. To unearth it, we again resort to our mechanical metaphor. We may think of a stone that is randomly kicked by imaginary soccer players (representing chance, i.e., stochastic forces) while it is sliding down the slope (representing causation, i.e., dynamical forces). Each kick displaces the stone a little distance uphill or downhill. In the absence of kicks, the stone reaches the bottom of the valley and ultimately comes to rest at the attractor. The attractor—a deterministic concept of dynamical systems theory—at the same time also constitutes the state with the highest probability. To drive the stone uphill randomly would require more and more kicks, entailing a decreasing probability of finding the stone at increasing heights. This reflects the qualitative mirror symmetry between Figs. 1.4 and 1.5 that we expressed in Fig. 1.6. The mirror symmetry of stochastic and deterministic impacts even has quantitative aspects: Stronger random kicks have the same effect as a flatter deterministic slope. We may apply these insights to psychology by replacing the word “kick” by “random event.” What is more important, we can draw conclusions from a measured distribution (Gaussian or other) to the shape of the underlying attractor landscape purely by mirroring. This is discussed further in an elaborate example in Chap. 7.
The foundation of synergetics is both deterministic and stochastic because the process of self-organization, which is the core of synergetics, can in principle not be modeled without reference to chance events. The reason for this is the following: All (deterministic) evolution equations (that describe self-organized pattern formation in synergetics) are in need of a random event that triggers the unfolding of pattern formation. For a self-organized pattern formation, the trigger must be an intrinsic random fluctuation, i.e., a random event within the system—if the fluctuation were applied from outside, we could not speak of self-organization in the first place, and the whole scenario would be deterministic.
Therefore our cardinal causation-and-chance approach, which combines deterministic and stochastic events in the modeling of processes, has a philosophical background that differs from the understanding of statistics common in psychology in two respects. First, we model stochastic forces with respect to their dynamics, i.e., stochastic events are expected to change as a function of time and of the state of a system. This is unusual in psychological science where random distributions are considered as somehow given and constant. Second, the understanding of complex systems in our approach, and generally in synergetics, is that their stochasticity is intrinsic. Psychology has a different view of statistics—random models are used because researchers and practitioners simply lack sufficient knowledge or adequate measurement instruments to arrive at a completely reliable dataset. The “true value” concept still exists in psychology. Thus, statistics is used in psychology less out of principle but rather as an auxiliary method for reasons that are quite trivial, such as imprecision of measurement tools and insufficient access to all relevant “true” data.
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We wish to model the processes that occur in psychotherapy. In the introductory chapter, we claimed that there are basically two branches of modeling approaches, one that focuses on deterministic influences on a system and another that is based on random influences—causation and chance. The two modeling assumptions are quite different, but their consequences on the dynamics of a system can appear similar. The effects of causation and chance, and their respective descriptions by attractors or by probability distributions, appear like mirror images of one another. We therefore chose a type of modeling, the Fokker-Planck equation approach, which integrates both the deterministic and the stochastic forces that act on a system.
Before we concentrate on these “forces” in psychotherapy, we need to examine what it is that is being treated by psychotherapy. Therapy is by definition a healing or curative activity and its subject thus a condition in need of cure and remediation. The subjects of psychotherapy are psychological problems, disorders, ailments, maladaptations, or dysfunctions. All fields of psychological functioning, and some fields of somatic functioning, can be affected—cognition, emotion, behavior, language, physiological processes, and social interaction. Psychotherapy may have further purposes, though. For instance, psychotherapy can be used as a tool for personal development, for better self-awareness and insight even in the absence of any specific problem. We would then speak of counseling or coaching rather than psychotherapy. We will however leave these additional aspects aside and consider here only the main reason for undergoing psychotherapy—the remediation of psychopathological conditions.
2.1 Taxonomies of Psychopathology and Their Shortcomings
The current taxonomy
              
              
             of psychopathology is contained in the “International Classification of Diseases” (ICD-10, Chap. 5) of the World Health Organization (WHO) and in the “Diagnostic and Statistical Manual of Mental Disorders” (DSM-5) of the American Psychiatric Association. These classifications encompass the standard definitions of mental disorders, which are used worldwide in the clinical practice of psychiatry and, to a lesser degree, clinical psychology. Both classifications are predominantly based on categorical decisions that clarify whether a person fulfills the criteria for a disorder or not.
Enduring mental and behavioral problems are defined by these taxonomies as psychopathological “disorders.” There are many types of such disorders, and the respective definitions stand in the context of the history of psychiatry, i.e., they are often derived from a medical tradition. On its uppermost level, the DSM-5 is a system of diagnostic groups of disorders such as “schizophrenia spectrum disorders,” “depressive disorders,” “personality disorders,” “anxiety disorders,” and “substance-related disorders,” to name just a few of the 19 disorder groups listed in the recently revised DSM-5. The ICD-10 is structured in 11 groups of disorders, e.g., F20–F29 (“schizophrenia, schizotypal, and delusional and other non-mood psychotic disorders”), F30–F39 (“mood (affective) disorders”), or F60–F69 (“disorders of adult personality and behavior”).
The core concept of both DSM and ICD, the concept of disorder, is commonly defined as a syndrome, i.e., a disorder is characterized by a list of attributes or symptoms. The ICD-10, for example, defines the disorder “depressive episode
              
              
            ” by the list of signs and symptoms given in Info-Box 2.1. A moderate depressive episode (F32.1) is accordingly diagnosed when “four or more of the mentioned symptoms are usually present” (retrieved from the WHO website (http://​apps.​who.​int/​classifications/​icd10/​browse/​2016/​en#/​F32)). The listed symptoms are commonly quite diverse and may be emotional, cognitive, behavioral, or somatic.
Info-Box 2.1: The ICD-10 Description of “F32, Depressive Episode”

              (...) the patient suffers from lowering of mood, reduction of energy, and decrease in activity. Capacity for enjoyment, interest, and concentration is reduced, and marked tiredness after even minimum effort is common. Sleep is usually disturbed and appetite diminished. Self-esteem and self-confidence are almost always reduced and, even in the mild form, some ideas of guilt or worthlessness are often present. The lowered mood varies little from day to day, is unresponsive to circumstances and may be accompanied by so-called ‘somatic’ symptoms, such as loss of interest and pleasurable feelings, waking in the morning several hours before the usual time, depression worst in the morning, marked psychomotor retardation, agitation, loss of appetite, weight loss, and loss of libido.


            

Psychopathological disorders have certain properties that are implied by this kind of additive nosology. First of all, disorders are viewed as categorical in that they are either present or absent. There may be some room for ordinal scaling, in that a “depressive episode” can be diagnosed as mild (F32.0), moderate (F32.1), severe (F32.2), or severe with psychotic symptoms (F32.3). Still, each specific diagnosis remains an entirely categorical variable with just two levels, present or absent. Strictly speaking, if a disorder is given, it warrants treatment, which is compensated by health insurances in many countries. This is not true when the diagnostic criteria are not fully met.
Psychiatric classification of this kind has come under severe criticism in recent years. A major reason for this critique (Frances, 2014; Hengartner & Lehmann, 2017) originates from the categorical definition of all disorders. This categorical type of scaling has created a host of problems: if, as mentioned above, a moderate depressive episode is given when four or more of the signs of Box II.1 are present, whereas this box actually contains 19 such signs, it is obvious that massive phenomenological heterogeneity may be encountered between two individuals, who nevertheless share an identical diagnosis. Such definitions imply that a disorder is composed in an additive manner, where all its allocated signs must be weighed equally.
Further problems are that individuals with mental problems often fulfill the criteria for more than one disorder, which gives rise to so-called comorbidity. A considerable share of comorbidity is generated by the categorical design of the classification system. Ironically, in psychiatry a single patient may well have his own unique personality profile, but he can easily be diagnosed with two or more different personality disorders. Thus, the boundaries between diagnoses are necessarily vague. In other words, the categorical classification of psychopathological disorders generally lacks reliability and validity. The lack of validity is additionally aggravated by the fact that disorders and groups of disorders in the DSM and ICD system are not arrived at empirically but by consensus within the psychiatric community.
A problem related to comorbidity is biological heterogeneity—completely different biological mechanisms may converge to the same diagnosis. This was, for instance, found in anxiety disorder (McTeague & Lang, 2012). Persons with anxiety that had resulted from cumulative traumatic events showed paradoxical physiological responses to fear-eliciting stimuli. Their startle responses to the aversive stimuli were attenuated, which was in contrast to the increases found in all other clients with the same diagnosis of an anxiety disorder. Thus experienced anxiety can be associated with a large variety of neurological processes, where some anxiety disorders may show decreased or even inactivated amygdalar functioning rather than amygdalar hyperactivation.
2.2 Alternative Conceptualizations of Psychopathology
The mentioned shortcomings
              
              
             of classification systems are especially disturbing in light of basic assumptions in psychiatry as a medical sub-discipline. Biological psychiatrists believe that disorders are the results of circumscribed biological dysfunctions—genetic, neuronal, and endocrine markers should therefore clearly allow defining each psychopathological phenomenon. Despite great efforts of the past century, however, medical science has almost completely failed to unearth these clear biological markers and causes of psychopathological phenomena. In response to this inconvenient situation, the National Institute of Mental Health of the USA launched in 2008 the Research Domain Criteria (RDoC) initiative (Insel, 2014). RDoC is a plan to eventually classify mental disorders based on observable neurobiological endophenotypes and on behavioral measures and thereby arrive at improved taxonomies of psychopathology.
At present, the RDoC initiative has defined five domains in order to cluster and coordinate psychopathology research: positive valence systems, negative valence systems, cognitive systems, social processes, and arousal and regulatory systems (cf. the NIMH website (https://​www.​nimh.​nih.​gov/​research-priorities/​rdoc/​constructs/​rdoc-matrix.​shtml)). These domains are actually psychological dimensions to which further constructs and subconstructs are allocated in the RDoC matrix. For example, the domain “Systems for Social Processes” consists of the constructs “affiliation and attachment,” “social communication,” “perception and understanding of self,” and “perception and understanding of others” (Fig. 2.1). The proposed units of analysis relating to these (psychological) constructs are biological (genes, molecules (e.g., oxytocin), cells (e.g., the magnocellular pathway), circuits (e.g., the amygdalae), physiology (e.g., vagal tone)). Two behavioral units of analysis are listed (“behavior,” “self-report”), which also contain rating scales and coding systems.[image: ../images/470128_1_En_2_Chapter/470128_1_En_2_Fig1_HTML.png]
Fig. 2.1Structure of the Research Domain Criteria (RDoC), exemplified by the domain “social processes systems.” Arrows symbolize which units of analysis are related to the constructs of this domain. (…) means that constructs allotted to other domains are not shown. Dotted arrow, genetic links were removed from RDoC in 2017 for all domains because of a lack of evidence


In this way, the RDoC initiative may provide and suggest a roadmap for future research, especially neurobiological research in psychiatry. There are however some obvious shortcomings of this approach. One may question the suitability of the chosen domains and constructs, which are somehow given a priori, by convention—they are not informed by the biological units of analysis that they are supposed to relate to. Thus the top-level constructs stand in a vague relationship to the units, which is especially bothersome as top-level domains and constructs are exclusively psychological concepts, whereas most units are biological. In general, the RDoC demonstrates a bias toward research of biological units of analysis and specifically encourages the biological research of psychological domains.
In our view, the intensification of neurobiological research as put forward by the RDoC initiative cannot guarantee that the impasses of classical taxonomies will be resolved. RDoC has merits as it standardizes the research on mental disorders, but it implicitly assumes that mental domains can be reduced to the biological units of analysis, in continuation of the agenda of biological psychiatry. This initiative is therefore less meaningful for research on psychotherapeutic interventions in psychopathology.
Further progress may come within reach when we reject the categorical premise of psychopathological classification and, instead, acknowledge the fundamentally dimensional nature of psychopathology. Symptoms, attributes, and states in psychopathology can be more or less severe or frequent. Thus, from the psychological measurement standpoint described in Chap. 1, we may assume that the variables of interest are interval-scaled variables. A second improvement would be to introduce a bottom-up approach instead of the top-down approach of DSM and ICD classifications as well as the RDoC initiative. In DSM and ICD, the high-level taxa
              
              
             (such as “schizophrenia” or “depression”) are given based on expert consensus and psychiatric tradition. In RDoC, domains are likewise defined nontheoretically—domains “reflect contemporary knowledge about major systems of emotion, cognition, motivation, and social behavior” (NIMH website (https://​www.​nimh.​nih.​gov/​research-priorities/​rdoc/​definitions-of-the-rdoc-domains-and-constructs.​shtml)). In addition to these historical and subjective influences, classifications also carry with them economic, i.e., nonscientific interests. The newly extended definitions of categories in DSM-5 (e.g., labeling prolonged grief as a kind of depression, Frances, 2014) can massively raise the demands for antidepressive therapies, hence profits. Obviously, the more scientific approach would be to measure the manifest symptomatic variables at the bottom level and then empirically decide on the higher-level psychopathological clustering (cf. Fig. 2.2).[image: ../images/470128_1_En_2_Chapter/470128_1_En_2_Fig2_HTML.png]
Fig. 2.2Simplified example of a hierarchical bottom-up system of psychopathology according to the Hierarchical Taxonomy of Psychopathology (HiTOP). PD, personality disorders


The Hierarchical Taxonomy of Psychopathology (HiTOP) is an example of a novel classification approach (Kotov et al., 2017). In the HiTOP, the hierarchy of psychopathology is spanned by these levels: symptoms, components, syndromes/disorders, subfactors, spectra, and super spectra. The distinction between these hierarchical levels rests largely on factor-analytical methods that assess the patterns of interrelations between symptoms. In other words, the structure and the clustering of the levels of psychopathology are a matter of empirical analysis and not the decision of experts and lobbyists. As a result, the disorders and groups of disorders in the HiTOP do not coincide with the current clustering put forward by DSM and ICD.
Unbiased measures of psychopathology are an appropriate starting point for all modeling of psychotherapeutic interventions, which is the topic of this book. In addition, the assumption of hierarchical systems of psychopathology is quite in the spirit of synergetics (Haken, 1977)—self-organization theory makes a distinction between the microscopic level of a complex system and one or more macroscopic levels emerging from microlevel interactions (Haken, 2006).
2.3 Toward a Dynamical Quantification of Psychopathological Disorders
According to the dimensional view
              
             in psychopathology such as proposed by the HiTOP and the simplified example of Fig. 2.2, each disorder can in principle be quantified and measured using one or several “state variables,” i.e., variables that represent psychopathological signs, symptoms, and components. Such variables may come in the shape of psychometric ratings, or they may consist of monitoring physiological or behavioral processes. Thus, any psychopathological disorder can be represented by a vector that comprises the totality of those variables that make up this disorder.
In general, the goal of psychotherapeutic and psychiatric treatment is to modify the respective states of a client so that the client is confronted with less suffering and arrives at more positive affect and higher quality of life. Thus, dimensional psychopathology variables offer adequate state variables for the purpose of modeling psychotherapeutic processes. The degree of suffering, affective variables, and assessments of quality of life will also serve as outcome variables, i.e., measures that depict the success of interventions. Therapeutic outcomes can, but need not, be assessed independent of the psychopathological states. Obviously, the reduction of symptoms and the attenuation of a disorder are outcome variables in themselves.
In psychotherapy and psychiatry, the client usually experiences “problems,” i.e., signs and symptoms, that are persistent or recurrent. It is precisely this stability over time and over situations that makes clients seek help. In the terminology of classification systems, the problems affect different levels of functioning and may have emotional, cognitive, or social consequences, which are grouped together and create a disorder or syndrome.
In the words of deterministic dynamical systems theory, the disorder thus has the core attribute of an attractor: from different initial conditions in the basin of the attractor, the same final states are realized again and again. The final states represent the disorder. Or vice versa, once a person is dwelling inside the disorder attractor, it is hard or impossible for him or her to leave this psychopathological stable state. These are hallmarks of causation, according to which disorders must be conceived of as attractors.
At the same time, there is also chance—psychopathological problems are stochastic because there are varying probabilities for their manifestation. The manifestation of a disorder may be realized in many or all circumstances, which may critically depend on stochastic influences originating in the environment of the client. Random kicks and fluctuations will always affect the severity of symptoms. Also, many psychopathological disorders do not remain stable for all time—there is always a probability of so-called spontaneous remission in the absence of treatment or identifiable causes. Thus, in addition to attractors, chance events also contribute to states of psychopathology.
In principle, different kinds of attractors are observed and modeled by dynamical system theory. The simplest, and most common, attractors are fixed-point attractors in which the attracting state is itself (in the hypothetical absence of fluctuations) a constant state. This is the idealized situation of Fig. 1.​5, where the stone (i.e., the system) comes to a rest at the bottom of the valley. Attractors, however, may show much more complicated attracting states. Some attractors, the so-called limit cycles, are characterized by regularly oscillating states—the attracting set in state space is itself a process with periodic changes. Bipolar disorder, where the dysfunction is presented by a regular back-and-forth between hypomanic or manic and dysphoric or depressive mood of a client, should thus be modeled by this specific type of attractor, by a limit cycle (Fig. 2.3).[image: ../images/470128_1_En_2_Chapter/470128_1_En_2_Fig3_HTML.png]
Fig. 2.3Hypothetical course of mood in a client with bipolar depression, as an expression of limit cycle dynamics in psychopathology


In the research program of “dynamical diseases,” it has been proposed to understand disorders with erratic and unpredictable courses, such as schizophrenia spectrum disorders, as the results of underlying fractal chaotic attractors (Ciompi, 1997). Some indirect empirical support for this hypothesis was reported in time series analyses (Tschacher, Scheier, & Hashimoto, 1997; for depression: Pezard et al., 1996) (Fig. 2.4). Research on epileptic seizures has shown that seizure dynamics can be modeled by five state variables that are coupled nonlinearly (Jirsa, Stacey, Quilichini, Ivanov, & Bernard, 2014). Consequently, the attractors governing seizures are likely chaotic (Sohanian Haghighi & Markazi, 2017).[image: ../images/470128_1_En_2_Chapter/470128_1_En_2_Fig4_HTML.png]
Fig. 2.4Time course of psychotic symptoms in a patient with schizophrenia (patient 47 in Tschacher et al., 1997). This dynamics was assessed as showing the signatures of deterministic chaos


In conclusion, we find that psychopathology can be quantified on the basis of a number of interval-scaled variables, the signs or symptoms of disorders. Disorders may be derived from the interrelations between such variables in a bottom-up empirical analysis. Spectra of disorders follow the same logic and are derived from the interrelations between disorders. The taxonomy of psychopathology, if it is based on such dimensional rather than categorical premises, allows conceiving of the (problematic) stability of disorders as attractors. The attracting forces in psychopathology denote the deterministic, causation side of the coin, whereas the presence of fluctuations and even spontaneous remission represents the stochastic side, i.e., chance. Thus, in general, variables denoting the psychopathological states and processes of a client can be subject to the modeling approaches we will develop starting in Chap. 4.
Our view of psychopathology deviates in several respects from conventional taxonomies of DSM and ICD. The first is that we view disorders not as categories but as dimensions that can be represented by interval-scaled variables
              
            . This dimensional view is becoming increasingly prevalent in the field of psychopathology—even the categorical setup of DSM-5 has recently included a tentative dimensional approach in the context of personality disorders. The second departure from established psychopathology classification systems is that we conceive of disorders as dynamical entities rather than trait-like conditions. We consequently propose that we are commonly dealing with dynamical disorders. When we observe, in a client, a seemingly static and unchanging psychopathological state, we maintain that this stability is due to stable attractors—stability as a dynamical attribute. More complicated dynamics may also derive from periodic or even chaotic attractors.
Both proposals, dimensional scaling and the dynamical ontology of psychopathology, are in favor of our general modeling approach for psychotherapy. As was stated in Chap. 1 and as will be further elaborated in the course of this book, we wish to arrive at an explicitly dynamical model of psychotherapy that considers both deterministic and stochastic contributions to intervention processes. Within this dynamical frame, it is appropriate to also conceive of the variables that demand treatment—psychopathological variables—as dynamical. In addition, it is mandatory to deal with variables that are scaled in such a way as to allow the application of time series analyses. Our discussion in this chapter has yielded arguments that these prerequisites of our modeling approach are met.
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3.1 The Current Discussion in Psychotherapy Research
Psychotherapy is the practice
              
              
             of inducing a psychological learning process with the goal of facilitating profound changes of a client’s experiencing, behavior, and social relations. Psychotherapy is personalized to a client and specifically tailored to reduce psychopathological symptoms and/or suffering and/or increase well-being and functioning. There are hundreds of different psychotherapeutic approaches, modalities, and schools, which all are based on their own philosophical and theoretical-psychological convictions, i.e., on general assumptions concerning the nature of experiencing and behavior of a person, and the social relations between persons. These theories are the very cores of a specific psychotherapy approach, and they are not necessarily grounded in scientific psychological theories on learning. From these theories, techniques of therapeutic intervention are derived. Thus, the identity of a therapy approach lies in its theoretical convictions and commonly also in the specific techniques derived from them.
Psychotherapy research became an active field of psychology and psychiatry when psychoanalysis was founded by Sigmund Freud in the beginning of the twentieth century (Freud, 1900). For a long time, research in this field was largely based on case studies and theoretical considerations. This changed when the effectiveness of psychotherapy was radically challenged in the mid-century—Hans Eysenck and others claimed that the benefits of psychotherapeutic interventions were actually illusionary because the spontaneous remission rate had not been considered (Eysenck, 1952). Eysenck thus insinuated that the reported improvements that were thought to be due to psychotherapy causally consisted more or less of chance events unrelated to the therapeutic efforts.
This devastating criticism became the “Sputnik shock” of the field—it inspired a large number of more rigorous scientific investigations of psychotherapy, among them efficacy studies, which became increasingly advanced in their methodology. Many trials assessed random samples of clients under therapy and included control conditions to rule out the argument of spontaneous remission rates. This “legitimation phase” of psychotherapy research convincingly demonstrated that many different approaches of psychotherapy were at least moderately, sometimes even highly, efficient (Pfammatter & Tschacher, 2012). The growing evidence was corroborated by meta-analyses that aggregated the results of several or many single studies. Meta-analyses have shown that psychotherapy produces results clearly superior to no treatment, wait list, pseudo-treatment controls, and often also pharmacotherapy.
The next phase of psychotherapy research shifted the focus from effectiveness to process research—what property of psychotherapy is it that makes it effective? Different cultures of psychotherapy researchers interpreted the demonstrated effectiveness of psychotherapy in different ways. Since there is largely uniform evidence of effectiveness across differing treatment approaches and differing treated disorders, some researchers stated that the effects were due to the so-called common factors
              
              
             that underlie all treatments. A well-studied example of a common factor is the quality of the therapeutic alliance, i.e., the bond and working relationship between therapist and client. The closer and the more trustful the alliance, the better the outcome of therapy. A precursor of common factor proponents was Saul Rosenzweig, who as early as in the 1930s had identified three “unrecognized factors” which were presumably present in any psychotherapy besides the consciously held theories of a psychotherapy approach (Rosenzweig, 1936). Rosenzweig’s factors were the therapist’s personality, a consistent therapeutic ideology, and a cathartic (i.e., purifying) effect due to the interdependence of the client’s and therapist’s personalities.
A more recent system of common factors is Klaus Grawe’s, who reviewed the empirical evidence of psychotherapy research accumulated toward the end of the twentieth century. Grawe (1997) listed four essential common factors
              
              
            :	The activation of the client’s problem in the therapeutic setting

	The activation of the client’s resources

	The clarification of the client’s underlying motivations

	The client’s coping with problems




Some researchers even posit that there is little reason to believe that other factors than such common factors contribute to the effect sizes of psychotherapy, citing many empirical studies in support of this position (Wampold, 2015). A list of the 22 most frequently referenced common factors is given in Table 3.1.Table 3.1List of common factors with short definitions (adapted from Tschacher, Junghan, & Pfammatter, 2014)


	Common factor
	Definition

	Therapeutic alliance
	Client and therapist establish a trusting, cooperative relationship, characterized on the therapist side by affirmation and affective warmth. The alliance also includes mutual connectedness and consensus about therapeutic goals and tasks (“working alliance”)

	Mitigation of social isolation
	Client experiences a reduction of his/her social isolation and alienation

	Explanatory scheme
	Client is offered a theoretical scheme which provides a plausible explanation of problems and a procedure for their resolution

	Hope
	Client expects that therapy will succeed, and problems will be attenuated

	Readiness to change
	Client is willing and open to change his/her situation or behavior

	Client engagement
	Client actively participates, is engaged in the therapeutic process

	Resource activation
	Therapist emphasizes and vitalizes strengths, abilities, and resources of the client

	Affective experiencing
	Client experiences emotions and affects associated with problems

	Affective catharsis
	Client expresses yet repressed feelings

	Problem confrontation
	Client is encouraged to face, to experience, and to deal with problems. Problems are not avoided but actualized in the session

	Desensitization
	Client experiences progressing attenuation of his/her emotional responses to aversive stimuli

	Corrective emotional experience
	Client learns that his/her actual experiences in problematic situations are not as devastating as imagined or feared

	
                        Mindfulness
                      
	Client develops the ability of nonjudgmental awareness of his/her thoughts, perceptions, and feelings. Client learns to be aware of inner processes in the here and now

	Emotion regulation
	Client learns to perceive, express, and control his/her emotions more adequately

	Insight
	Client develops a cognitive conception of his/her problems and their causal relation with motivations and with recurring patterns of behavior

	Assimilating problematic experiences
	Client integrates his/her problematic experiences with preexisting own cognitive schemata

	Cognitive restructuring
	Client gradually accommodates his/her conceptualizations of problems, acquires new perceptions and thinking patterns

	Mentalization
	Client learns to become aware of his/her own mental states and develops the ability to perceive and anticipate the mental states and behaviors of others (theory of mind)

	Behavior regulation
	Client learns new behavioral responses and skills to modify own habits and learns to manage and control his/her actions

	Mastery experiences
	Client gathers successful coping experiences

	Self-efficacy expectation
	Client increases his/her sense of effectiveness and control, increases his/her agency

	New narrative about self
	Client develops a new sense of coherence regarding his/her past, present, and future life and of being in the world, by a meaning-generating narrative




Yet many researchers maintain a point of view that diverges from the common-factors explanation. They claim that therapeutic change is generated predominantly by specific interventions and 
              techniques
              
              
             of a psychotherapy approach (see Table 3.2). This explanation of psychotherapy outcome is particularly popular among the behavioral and cognitive-behavioral therapists, who would partially or completely doubt the “unspecific” common factors model and argue that it merely refers to superficial or even placebo effects. The specific-techniques position is like the common factors model supported by empirical findings: for instance, fear-related disorders of the internalizing spectrum are best treated using exposure techniques (Chambless & Ollendick, 2001). Exposure is a specific intervention of behavioral psychotherapy, meaning that the situation or stimulus feared by the client must deliberately be presented in the therapeutic setting, while at the same time, all avoidance and escape behaviors of the client must be prevented. The mechanism of action here is assumed to lie in the unlearning and extinction of fear-related behavioral and affective responses that are brought about by the (repetitive or massed) exposures.Table 3.2List of selected techniques with definitions (adapted from Tschacher et al., 2014)


	Technique
	Definition

	Positive reinforcement technique
	Therapist rewards desired client behavior (BT)

	Exposure
	Therapist confronts client in imagination or in vivo, gradually or by flooding, with a problematic situation, and prevents avoidance behaviors (BT)

	Role-play technique
	Therapist stages difficult social interactions in a training context with client as participant, and instructs, models, and corrects client’s performance (BT)

	Problem-solving training
	Therapist teaches client to identify and define the problem, to systematically generate and evaluate several possible problem solutions, to implement and verify the selected optimal problem solution (CBT)

	Reality testing
	Therapist encourages client to test the evidence of his/her thoughts and beliefs, runs behavioral experiments, and provides alternative explanations (CBT)

	Free association technique
	Therapist encourages client to talk about whatever comes to mind (Psa)

	Therapeutic abstinence
	Therapist deliberately does not comment or evaluate statements or behavior of client, provides no information on own person (Psa)

	Transference interpretation
	Therapist links current client-therapist relationship to other interactions of client to point out client’s recurring relationship problems (Psa)

	Resistance interpretation
	Therapist draws attention to client’s opposition to or avoidance of certain topics, experiences, and feelings by pointing out evasions, sudden thematic shifts or behavioral inconsistencies (Psa)

	Verbalization of emotional reactions
	Therapist listens carefully to what client is saying, empathically paraphrases client’s statements, explores their personal meaning and frame of reference (mirroring) (CCT)

	Focusing
	Therapist draws attention to unexpressed feelings, promotes deeper experiencing, encourages client to explore and express feelings (CCT)

	Chair technique
	Therapist uses a chair (or other physical object) as a symbol for client’s problem/behavior/emotion. Client is encouraged to speak to the empty chair to solve problems, or continue with unfinished business, or is engaged in a two-chair dialogue to analyze and resolve inner conflicts (HEP)

	Creative expression technique
	Therapist encourages client to use media (painting, writing, dance, music, etc.) to actualize experiences and express feelings (HEP)

	Circular questions technique
	Therapist explores the meaning of a statement or behavior of one family member for another family member (“how does your mother feel when you say this to your father...”) (SPT)

	Sculpture work
	Therapist asks the family or group to spatially and bodily represent a client’s familial relationships (affinity, distance, hierarchical structure) by building a symbolic bodily constellation of family members (SPT)

	Paradoxical intention technique
	Therapist offers a new interpretative framework (reframing), assigns a positive meaning to the problem (positive connotation), invites client to deliberately show the problem behavior (symptom prescription), or offers lots of problem solutions (confusion technique) (SPT)

	Prescription of rituals
	Therapist prescribes formalized and symbolic actions that disrupt problematic behavior (SPT)

	Reflecting team technique
	A team of experts monitors therapy online and discusses their observations with participants afterward (SPT)

	Progressive muscle relaxation
	Therapist guides client to sequentially contract and relax different groups of muscles (BT)

	Hypnosis
	Therapist asks client to intensively imagine pictures or scenes or induces hypnotic trance by verbal suggestions and motoric procedures (SPT)

	Biofeedback training
	Therapist guides client to deliberately influence and control physiological processes using feedback from technological measurement devices, to enhance discrimination learning and relaxation (BT)

	Counseling
	Therapist gives advice on how to deal with and resolve problems (coaching)


In brackets, the therapy approach from which the technique has originated. BT behavior therapy, CBT cognitive-behavioral therapy, Psa psychoanalysis, CCT client-centered therapy, SPT systemic and family psychotherapy, HEP humanistic-experiential psychotherapy



In past decades, a large number of specific techniques have been developed by various therapy approaches. For example, a typical technique of systemic psychotherapy is sculpture work, i.e., the spatial, realistic illustration of social relationships (such as the hierarchical structure and coalitions inside a family), enacted in the therapy session by the persons involved. A core technique of psychoanalysis is transference interpretation: the therapist points out that and how problematic relationships of the client’s past and present life become mirrored and re-enacted in the present therapist-client relationship.
There have been attempts to weigh the relative contributions of techniques on the one side and common factors on the other side by examining their respective effect sizes, since both specific and unspecific interventions are empirically supported. A result of this method was detailed by Lambert (2013) (Fig. 3.1). There is some convergence in such comparisons (Cuijpers et al., 2012)—they rather consistently show a relatively low explanatory power of specific techniques (15% in Lambert, 17% in Cuijpers et al.) and about threefold effect that originates from common factors (30% + 15% in Lambert, 49% in Cuijpers et al.).[image: ../images/470128_1_En_3_Chapter/470128_1_En_3_Fig1_HTML.png]
Fig. 3.1Percent improvement of psychotherapeutic clients as a function of various variables (after Lambert, 2013). Therapy-based factors are unspecific factors (common factors), specific factors (techniques), and the client’s expectation of improvement, sometimes considered a common factor, sometimes a placebo effect (expectancy). Extratherapeutic variables are attributes and events of the client and the client’s environment unrelated to the therapy setting


3.2 Therapist Effects
Interestingly, one possibly important aspect of interventions was frequently neglected in accounts of how much the single factors of therapy contribute to therapy outcome: the person of the therapist. Only recently the issue of such “therapist effects” has become a focus of attention in psychotherapy research (Castonguay & Hill, 2017). In quality assurance studies of psychotherapy, it is found that a considerable portion of outcome variance (between 5 and 10% of the total variance) must be attributed to personal properties of the therapists. This therapist contribution to outcome was commonly missing in summaries such as depicted in Fig. 3.1.
A main reason for neglecting therapist effects is the design of most studies in psychotherapy research. When the goal of a study is to explore which interventions have which effects on outcome, the contributions of the personalities of the single therapists are regarded as error variance that has to be minimized. Thus therapists have to strictly keep to treatment manuals, treatment fidelity must be obeyed, and commonly all therapists in a scientific study are equally motivated and prepared—they should perform similarly. In addition, the number of therapists enrolled in studies is too small to statistically show significant differences between single therapists—statistical power is commonly calculated to test process-outcome associations, not therapist-outcome associations. These latter associations can only be found in much larger datasets. Such datasets have become available because of quality control procedures, which monitor routine applications of psychotherapy in thousands of different clients and many different therapists. Then, in the language of hierarchical (“multilevel”) regression statistics, clients are nested within therapists, and the level of therapists can be examined as a random effect (Lutz & Barkham, 2015). In this kind of “big data” research, therapist effects are consistently found to be significant and to explain about 8% of outcome variance. The therapist effects appear to be larger when clients are more severely impaired in the beginning of therapy, and the better therapists tend to see their clients for fewer sessions.
What is it that makes some therapists more effective? Other than might be expected, it is not a therapist’s age, professional experience, gender, or gender matching with the client that can explain the finding that some therapists are consistently more successful. Instead, it has been repeatedly reported that the therapist’s own well-being is a predictor of good therapy outcome (Beutler, Malik, Alimohamed, et al., 2004). Therapists’ personal distress can have a negative impact on the therapeutic alliance with the client and consequently on the client’s therapy outcome. This has also been found in a large study on therapists’ occupational “burnout” (Delgadillo, Barkham, & Saxon, 2018), which showed that therapist burnout was linked with therapies being less successful. In a similar vein, Pereira, Barkham, Kellett, and Saxon (2017) found that resilience and mindfulness are important assets of psychotherapy practitioners. Resilience is a personality trait that guards a person against stressful experiences, which are however common in the work with clients, especially with traumatized clients. Mindfulness is a cognitive and emotional stance of nonjudgmental awareness (Bergomi, Tschacher, & Kupper, 2013), which contains an aspect of not automatically reacting to experiences. In sum, both resilience and mindfulness allow a therapist to preserve his or her own well-being even in the face of adversity, i.e., with difficult clients and topics.
In our models of the process of psychotherapy, we will come back to a discussion of therapist effects in the context of therapist-client coupling (Chap. 8).
3.3 A Hierarchical Model of Therapeutic Factors
The antagonism between the common-factors explanation and the specific-techniques explanation of psychotherapeutic effectiveness has been and still is a topic of heated debates. In our opinion, however, this antagonism is likely misguided. To a considerable degree, the respective debates in psychotherapy research have been sham battles because techniques and common factors, including therapist effects, are not independent of one another. Therefore, popular accounts of the percentages of contributions of different therapy factors such as detailed by Lambert and others (Fig. 3.1) may have merits on the one hand because they integrate the available research evidence and the findings of meta-analyses, but on the other hand, they apparently rely on the assumption of additivity.
It is however not possible to just sum up the respective contributions of common factors and techniques because the additivity assumption does not hold. Common factors and techniques are intrinsically correlated in psychotherapy—specific intervention techniques are the very instruments by which therapists generate common factors. Hence it would be a dubious conception to add their respective percentages concerning therapy success and then claim, for instance, that one type of intervention, the common factors, would be three times more important for therapy outcome than the other.
We have recently initiated a project on the taxonomy of psychotherapy in order to study common factors and techniques not as additive components but as correlated ingredients of psychotherapeutic processes (Tschacher et al., 2014). Common factors and techniques are accordingly placed at different levels in the hierarchical system of all psychotherapeutic variables that constitute therapy process. In a survey among senior psychotherapists and psychotherapy researchers, we therefore asked these experts to assess if, and how much, a certain common factor (Table 3.1) was implemented by techniques. In the study, the experts were presented the list of standard techniques printed in Table 3.2 to perform their ratings.
One of the findings was that, as expected, all common factors are linked to sets of several techniques. The personality of a common factor is thus the profile of specific techniques that are positively associated with the generation of this factor, together with those techniques that hinder the expression of this factor. Figure 3.2 shows a detail of this hierarchical system of variables that in their entirety make up psychotherapy process.[image: ../images/470128_1_En_3_Chapter/470128_1_En_3_Fig2_HTML.png]
Fig. 3.2Hierarchical system of psychotherapeutic interventions. Arrows represent significant associations and factor loadings, both based on survey data (Pfammatter & Tschacher, 2016; Tschacher et al., 2014). Red broken arrows, significant negative associations. Reading example: the techniques “Role play” and “Reality testing” implement the common factor “Self-efficacy,” whereas “Transference interpretation” reduces “Self-efficacy.” “Self-efficacy” in turn belongs to the top-level class of “Coping with problems”


As a result, we find that the relationships between psychotherapeutic interventions are best modeled as hierarchical. This is reminiscent of the classification system of psychopathology presented in the previous chapter, where we argued for a dimensional understanding of psychopathological states and, correspondingly, arrived at a hierarchical bottom-up system of psychopathology.
Starting in Chap. 5, we will start to dissolve the supposed antagonism of either common factors or techniques as effective interventions in psychotherapy. We find that the two types of intervention likely entail two different types of effects, which can be fit into our modeling of therapeutic processes by stochastic and deterministic components. This is an alternative reading of Wampold’s (2015) distinction between the “medical model,” which assumes only specific techniques to be effective—Wampold believes this is unfounded—and his “contextual model” of psychotherapy, which represents Wampold’s conviction that only common factors are effective. We have criticized this antagonism above for the reason that common factors and techniques simply constitute different levels of a hierarchy of interventions and therefore cannot be compared to one another with respect to their effectiveness. A further critical point is the terminology used: the “medical model” is an unfortunate concept as obviously behavior therapy, which adheres to this specific intervention model, is still not a medical therapy.
Yet we believe we can synthesize and thereby partially support Wampold’s differentiation. Interventions at the level of common factors, thus contextual interventions, generate a qualitatively different type of effect compared to interventions using specific techniques. Contextual interventions can instigate phase transitions, i.e., qualitative changes of the attractor landscape of the system under therapy, whereas specific interventions that function by the application of techniques rather change the states of variables in a given landscape or shift the attractor to a different place in state space (Chap. 5). We consider both technical and contextual interventions as deterministic, and both depend on each other.
A number of research questions originate from the hierarchical view of psychopathology and the hierarchical view of psychotherapeutic interventions:	Is there a correspondence between the two hierarchical systems, that of psychopathology and that of psychotherapeutic interventions? Such correspondence may mean that lower-level symptoms would be best treated by lower-level techniques, and, respectively, interventions concerning spectrum-level psychopathology should focus on contextual interventions at the level of common factors or classes of common factors.

	Are the interrelations of psychotherapeutic interventions as in Fig. 3.2 a general finding, or are they different in the treatment of different disorders?

	The system of interventions is as yet only based on expert ratings. Will empirical naturalistic studies in the field of psychotherapy, where techniques can be assessed by therapists, and common factors by their clients, result in the same relationships?




At this moment, these questions are unanswered.
In Chap. 1, we have made the assumption that the dynamics unfolding in psychotherapy is the result of both chance and causation. Therefore we wish to model how the application of some intervention changes the probability distribution and the attractor of some disorder. The ultimate goal of our agenda shall be a general model of therapeutic change processes. Additionally, we wish to derive methods that will help us estimate the underlying attractors and distributions and their therapy-induced changes. In the next chapter, we will continue by proposing a general mathematical model of change processes.
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4.1 The Goal of This Chapter
For the time being, let us assume that a certain property of a person be characterized by a Gaussian distribution. An example of such a property may be the tendency of a client to respond to social situations with fear—a “fear” property is involved in disorders of the internalizing spectrum (Fig. 2.​1), e.g., in social phobia. If the distal goal of psychotherapy is the modification of symptomatic behavior in clients, we have to develop a general model of how we can modify symptom-related properties. For reasons of simplicity, in the present chapter, we focus on the one-dimensional case, i.e., on one property expressed by the state variable x of a person. The state variable x is a scalar. The extension to the two-dimensional case, as described in Tschacher, Haken, and Kyselo (2015a, 2015b), will be discussed later in Chap. 8.
In the following we will discuss the typical attributes of a Gaussian, and we wish to show how they result from a combination of a stochastic and a deterministic process. This will lead us to the “master equation” that describes changes of the distribution of a state x and which can easily be visualized. From there, we will eventually derive the Fokker-Planck equation. The Fokker-Planck equation describes the change of a system by considering both causation and chance.
4.2 The Gaussian
Figure 4.1a shows a Gaussian distribution function or, in short, a Gaussian. In it, the “height” h(x) is plotted against a variable x. First we discuss the interpretation of the Gaussian in terms of the concept of probability.[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig1a_HTML.png][image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig1b_HTML.png]
Fig. 4.1(a) Area A under the curve h(x) within an interval Δ. (b) Displacement of the curve to the right or to the left (not shown). (c) Distribution with a changed shape. While the area under the curve is still 1, the probabilities that the system occupies some state x are spread out over a larger range, with the consequence that we have less information about the actual state x of the system. Change of its width makes the Gaussian curve broader or narrower (not shown). b width at half-height, h height. (d) Example of a combination of (b, c)


Consider the shaded area A with height h(x) and horizontal length Δ:[image: $$ A=h(x)\cdot \Delta $$]

 (4.1)



This area is interpreted as the probability to find in a measurement the (stochastic) variable x within that interval Δ around the (measured) position x. We denote this probability by P(x) = A. By definition, the complete area under the Gaussian curve equals P(x) = 1, i.e., certainty.
When we keep Δ all the time fixed, P(x) is simply proportional to h(x). Thus, for reasons of simplicity, we will replace h(x) by P(x) having the probability interpretation in mind.
Figure 4.1b–d shows the various ways by which we can “manipulate” a Gaussian. This will later become relevant when we discuss interventions. Figure 4.1b shows displacement, according to which values of x smaller than 0 become much less probable than positive values. The shape of the distribution however is unchanged.
4.3 Deterministic Processes: Causation
Let us consider again a mechanical physical system, the motion of a stone down a valley located between two hills. The shape of the valley shall be that of a parabola (Fig. 4.2) whose height V(x) increases quadratically with the displacement x, i.e., [image: $$ V(x)=\raisebox{1ex}{$k$}\!\left/ \!\raisebox{-1ex}{$2$}\right.{x}^2 $$]. k is a constant. A certain gravitational force Ks pulls the stone along the slope downhill. We assume a grassy slope that slows down the motion because of mechanical friction forces
              
              
              
             (in the absence of such counteracting forces, the motion of the stone would never come to a stop—the stone would continue cycling for all time, like an undamped pendulum). Alternatively, starting at the bottom, we may push the stone uphill, step by step. In this way—in terms of mechanics—we perform some work that after each displacement x adds up to V(x). V(x) is called a potential (or potential energy). The relation between the force K and the potential V is illustrated in Fig. 4.3.[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig2_HTML.png]
Fig. 4.2Force acting on a stone in a paraboloid “potential valley”

[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig3_HTML.png]
Fig. 4.3Projection of Ks onto the x-axis: Force K in x-axis direction. The size of the slope is defined by the difference of the potential at positions x + dx and x, divided by dx: [image: $$ \frac{1}{dx}\left(V\left(x+ dx\right)-V(x)\right) $$]. For a parabola [image: $$ V(x)=\frac{k}{2}{x}^2 $$], the slope is thus for dx → 0: [image: $$ \frac{1}{dx}\frac{k}{2}\left({\left(x+ dx\right)}^2-{x}^2\right)= kx+ dx\to kx $$]


Alternatively to the illustrative but mechanical stone-valley system, we may also think of x as denoting a psychological variable, e.g., “positive affect.” A given individual may possess a specific, most comfortable level of affectivity, so that—once outside this zone of comfort—a deterministic psychological force Ks will become active and drive the psychological system back toward this zone of comfort. In this case, we are dealing not with a gravitational potential as in mechanics but an “affective potential,” i.e., a psychological potential.
As a consequence, the velocity vs along the slope of the stone (or the “slope” of the individual’s affectivity) is proportional to the acting force Ks along the slope. For our purpose it suffices to put directly [image: $$ {v}_s={K}_s $$].
Furthermore, in the following we need to consider the change of x, i.e., the projection of velocity vs and force Ks onto the x-axis, vs → v, Ks → K (Fig. 4.3).
We assume that the force K depends on the size of the slope that itself changes with the variable x, so that K = K(x) and thus also[image: $$ v(x)=K(x) $$]

 (4.2)



In which way does K depend on x? For large x, the slope becomes steep and thus K large. For x = 0, K(x) vanishes, K(0) = 0. The simplest assumption is K(x) = −kx, where k is a positive constant (actually, this relationship can be derived exactly for a parabola—see the legend of Fig. 4.3). The minus sign is needed because the stone moves to the left for positive x and to the right for negative x. After these preparations we may “translate” our deterministic description into a probabilistic one (see Info-Box 4.1). Our treatment still concerns the deterministic dynamics of a system in a force field (described by a potential function)—we just model this dynamics using probabilistic terminology.
In our presentation, we have considered the motion of an individual stone. To better understand the following, however, we may consider an ensemble of many stones, each of which is moving deterministically in its own landscape, and where all landscapes possess precisely the same shape. Or, respectively, one may imagine many different but independent situations, i.e., instantiations of one and the same stone. The distribution over an ensemble of many stones can be treated analogously to the distribution over an ensemble of situations of one stone.
To better understand the notion of probability, just think of a “percentage of stones”—e.g., what percentage of stones can be found at position x (in region Δ)? And furthermore, how does the percentage of stones change in the course of time (again, mind the analogy to a “percentage of situations”)? As the stones are all moving, some will enter the considered region; others will leave it (Fig. 4.4).[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig4_HTML.png]
Fig. 4.4■


This description leads to master equations that are generally such equations which describe changes of a state of a variable by the difference between an influx to that state and an outflux from that state. For example, in population dynamics, the change (i.e., the decline or growth) of the size of a population can be simply defined by the difference between the birth rate and the mortality rate. The same logic is applied in the probabilistic description of the change of a state variable x of a system. The relevant measure of change is the probability P that the system occupies position x at time t, i.e., P(x;t) (see Info-Box 4.1).
Info-Box 4.1
Probability P depends on position x and time t, i.e., P(x;t). We consider adjacent regions. The change of P within a time interval dt at position x is given by[image: $$ P\left(x;t+ dt\right)-P\left(x;t\right) $$]

 (4.3)


and its rate of change by[image: $$ \frac{1}{dt}\left(P\left(x;t+ dt\right)-P\left(x;t\right)\right) $$]

 (4.4)



This change is caused by:	1.An influx from the region at x + dx. The size of this influx is given by the percentage of system states at x + dx times their speed of change at x + dx, i.e., by v(x + dx). This speed can be expressed by v(x + dx) = −k(x + dx). Since the influx must be positive, we drop the minus sign so that altogether

 





              [image: $$ \mathrm{influx}=k\left(x+ dx\right)P\left(x+ dx;t\right) $$]

 (4.5)



              	2.In complete analogy, the outflux is given by[image: $$ \mathrm{outflux}=\hbox{--} kx\;P\left(x+ dx;t\right) $$]

 (4.6)



(note the minus sign!)

 




            
All this happens within a time interval dt and a corresponding length interval dx. Thus we obtain a master equation
                
                
               for the rate of change of P(x;t) in the course of time (4.4):[image: $$ =\frac{1}{dx}\left(\mathrm{influx}\hbox{--} \mathrm{outflux}\right) $$]

 (4.7)


In the case of a continuous time variable, (4.4) becomes[image: $$ \frac{dP\left(x;t\right)}{dt} $$]




If x is a discrete variable (i.e., is countable, e.g., measured by a scale), Eq. (4.7) with (4.5) and (4.6) is an example of a master equation. If x is continuous, the limit dx → 0 is taken and (4.7), (4.5), and (4.6) become[image: $$ \frac{dP(t)}{dt}=\frac{d}{dx}\left( kxP\left(x;t\right)\right) $$]

 (4.8)



This is the deterministic part of a Fokker-Planck equation.

To visualize how the probability changes in the course of time in the specific case of mechanics, think of an ensemble of stones, where each stone is moving in its own valley. For illustration we consider an initial state where according to Fig. 4.6 the stones initially occupy the positions between x1 and x2 with equal probability P(x;t) = const. To see what happens when we let the stones slide down their hills, look at Fig. 4.5. At position x, a stone slides down with some velocity v that depends on its position x (Info-Box 4.2).[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig5_HTML.png]
Fig. 4.5


[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig6_HTML.png]
Fig. 4.6



When we compare the velocities of the stones at x1 and x2, respectively, according to Info-Box 4.2, the velocity at x2 is larger than that at x1 (Fig. 4.6). This means that the probability distribution shrinks more and more in the course of time, so that the width of the distribution becomes smaller. Since the stones cannot vanish, the total probability is preserved (Fig. 4.7), and correspondingly the shaded area is also preserved for all time. Our argumentation is valid for all kinds of probability distributions, Gaussian or non-Gaussian.[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig7_HTML.png]
Fig. 4.7Shrinkage of probability distributions: The probability to find the system within an (initial) error region Δ (left) undergoes changes in the course of a deterministic process (right). Total probability however is preserved (in the present example, 1.5 ⋅ 2.5 = 1 ⋅ 3.75)


Info-Box 4.2
In the probabilistic description of a deterministic dynamics, we plot a probability P versus the x-axis (Fig. 4.5). If the stone is with certainty at position x (within an error region Δ), we just draw a line. When the stone slides downhill, this line moves at a speed v(x) = K(x) (cf. Eq. (4.2)) to a new position. Let us consider a situation where the stone can initially be found at positions x1 or x2 = x1 + d (Fig. 4.6). Since x2 is larger than x1, the force K at x2 is larger than that at x1 so that the stone at x2 moves faster than at x1. The distance d shrinks in the course of time.

The 
              shrinkage
              
             of probability distributions means that, quite generally, any probability distribution that is subject to a deterministic dynamics shrinks in the course of time (Fig. 4.7). This shrinkage
              
              
             is an expression of the defining characteristic of an attractor—attractors have the property of compressing state space. In the basin of an attractor, state space volumes become smaller with time.
4.4 Stochastic Processes: Chance
Let us now turn to the stochastic part of the Fokker-Planck equation. We may imagine a football game, where a ball lies on the lawn. In this game, players kick the ball at random. As in the stone examples, the grassy ground slows the ball down and according to a kick the ball is displaced by, say, dx to the left or to the right (Fig. 4.8a). This occurs with some probability w. Please note that, other than in “deterministic” Sect. 4.3, the lawn is flat, so that no deterministic forces are exerted on the ball; the only forces present are the random kicks.[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig8_HTML.png]
Fig. 4.8(a) A system is in the state x0 and is subjected to a random kick with probability w. (b) The probability distribution of the system after an initial random kick. (c) The probability distribution of the system after two random kicks


Again, we may also think of psychological variables, e.g., “positive affect,” that can be subjected to random “kicks” (the terminology in time series analysis actually is “random shocks” or “random kicks”). An individual may experience, in the course of time, a random influence on his current state of affectivity. This influence may be unrelated to and not influenced by the individual (e.g., good or bad weather, unforeseeable daily hassles or lucky incidents), so that a random displacement of affectivity results.
Figure 4.8b illustrates what happens to a ball (or a system state), which was initially located at x0 (Fig. 4.8a) with probability P = 1. After the first kick, it can be found at x0 + dx or x0 − dx with probabilities w and at x0 with probability 1 − 2w. After the second kick, Fig. 4.8c results. When we continue this thought experiment, we end up calculating a probability distribution (cf. Fig. 4.8c).
As we see quite clearly, this process, called diffusion, leads to an ever-increasing width of the probability distribution, in other words, to its 
              expansion
              
            . In terms of a state space formulation of systems, a certain volume of state space becomes inflated with time, and this inflation is a signature of stochastic processes. To derive the corresponding master equation, we may proceed in complete analogy to the deterministic case. The probability at position x changes because of inputs from x + dx and x − dx and its outputs to x + dx and x − dx (Fig. 4.9a, b). Or in terms of a formula[image: ../images/470128_1_En_4_Chapter/470128_1_En_4_Fig9_HTML.png]
Fig. 4.9(a, b) Changes of the probability distribution P(x) due to random kicks with probability w



            [image: $$ P\left(x;t+ dt\right)-P\left(x;t\right)= wP\left(x+ dx;t\right)+ wP\left(x- dx;t\right)-2 wP(x) $$]

 (4.9)



          
In the case of a continuous time t and a discrete variable x (e.g., a mark on a psychological scale with seven levels), a master equation results. When x is a continuous variable (e.g., originating from a visual analog scale with—theoretically—infinitely many levels), we have arrived at the stochastic part of a Fokker-Planck equation (Info-Box 4.3).
Info-Box 4.3: Master Equation
The master equation of stochastic influences of a system reads[image: $$ \frac{dP\left(x;t\right)}{dt}=\mathrm{WP}\left(x+ dx;t\right)+\mathrm{WP}\left(x- dx;t\right)-2\mathrm{WP}\left(x;t\right) $$]

 (4.10)


where we put W = w/dt (the definition of w secures that W remains finite if we let dt → 0).
The stochastic part of the Fokker-Planck equation results when we let dx → 0 and expand the right-hand side of (4.10) into a Taylor series in dx up to the second term. We obtain[image: $$ \frac{dP\left(x;t\right)}{dt}=Q\frac{d^2P\left(x;t\right)}{dx^2} $$]

 (4.11)


where[image: $$ Q=w\frac{(dx)^2}{dt} $$]

 (4.12)



In this case the definition of w again secures that Q remains finite in the limits dx → 0, dt → 0.

4.5 Joint Action of Deterministic and Stochastic Processes: Causation Plus Chance
The change of the probability P(x;t) in a small time interval dt can now be modeled completely—it is simply the combination of a deterministic “cause” D and a stochastic input S:[image: $$ \mathrm{change}\ \mathrm{of}\;P=D+S $$]

 (4.13)



As we have seen, D causes a shrinkage of the probability distribution, whereas S entails its expansion. In other words, D creates sharper distributions with small widths, and S creates flatter distributions with larger widths. An equilibrium is reached when the change of P stops, i.e., when[image: $$ D+S=0 $$]

 (4.14)



As we show in Info-Box 4.4, the resulting equilibrium distribution is simply a Gaussian normal distribution.
Info-Box 4.4: Complete Fokker-Planck Equation
Using (4.13) and the explicit expressions corresponding to D (4.8) and S (4.11), we obtain the Fokker-Planck equation for the joint action “change of P = D + S”:[image: $$ \frac{dP\left(x;t\right)}{dt}=\overset{D}{\overbrace{\frac{d}{dx}\left( kxP\left(x;t\right)\right)}}+\overset{S}{\overbrace{Q\frac{d^2P\left(x;t\right)}{dx^2}}} $$]

 (4.15)



A small addendum may be considered for the case of a shift x0 of the deterministic attractor in the course of time. We simply replace x in the deterministic term of the Fokker-Planck equation (4.15) by x − x0:[image: $$ \frac{dP\left(x;t\right)}{dt}=\overset{D}{\overbrace{\frac{d}{dx}\left(k\left(x-{x}_0\right)P\left(x;t\right)\right)}}+\overset{S}{\overbrace{Q\frac{d^2P\left(x;t\right)}{dx^2}}} $$]

 (4.16)



The steady state (equilibrium) of (4.15) is determined by[image: $$ \frac{d}{dx}\left( kxP(x)\right)+Q\frac{d^2P\left(x;t\right)}{dx^2}=0 $$]

 (4.17)



Its solution is a Gaussian,[image: $$ P(x)=N\exp \left(-\frac{x^2k}{2Q}\right) $$]

 (4.18)


with the normalization constant[image: $$ N=k/{\left(2\pi Q\right)}^{1/2} $$]

 (4.19)



This can be verified by inserting (4.18) in (4.17). Because of [image: $$ V(x)=\frac{k}{2}{x}^2 $$], we may cast (4.18) into[image: $$ P(x)=N\exp \left(-\frac{V(x)}{Q}\right) $$]

 (4.20)




This is an important result with respect to empirical data that are obtained in psychology and psychotherapy research. It is very common that as a result of measurements, we observe Gaussian and similar distributions of data. Info-Box 4.4 shows that such distributions can be understood as a mixture of D and S! In equilibrium, the expansion due to stochastic influences is countered by the shrinkage due to the deterministic influence of an attractor, and the result is a Gaussian. This provides a novel perspective on the statistical underpinnings of data that is commonly overlooked in psychological research. First, by the inclusion of temporal evolution, we realize that Gaussians result from random and deterministic processes; they do not just reflect some stationary error function. Second, the common observation of Gaussian distributions in psychological science is not the hallmark of random events alone but of a mixture of chance and causation.
4.6 The Significance of Fokker-Planck Modeling
As we have seen above, we have formulated a general mathematical model for any change that may occur in a system—the Fokker-Planck equation. When the system has entered a stable equilibrium state, a Gaussian probability distribution is entailed, which can be considered as the manifestation of chance and causation, of random fluctuations together with a (deterministic) dynamical process.
What we have so far arrived at is a clarification and extension of common thinking in academic psychology. Psychology textbooks consider all psychological constructs and variables as stochastic variables and the probability distributions of such variables, usually of the form of a normal or Gaussian distribution, somehow as a given. Yet, as soon as we consider the progression of time, we have to acknowledge that this cannot be the whole story—stochastic processes alone would necessarily lead to the expansion and ultimately the destruction of any pattern. So why do we find stable Gaussian distributions of variables when we measure psychological systems? Because the empirical Gaussian data are the results of a combination of stochastic and deterministic processes. It is the directed forces inside the basins of attractors that keep the Gaussian distributions at bay. This idea reconciliates the stochastic foundation of psychological science with the frequently raised demands to also consider the temporality of psychological systems (e.g., Haken & Schiepek, 2006; Tschacher & Ramseyer, 2009).
Therefore, the modeling of psychological change must be performed in a framework that integrates stochastic and deterministic causes, and the Fokker-Planck equation consequently constitutes an appropriate starting point for psychological methodology. Statistics alone cannot be sufficient for this endeavor, and neither can purely deterministic dynamical systems theory.
When we know how to influence the constituents of the underlying Fokker-Planck process, we have a means at hand for modeling interventions into a system. According to Sect. 4.2 above, a Gaussian can be characterized by its width (Fig. 4.1c) and by the position of its maximum (Fig. 4.1b). The “causes” D and S in Eq. (4.15) contain these parameters:	1.D contains k, which fixes the shape of the valley (Info-Box 4.4) and quantifies the deterministic forces that act on the state x.

 

	2.S contains Q, which defines the impact of random events.

 




This points to the existence of qualitatively different classes of interventions, and we should thus continue by developing a taxonomy of interventions on the basis of the Fokker-Planck process. This will be the topic of Chaps. 5 and 6.
4.7 How Can We Measure the Fokker-Planck Parameters x0, k, Q?
We have shown in principle that Gaussian distributions, which are commonly observed in empirical psychology, result from a combination of a stochastic and a deterministic process. Thus we claim that causation and chance together generate the ubiquitous normal distributions. This composite process can be modeled by the Fokker-Planck approach.
Based on this line of thinking, we need to discuss how the parameters of the Fokker-Planck equation can be estimated from empirical data. These parameters are x0, k, and Q. x0 is the deterministic shift of the attractor of the system to a new value. k stands for the deterministic force that is exerted on any state x of the system, which is proportional to the slope of the attractor at any position x. Q is the stochastic impact of random fluctuations on the system, which expands and dissipates all structures of the system. To answer this question, we first recall the definitions of a probability distribution P(x) and of mean values (for more information see Info-Box 4.5). We assume that in a series of measurements of the quantity x, we find the values x = x1, x = x2, … , x = xn,. When we repeat the measurement very often, we generate a time series where some values of x appear more often than others. This is quantified by the relative frequency, which is defined by the number of measurements nj that yield a specific x = xj divided by the number of all measurements, n. Thus,[image: $$ \mathrm{relative}\ \mathrm{frequency}={n}_j/n $$]

 (4.21)



We equate this relative frequency with the probability P(xj) to find, in an experiment or observation, the value x = xj. In practical applications, we may have to be satisfied with few measurements instead of the very many and use interpolations based on the hypothesis of a Gaussian.
Now we may define mean values (averages) that characterize distributions. The mean value of x, which we denote by [image: $$ \overline{x} $$], is given by[image: $$ \overline{x}={x}_1P\left({x}_1\right)+{x}_2P\left({x}_2\right)+\dots +{x}_nP\left({x}_n\right) $$]

 (4.22)



Similarly,[image: $$ \overline{x^2}={x}_1^2P\left({x}_1\right)+{x}_2^2P\left({x}_2\right)+\dots +{x}_n^2P\left({x}_n\right) $$]

 (4.23)



The variance s2 is defined by[image: $$ {s}^2=\overline{x^2}-{\overline{x}}^2 $$]

 (4.24)



We mention the values of [image: $$ \overline{x} $$] and [image: $$ \overline{x^2} $$] for the idealized case of a displaced Gaussian, where the displacement is x0 (cf. Info-Box 4.5).[image: $$ P(x)={\left(k/\left(2\pi Q\right)\right)}^{1/2}\exp \left(-\frac{k}{2Q}{\left(x-{x}_0\right)}^2\right) $$]

 (4.25)


[image: $$ \overline{x}={x}_0, $$]

 (4.26a)


[image: $$ \overline{x^2}-{\overline{x}}^2=\frac{Q}{k} $$]

 (4.26b)



In this way, by using mean values, we can directly determine the shift x0 of the attractor, which is simply the new mean of observations. This of course is the common approach in psychological methodology. Following (4.26a) and (4.26b), the mean values also contain information on the slope parameter k and the dissipation parameter Q, however in the shape of the ratio of Q and k—we need to separate k from Q. How can we isolate the parameters Q and k, respectively? It is possible to measure k directly by means of relaxation experiments (Tschacher et al., 2015b). In such experiments, a state characterized by a value of x = xi (i stands for “initial”) is observed (or experimentally established) at some initial time. The value of x = xi must be different from the equilibrium value x = x0. Then the (mean) time τ is measured as the duration until the equilibrium state at x = x0 is reached from the initial state. According to Info-Box 4.5,

            [image: $$ \frac{1}{k}=\tau \operatorname{}\left(\mathrm{relaxation}\ \mathrm{time}\right) $$]

 (4.27)



          
By means of this result together with (4.26a) and (4.26b) we can also finally calculate Q. Info-Box 4.5 provides mathematical details on how we can explicitly calculate (4.26a) and (4.26b) based on (4.25). To do this, we derive the time dependence of the mean, [image: $$ \overline{x}(t) $$], from the time-dependent Fokker-Planck equation. We also discuss the time-dependent equation of the variance [image: $$ \overline{x^2}-{\overline{x}}^2 $$]. The time-independent solution is shown to yield again (4.26b).
Info-Box 4.5: Time-Independent and Time-Dependent Mean Values
In the time-independent case, the mean values connected with the time-independent, displaced Gaussian (4.25) can be calculated as follows:[image: $$ \overline{x}={\int}_{-\infty}^{\infty } xP(x) dx={\int}_{-\infty}^{\infty } xN\exp \left(-\frac{k}{2Q}{\left(x-{x}_0\right)}^2\right)\; dx $$]

 (4.28)



Replace x by ξ = x − x0. Then[image: $$ \overline{x}={x}_0{\int}_{-\infty}^{\infty }N\exp \left(-\frac{k}{2Q}{\xi}^2\right) d\xi +{\int}_{-\infty}^{\infty } N\xi \exp \left(-\frac{k}{2Q}{\xi}^2\right)\; d\xi $$]

 (4.29)



In this equation, the first integral yields 1 because of the definition of the normalization constant N, whereas the second integral yields 0 because the contributions for ξ > 0 cancel out those for ξ < 0. Thus we obtain (4.26a).[image: $$ \mathrm{To}\ \mathrm{derive}\;{x}^2\;\mathrm{we}\ \mathrm{write}\;P(x)\ \mathrm{in}\ \mathrm{the}\ \mathrm{form}\ \left(\mathrm{with}\;\alpha =k/2Q\right) $$]

 (4.30)


[image: $$ P(x)=N\exp {\left(-\alpha \left(x-{x}_0\right)\right)}^2 $$]

 (4.31)



Then[image: $$ \overline{x^2}=N{\int}_{-\infty}^{\infty }{x}^2\exp \left(-\alpha {\left(x-{x}_0\right)}^2\right) dx $$]

 (4.32)



The normalization constant N is given by[image: $$ {N}^{-1}={\int}_{-\infty}^{\infty}\exp \left(-\alpha {\left(x-{x}_0\right)}^2\right)\; dx $$]

 (4.33)



Replacing x by ξ = x − x0 leaves N unchanged, whereas (4.32) is transformed into[image: $$ \overline{x^2}=N{\int}_{-\infty}^{\infty }{\xi}^2\exp \left(-{\alpha \xi}^2\right) d\xi +2{x}_0N{\int}_{-\infty}^{\infty}\xi \exp \left(-{\alpha \xi}^2\right) d\xi +{x}_0^2N{\int}_{-\infty}^{\infty}\exp \left(-{\alpha \xi}^2\right) d\xi $$]

 (4.34)



In this equation, the second term on the right-hand side vanishes as we have discussed above, while the third term is just [image: $$ {x}_0^2\equiv {\overline{x}}^2 $$] (cf. (4.26a)). Thus we may rewrite (4.34) as[image: $$ \overline{x^2}-{\overline{x}}^2=N{\int}_{-\infty}^{\infty }{\xi}^2\exp \left(-{\alpha \xi}^2\right) d\xi $$]

 (4.35)



Using calculus or simply a table of integrals we obtain for (4.35)

              [image: $$ =1/\left(2\alpha \right) $$]

 (4.36)



            
or due to (4.30)[image: $$ \overline{x^2}-{\overline{x}}^2=Q/k $$]

 (4.37)



Now we turn to the time-dependence of mean [image: $$ \overline{x} $$] and variance [image: $$ {s}^2=\overline{x^2}-{\overline{x}}^2 $$]. To this end we need the time-dependent Fokker-Planck equation (4.16). To derive an equation for [image: $$ \overline{x} $$], we multiply both sides by x and integrate over x from −∞ to ∞, so that[image: $$ {\int}_{-\infty}^{\infty }x\frac{dP\left(x;t\right)}{dt}={\int}_{-\infty}^{\infty }x\frac{d}{dx}\left(k\left(x-{x}_0\right)P\left(x;t\right)\right)\; dx+{\int}_{-\infty}^{\infty } xQ\frac{d^2P\left(x;t\right)}{dx^2} dx $$]

 (4.38)



In this equation, the left-hand side can be cast into the form[image: $$ \frac{d}{dt}{\int}_{-\infty}^{\infty } xP\left(x;t\right) dx=\frac{d}{dt}\overline{x(t)} $$]

 (4.39)



The first term on the right-hand side can be evaluated by “partial integration” to yield[image: $$ {\left.x\left(k\left(x-{x}_0\right)P\left(x;t\right)\right)\right|}_{-\infty}^{\infty }-{\int}_{-\infty}^{\infty}\left.k\left(x-{x}_0\right)P\left(x;t\right)\right)\; dx $$]

 (4.40)



Because P(x;t) must vanish at x = −∞ and x = +∞, the first term in (4.40) vanishes altogether, while the second term can be written as[image: $$ -k\left(\overline{x(t)}-{x}_0\right) $$]

 (4.41)



The second term on the right-hand side of (4.38) can be evaluated again by partial integration and becomes zero. Thus all in all, we arrive at the following equation for the time-dependent mean value [image: $$ \overline{x(t)} $$]:[image: $$ \frac{d}{dt}\left(\overline{x(t)}\right)=-k\left(\overline{x(t)}-{x}_0\right) $$]

 (4.42)


which possesses the solution[image: $$ \overline{x(t)}={x}_0+{ae}^{- kt} $$]

 (4.43)


where [image: $$ a=\overline{x(0)}-{x}_0. $$]
Most importantly, (4.43) shows that x(t) relaxes within a time [image: $$ \tau =\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$k$}\right. $$] to the central value x0.
For the sake of completeness, we quote the relaxation equation for [image: $$ \overline{x^2}(t)-{\overline{x(t)}}^2 $$]:[image: $$ \frac{d}{dt}\left(\overline{x^2}(t)-{\overline{x(t)}}^2\right)=-2k\left(\overline{x^2}(t)-{\overline{x(t)}}^2\right)+2Q. $$]

 (4.44)



According to it, the variance relaxes to its equilibrium value [image: $$ \overline{x^2}-{\overline{x}}^2=\frac{Q}{k} $$] as we have found above (4.26b).
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5.1 A Prototype of a Deterministic Technique for Behavior Change
In Chap. 4, we concluded that the Fokker-Planck equation[image: $$ \frac{dP\left(x;t\right)}{dt}=\overset{D}{\overbrace{\frac{d}{dx}\left(k\left(x-{x}_0\right)P\left(x;t\right)\right)}}+\overset{S}{\overbrace{Q\frac{d^2P\left(x;t\right)}{dx^2}}} $$]

 (5.1)


adequately summarizes the ideas developed so far: The temporal change of the probability of a variable x (i.e., the left-hand side of the equation) can be modeled by a deterministic term D and a stochastic term S, which both contribute to such change.
We see in (5.1) that the S term contains d to the square: this means that we are dealing with the second derivative of probability P, i.e., with the diffusion (the variance) of P(x). Q is hence the parameter that models the increase or decrease of variance of variable x in the course of time. The D term of (5.1) correspondingly describes the first derivative, i.e., the change, of the probability of a given value of x, i.e., P(x). In this respect, k and x − x0 represent factors that directly modify the change of P. If a system has a stable equilibrium state (i.e., the system has an attractor), k specifies the force by which the system state x is driven to this equilibrium state; k is the force that restores the equilibrium whenever the system has been pushed outside its attractor by a random fluctuation or by an intervening force or action from outside.
The Fokker-Planck equation suggests that behavior change is commonly a mixture of stochastic and deterministic processes, and this integrative view is adopted in Chaps. 6 and 7. In the present chapter, however, we consider the deterministic D term only. Random events and their impacts are ignored in this chapter, and thus Q = 0. We may only change k that describes the active force due to the gradient of the slope of an attractor. We may also change the position of the bottom of the attractor by a displacement x0—we then shift the whole potential “valley” of the attractor, i.e., x → x − x0. Expressed in a simple manner, k denotes how fast and forceful the system relaxes to its stable state, and x0 denotes the (new) location of the stable state. Other than stochastic impacts, deterministic forces always have a specified direction as they follow the gradient (i.e., the slope) of the attractor.
In this chapter, we will explicitly apply the Fokker-Planck model to processes of psychotherapeutic change. Very generally, a deterministic psychotherapeutic intervention is any directive intervention, i.e., an intervention with a defined goal. Sometimes goals are not explicitly discussed in psychotherapies; if they are, therapy goals are commonly negotiated in initial sessions in the course of psychotherapy—then we are very likely dealing with deterministic interventions that will be implemented later in this therapy. The definition of therapy goals is a characteristic step in behavioral and cognitive-behavioral psychotherapies. For example, if the average anxiety level of a client is problematically elevated during social interactions in the client’s life, and we can observe that the client considerably suffers from such social phobia, the goal of a deterministic intervention will be to lower the average anxiety by a shift x0 to a new level. In addition to this shift of the level of the variable, we may also influence k, maybe in a manner that gives the client more time until the average anxiety, when facing a problematic social situation, is realized (Fig. 5.1).[image: ../images/470128_1_En_5_Chapter/470128_1_En_5_Fig1_HTML.png]
Fig. 5.1The attractor of a system (system state symbolized by the red ball), (a) state of the system in its attractor basin prior to intervention, with high anxiety (xlarge) and steep gradient (klarge). V(x), potential. After deterministic intervention (b), the gradient of the attractor becomes smaller (ksmall). After further intervention (c), the mean anxiety level is additionally shifted to xsmall. The initial shape of the attractor may then be reestablished (d) at the new location


Goal-directed interventions characterize especially the practice of behavior therapy (BT
              
            ). BT rests on the assumption that symptomatic, inadequate behavior, and dysfunctional emotions are the results of a client’s learning history. Symptoms can be unlearned and extinguished, and alternative, non-symptomatic behavior can be learned in their stead. In our discussion of deterministic interventions, we therefore first address techniques of behavioral psychotherapy. Techniques are specific interventions such as those listed in Table 3.2 (in contrast to common factors). The most basic technique of BT, “positive reinforcement,” is directly derived from psychological learning theory, which states that the probability of a behavior x is a function of the rewards given simultaneously when, or shortly after, the behavior is manifested. Fig. 5.1 shows how this deterministic technique may act on the “emotional attractor” of an individual (e.g., when x stands for the anxiety level and V(x) is an emotional potential). In a classical reinforcement intervention, we may first identify the rewards that are linked with x—rewards are often present, even if x represents an unpleasant and, in the context of phobia, dysfunctional emotion such as anxiety. Rewards connected to social anxiety may be the empathic response of a spouse (spouse always consoling the client when the client shows signs of fear). In BT, these rewards are therefore gradually withdrawn in a step called extinction. Extinction works in that the attraction of the symptomatic behavior is decreased—parameter k is reduced (Fig. 5.1b). A further aspect of reinforcement is establishing new behavior by positively reinforcing that new behavior (Fig. 5.1c). The new behavior in the example may aim at generating less anxiety in social situations, hence xsmall. The reinforcements for the xsmall may be social praise, positive regard given by the therapist and the spouse, or the client’s awarding himself for his new accomplishments. As a last step of the behavioral reinforcement technique, the new behavior may be immunized against relapse to the previous xlarge by increasing k again (Fig. 5.1d).
5.2 The Varying Prerequisites of Different Psychotherapy Approaches
The techniques we described in Table 3.​2 are linked with a variety of therapeutic interventions that have one attribute in common—they are implemented by therapists in order to change the shape of an attractor (by changing k) and/or to shift the attractor location (by changing x0). The listed techniques are often subject to a large number of premises and theoretical assumptions, which are specific to the respective psychotherapy approach underlying the technique. We will sketch these assumptions very briefly in the following because they are crucial for the definition of the system that is addressed by deterministic interventions and for the type of interventions envisaged by an approach. More specific and encompassing information is of course provided by textbooks of psychotherapy (e.g., Kriz, 2007; Lambert, 2013; Smith, 2017).
There are literally hundreds of different psychotherapy approaches and schools, and when considering only four such approaches here, we tremendously simplify the relevant discussion; yet our goal is to describe how (any) psychotherapeutic intervention may be modeled in principle, not to give an overview of the entirety of current psychotherapy research and practice. It has become a shared convention to cluster the vast variety of psychotherapies in four classes: behavior therapy and cognitive behavior therapy, psychodynamic therapy and psychoanalysis, humanistic-experiential psychotherapy, and systemic psychotherapy. In the following, we will illustrate our thoughts using this simplified classification of psychotherapy approaches.
The learning theory foundation of behavior therapy (BT
              
            ) has been introduced above already. BT is the single psychotherapy approach that places most confidence in deterministic types of specific, technical interventions. In its historically first and pure versions, in the theories of behaviorists such as John B. Watson and Burrhus F. Skinner, the organism was viewed as a “blank slate,” whose behavior is completely shaped by deterministic social-environmental conditions, the stimuli. Owing to its positivistic philosophy of science, traditional BT made few assumptions on the nature of the organism or on inner processes. In its decidedly third-person approach, only the objectively measurable inputs and outputs of the organism were considered. The organism itself was treated as if it was a “black box.” Mental (cognitive) processes were assumed to be epiphenomenal only and hence inappropriate for objective scientific analysis. These assumptions have largely changed with the advent of cognitive-behavioral therapy (CBT
              
            ), which additionally accepted “cognitive behavior” and thus supplemented BT with cognition as a variable. Cognition, such as thoughts, appraisals, and the cognitive aspects of emotional experiences, was integrated as an intermediate variable into the input-output schema of BT. In the course of decades, CBT has generated a variety of deterministic techniques in addition to the purely behavioral interventions. For example, “problem-solving training” (see Table 3.​2) is a cognitive intervention in which new ways of coping with problems are exercised with a client. The focus is no longer on the manipulation of overt behavior but on remodeling the client’s cognitive processes concerning such behavior. This dramatically extended the range of variables that the x of the Fokker-Planck equation (5.1) may represent in behavioral psychotherapy. The typical CBT technique of problem-solving rests on empirical data, e.g., findings that depressive disorders are commonly accompanied by an overexpression of cognitions that have negative valence and by clients’ cognitive tendencies toward overgeneralization (e.g., depressed clients’ hidden assumptions and schemata such as “if something does, everything must go wrong”). An ensuing deterministic technique is thus to increase the percentage of positive connotations in problem-solving contexts, through rational and realistic argumentation in the therapy session, specific homework assignments, the application of diaries, etc. This cognitive approach of CBT is grounded in learning theory as is true for BT but with the extension that reinforcement techniques can be applied to “cognitive behavior,” too (Beck, 2011; Mahoney, 1991).
In the further development of behavior therapy, even concepts that have their origins in Buddhism and other Eastern spiritual traditions, such as mindfulness, meditation, acceptance and commitment, were imported into BT (Hayes, Follette, & Linehan, 2004). These therapy approaches constitute the so-called third wave of BT. Generally these concepts were integrated in a BT-like framework, which commonly means that they are treated less as spiritual stances and religious-philosophical convictions but as specific intervention techniques, which comprise the “toolbox” of third wave therapies. Hence the schema of Fig. 5.1 holds for BT, CBT, as well as third wave BT.
Psychoanalysis has been the first comprehensive theory in the history of modern psychotherapy. It was founded by the neurologist Sigmund Freud around the turn to the twentieth century (Freud, 1900). Freud was convinced that behavior and (conscious) cognition are largely the results of subconscious mental processes, i.e., of processes that are in principle unknown to both the client and the therapist, here the “analyst.” At the same time, psychoanalysis conceives of the psyche as being fully determined by (subconscious) motivations, the drives. The focus on these driving forces gave this approach the label “psychodynamic.” The results of such subconscious motivations become staged in the therapeutic relationship by the process of transference. Accordingly, the core assumption of psychoanalysis, and to a lesser degree also of other psychodynamic variants of therapy, holds that disorders of the client deterministically depend on subconscious drives. Forces of resistance, repression, and other “defense mechanisms” actively shield the client from recognizing these drives. The goal of therapy is consequently the uncovering and modification of these subconscious processes by analyst-initiated insights.
Psychoanalytic techniques are much less specific than the behavioral techniques because psychoanalytic goals are initially not specifiable: The “free association technique” and “therapeutic abstinence” (Table 3.​2) are methods that help uncover the unknown true subconscious conflict, which has caused the client’s problems. Especially these two techniques contain a fair degree of stochastic effects because they demand of the client to mention all content that randomly comes to mind (“free association” technique). This is not influenced or even guided by the analyst’s verbalizations or nonverbal communications—in the prototypical setting of psychoanalysis, the analyst is seated outside the client’s sight behind the famous Freudian couch and provides no personal information (“abstinence” technique). Once these techniques have led to the manifestation of new semantic material, the analyst will act more directively and will verbalize interpretations to point the client to certain topics. These interpretations specifically address the conflict-laden areas of the client’s avoidances (“resistance interpretation” technique) and may also address issues concerning the therapeutic relationship (“transference interpretation” technique). This hypothetical process is illustrated in Fig. 5.2.[image: ../images/470128_1_En_5_Chapter/470128_1_En_5_Fig2_HTML.png]
Fig. 5.2The attractor of a system (system states symbolized by the red ball) in psychoanalytic interventions. (a) States of the system in their attractor in an initial phase of “free association” and high therapeutic “abstinence” interventions. Gradient of the attractor has become smaller (ksmall) and the basin larger; the relevant topic of the “talking cure” is still unspecified and unknown, i.e., it remains subconscious (x =?). After deterministic intervention via interpretations (b), the gradient of the attractor becomes steeper again (klarge) because a new semantics is established (xnew) through insight into the conflictual material disclosed by the analyst’s interpretations


Humanistic-experiential psychotherapy (HEP) is an umbrella term for many rather different therapy schools, such as Gestalt therapy (Perls, 1969), client-centered therapy (Rogers, 1951), emotion-focused therapy (Greenberg, 1991), and many others. Their common denominators are focusing on the subjective experience of clients, the reliance on the client’s faculty of personal growth and self-actualization (Maslow, 1955), the emphasis on the therapeutic relationship, and the generally nondirective stance adopted by HEP therapists. The first-person focus on the client’s experiencing is in obvious contrast to behavioral traditions, which rather rely on objective, non-experiential variables, and also to psychoanalysis, which because of the defense mechanisms tends to mistrust the client’s (conscious) experiences. The humanistic assumption of a self-actualization tendency means that a person will spontaneously develop and unfold own resources unless this person is restrained by unfortunate circumstances. Such self-actualization is reminiscent of the core process of self-organization in complexity theory (see Info-Box 5.1), however with an optimistic premise that all free self-organization in psychological systems will lead to favorable outcomes. And finally, the nondirective stance is a direct result of self-actualization: If self-actualization is a spontaneous process of optimization that will necessarily unfold in the absence of hindrances, it will also unfold in the absence of the therapist’s directions. Therefore the client is his/her own best expert, and the therapist need merely act as a facilitator and catalyst of change. The non-directivity sets an obvious limit to deterministic interventions and rules out direct interventions, and thus deterministic interventions in HEP are predominantly indirect. HEP views psychotherapy as the practice of arranging a context of healing, so that the client can change by his/her own means.
In terms of our modeling approach (cf. Sect. 3.​3), HEP does not intervene via a direct deterministic manipulation of x but by the intervention into control parameters, i.e., by contextual interventions. Thus the target of intervention is to allow changes of k and x0—but it is the client’s (the system’s) choice, which form of self-actualization will eventually emerge. In terms of psychotherapy research, the (indirect) interventions of humanistic therapy promote and utilize common factors (see Fig. 3.​2), especially the resources of the therapeutic alliance and motivational common factors. As was put forward by the founder of client-centered therapy, Carl Rogers, the alliance should be empathic, accepting, and genuine. In the context of such control parameter settings, the client is enabled to self-organize to his/her own personal best (Fig. 5.3). In psychotherapy research, this type of model is analogous to the contextual model, where therapy is indirect, a process of “social healing” (Wampold, 2015; Wampold, Imel, & Flückiger, 2018). HEP is thus not based on technical, problem-specific interventions (Wampold’s “medical model”).[image: ../images/470128_1_En_5_Chapter/470128_1_En_5_Fig3_HTML.png]
Fig. 5.3The attractor (blue curve) of the system’s state (symbolized by the red ball) in humanistic interventions. Deterministic intervention into an unspecific “common factor,” especially the therapeutic alliance, entails gradual changes of the potential landscape. A new attractor at x2 is established by self-organization. This attractor ultimately governs the behavior of the system, with x0 = x2 − x1


Therefore, the deterministic interventions in HEP are largely or entirely focused on common factors. The specific techniques put forward by HEP (Table 3.​2), such as “verbalization of emotional reactions” (client-centered therapy), “chair technique” (Gestalt therapy), or the more generally humanistic “creative expression” technique, have in common that they aim at releasing and strengthening the client’s resources, which is a common factor. Here we recognize again the hierarchical relation between techniques and common factors that was one of the results of Chap. 3.
Info-Box 5.1: Self-Organization
Complex systems are systems consisting of many components. A famous example, the Bénard system, can be realized by a fluid in a container. The single molecules initially move in a random manner (thermal motion) and collide like tiny billiard balls. All of this dynamics occurs on a microscopic scale and thus remains invisible to the eye (Fig. 5.4, left)—the system is in thermodynamic equilibrium. As soon as the fluid system becomes an open, non-equilibrium system (e.g., by heating the container from below), large-scale patterns emerge spontaneously, i.e., apparently “out of nothing” (Fig. 5.4, right). The visible patterns are created by large, rather regular, collective movements of many molecules (so-called convection rolls of the Bénard system).[image: ../images/470128_1_En_5_Chapter/470128_1_En_5_Fig4_HTML.png]
Fig. 5.4Bénard system: circular container with liquid silicone oil, view from above. Left: fluid in equilibrium. Right: self-organized state with macroscopic patterns


The difference between the two dynamical regimes shown in Fig. 5.4 is that the dynamics of the right panel demonstrates self-organization and pattern formation, which was caused by the one-sided heating. The emerging patterns themselves are stable—when they are destroyed, e.g., by stirring the fluid, they will be reestablished by the system. Thus, the behavior of the patterns can be described by attractors. The heating, more precisely the temperature gradient applied to the fluid, is the decisive parameter, in mathematical terms a “constraint” or contextual parameter because it describes how the system is embedded in its context. Interestingly, the general properties of the fluid system are changed once it has entered the self-organized dynamics: its capacity for heat transport has largely increased, as if the system aimed at reducing the temperature gradient. Different values or types of constraints can generate different patterns, as symbolized by the attractors in Fig. 5.3. Such non-equilibrium constraints are also termed control parameters in synergetics (Haken, 1977) or, in psychology, affordances (Gibson, 1979; Lewin, 1936). Synergetics is a theory that allows treating pattern formation in non-equilibrium systems such as the Bénard system. The synergetic “slaving principle” more specifically predicts which of the microscopic movements at equilibrium become amplified to launch the patterns (see Info-Box 8.​1). Sect. 10.​5 provides a discussion of affordances in psychotherapy.

The various approaches of systemic psychotherapy (SPT) have as a common denominator that they focus on the interpersonal environment of clients, sometimes to the point that not the client but the social system (a couple relationship, a family, a neighborhood of families, a business organization) is regarded as the entity in need of treatment or coaching (Minuchin, 1974; von Schlippe & Schweitzer, 2016). An additional premise of SPT is that, depending on the observer’s point of view, all knowledge is regarded as relative and as individually constructed. This also refers to the identified problems and symptoms an individual client may show in therapy. SPT posits that the meaning and functionality of symptoms can be constructed in different ways and thus depend on the point of view of the observer. The goal of systemic techniques is to demonstrate this constructivity of knowledge and endorse new perspectives that may alternatively be adopted by a client and may then turn out to be beneficial. The “reflecting team technique” and “circular questioning” are techniques that support the process of finding new ways to construct meaning, which can enable the client to view experiences and problems in a new “frame” (therapeutic “reframing”) with the possible result of a new biographical or family narrative. Like humanistic psychotherapy, most systemic approaches therefore do not harbor normative theories about what is the right direction of intervention. The hypothesized deterministic interventions are thus a change of unspecific factors, such as a new constellation of the social network, and only secondarily, relief of individual symptoms. This means that the scenario of Fig. 5.3 is again appropriate for many interventions in SPT—the majority of systemic deterministic interventions are contextual.
There are however some more directive approaches in the spectrum of SPT, such as in strategic or directive family therapy (Haley, 2007) and in Bert Hellinger’s family constellations approach (Hellinger, 1994). A deterministic technique of strategic family therapy is “paradoxical intention” (Table 3.​2). The therapist defines the family’s problem in a concise manner and points out what the benefits and downsides of the problem are for each of the family members. Then the therapist assures that he/she is equipped with sufficient authority to implement the paradoxical technique for solving the problem—which is for each member to continue, as before and with determination, the problematic behavior, even in an exaggerated manner. The desired result of this technique is that the untenability of problem behavior becomes manifest, and members consequently become aware of the need for change and for finding new ways of interaction. The effect of paradoxical intention resembles that of the exposure technique put forward by behavioral therapies (see Sect. 3.​1).
Many SPT approaches work with physical and bodily representations of social relationships, so-called “sculptures” or system constellations. Family relationships are illustrated and metaphorized by spatial and nonverbal configurations and psychodramatic installations, drawing on the effects of embodied cognition (Tschacher & Bergomi, 2011). Hellinger’s approach additionally has a strong normative component, e.g., by his hypostasizing that a client must in principle “honor” a parent or ancestor—a stance that is rather exceptional in the constructivist philosophy of other SPT. This directive norm of the family constellations approach may then be elaborated in prescribed rituals in the context of a family constellation work (Fig. 5.5). This is obviously a deterministic intervention, in which a social relationship is prescribed on the basis of ethical first principles (shifting x by x0 to a new attractor) and then exercised by ritualistic behavior and supported by the therapist’s authority (thus increasing k).[image: ../images/470128_1_En_5_Chapter/470128_1_En_5_Fig5_HTML.png]
Fig. 5.5The attractor of a system (symbolized by the red ball) in directive family therapy interventions. Social relationships (a) are directively shifted to a new location on the grounds of normative assumptions (b) and then trained by ritualized behavior and social norms (c)


5.3 Discussion of Deterministic Interventions in Psychotherapy
The kinds of deterministic interventions that are implemented in psychotherapy crucially depend on the underlying philosophy of a therapy approach. Based on their theoretical premises, deterministic interventions in the shape of techniques may either dominate in a therapy approach (as is true in the behavioral approaches, BT) or may be largely absent (as in humanistic approaches, HEP). Correspondingly, the role of the therapist is conceived quite differently: In classical BT the therapist acts like an expert coach or trainer, one who chooses among a reservoir of many deterministic techniques and implements the most appropriate of these in order to tackle the client’s specific problems; in classical HEP, therapeutic work is considerably less direct, and the therapist merely offers a caring relational context and creative exercises that allow the client to change in a manner the client alone can know is best. Thus, deterministic interventions are of a largely contextual type in HEP.
Systemic approaches (SPT) are rather divided in this respect: Most SPT approaches follow, like HEP, a nondirective stance because their epistemology claims that reality is constructed by observers, and there are no objective truths that could be the targets of deterministic interventions and prescribed by the therapist. Here SPT holds postmodern idealist assumptions and works predominantly contextual. Interestingly, the reasons for choosing contextual interventions rather than specific techniques are different in HEP and SPT. A few SPT approaches however are more directive, and their deterministic techniques resemble BT interventions but put the focus on the client’s relational behavior or entirely the client’s social system.
In the continuum spanned by directive and nondirective approaches, psychoanalysis occupies a position between these poles as it combines its deterministic theory with a therapeutic practice that is nondirective and contextual over long periods of therapy, where the therapist’s role is to maintain abstinence.
In conclusion, there are two types of deterministic interventions. A typical example of the first type is direct intervention in BT, when old behavior is extinguished or habituated, and new behavior is rewarded to shift and modify the initial attractor (Fig. 5.1). The causation of change is on the side of the therapist. The second type is indirect and most accentuated in HEP: The context of the problem is changed so that new attractors of the system arise as a consequence of the system’s new self-organization processes (Fig. 5.3). In this second, contextual type of deterministic intervention, the change of the context parameters may be initiated by the therapist applying techniques, but the restructuring of attractors is determined by the self-organizing system (or the client) alone. An overview of the respective intervention types per therapy approach will be given in Fig. 6.​3 and in Table 6.​1.
One may think that the effectiveness of the various deterministic interventions is an empirical issue, which might be settled easily by psychological experiments and randomized controlled trials. This however has not happened in several decades of competition between the various psychotherapy approaches. Although there is a tendency toward psychotherapy integration and eclecticism, the major differences between the underlying philosophies and premises of psychotherapy still exist. In psychotherapy research, the unresolved differences are usually expressed as a conflict between proponents of specific factors (technical type of deterministic intervention) and common factors (contextual type of deterministic intervention), see Wampold and Imel (2015), Tschacher and Pfammatter (2017). We will further elaborate these open questions in Chap. 6.
Our depictions of the prototypical change mechanisms of the four major therapy approaches in Figs. 5.1, 5.2, 5.3, and 5.5 are hypothetical. They are based on the theories and philosophies of these approaches, not on empirical findings of real therapy courses. Such empirical work has yet to be done, and we will present methods and tools for this research work in Chap. 9.
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6.1 Psychotherapeutic Interventions into the Stochastic Term of the Fokker-Planck Equation
In Chap. 4, we developed the Fokker-Planck equation[image: $$ \frac{dP\left(x;t\right)}{dt}=\overset{D}{\overbrace{\frac{d}{dx}\left(k\left(x-{x}_0\right)P\left(x;t\right)\right)}}+\overset{S}{\overbrace{Q\frac{d^2P\left(x;t\right)}{dx^2}}} $$]



which models the temporal change of the probability of a variable x by a deterministic term D and a stochastic term S. Both contribute to changes, and we have been discussing the deterministic interventions throughout Chap. 5. We used an example where x stands for anxiety, a symptom quite frequent in the practice of psychotherapy.
In the present chapter, we will specifically explore how stochastic influences, i.e., chance, can have an impact on the change of state variable x—how can the S term of the Fokker-Planck equation be altered, and does this make sense at all? The equation indicates that input is possible by such interventions that modify the parameter Q, which stands for the size of random fluctuations that generate the variance of x. The discussion of Chap. 4 showed that chance events have a diffusive effect on a system and, in the absence of other inputs, increase the entropy in the system. In terms of the system’s probability distribution, its distribution becomes expanded. The stochastic probability distribution is like a cloud of all possible states of the system, the cloud occupying a certain volume in state space. In the anxiety example, this means that the range of all levels of anxiety, which an individual may experience with passing time, becomes extended. Increased Q stands for an intensified stochastic diffusion process, and the cloud becomes ever more extended and dispersed; its volume in state space grows. Decreasing Q has the reverse effect of decreasing diffusion, and the cloud of possible anxiety levels becomes more focused and smaller. It is obvious that in psychotherapy the process of more or less diffusion is not per se either advantageous or detrimental. In terms of our example, if the system is fixed in a state of high anxiety, diffusion is probably “good”; if anxiety is low, however, we may wish to avoid further diffusion.
We have mentioned in Chap. 1 that fluctuations are intrinsic to the dynamics of the state variable x itself. The major source of stochasticity however are chance inputs from the environment of a system. Q is the parameter that describes to what degree random events act on the system. We may think of Q as resulting from the system’s boundary regulation with respect to random events. One may either choose to isolate and to shield the system from its random context or alternatively to make the system boundary more permeable. Note that such an intervention is “directed” in the sense that we either decrease or increase Q intentionally, yet at the same time, it is nonspecific and stochastic because we are dealing with the increase or decrease of random inputs, not knowing in which direction these inputs may eventually drive the system. A “stochastic intervention” may sound like a contradiction in terms, as we denote with it those (deterministic) interventions that regulate the boundaries of a system, which subsequently leads to a decrease or increase of stochastic inputs Q.
The many common factors (see Table 3.​1 for a list) and specific techniques (see Table 3.​2) of psychotherapeutic interventions were introduced in Chap. 3. In the psychotherapy research literature, interventions are usually formulated not in a neutral way (as a change factor, analogous to a force in mechanics) but with the premise that they induce a preferable change in the behavior and experience of a client (i.e., as a beneficial change factor). In other words, the very terminology implies that change factors own a beneficially directed, i.e., deterministic function. By focusing on stochastic processes, we quickly realize that the concepts of common factors and techniques can possess, next to their deterministic functions, also stochastic aspects at the same time, and they often combine deterministic influences with stochastic influences.
6.2 Regulating the Social Boundary of a System
On the background of Chap. 3, the definition of Q as a nonspecific up- or downregulation of environmental inputs to the system x immediately points to several of the nonspecific ingredients of psychotherapy, the common factors (Table 3.​1). More social exchange and stimulation will necessarily increase the number of random shocks originating from the social environment, whereas social isolation will decrease that number. The regulation of social boundaries addresses the top-level class of common factors “social relations and motivation” (see Fig. 3.​2). Several items from the list of common factors (Tschacher, Junghan, & Pfammatter, 2014) contribute to this class, such as the “establishment of a therapeutic alliance” or the “mitigation of social isolation.”
For example, in the context of the treatment of psychosis, a warding-off of social stimuli was propagated, e.g., in the Soteria approach (Ciompi & Hoffmann, 2004). The Soteria treatment is realized by a protected “milieu” that reduces, for the time of a client’s stay on the ward and especially in the “soft room,” the net number of social contacts of clients and thereby also reduces the probability of socially “expressed emotions,” a well-known risk factor of psychosis. Generally, all treatments conducted in ward settings of hospitals and day hospitals have the function (or side effect) of limiting the exposure to social stimuli from the outside world. They establish a kind of filter for fluctuations acting on clients.
Apart from psychiatric settings, Q is decreased when people spend time in controlled surroundings, e.g., in yoga or meditation retreats. Less outside information can enter the system and affect clients. “Silent” retreats additionally even curb verbal communication between meditators. The opposite effect of an increase of Q is generated when social stimulation is enhanced, trivially when going to a party or when traveling. In the context of psychotherapy, the behavioral techniques of “stimulus exposure” (e.g., in flooding interventions in the treatment of anxiety disorders) and of “role play” usually have the effect of increasing Q.
Among the major psychotherapy approaches, it is especially the systemic psychotherapies (SPT) that focus on boundaries and boundary regulation explicitly. In SPT, a “boundary” may control the interactions between the parent dyad and the children subsystem. A typical systemic hypothesis may look like this: The boundary between parents and children is too diffuse in a symptomatic family, so that one of the children has become involved in, e.g., marital conflicts of the parents. A strengthening of the intergenerational boundary will then reduce such stressful inputs to a child by decreasing the child’s Q. The flooding of the child with—for the child—incomprehensible and conflictual material is consequently attenuated (Fig. 6.1). The result of this boundary-regulation intervention is that the behavior x becomes more predictable and focused. We may again notice that such restoration of boundaries in SPT has both a stochastic and a deterministic side: stochastic insofar as any uncontrolled stimulation is reduced and deterministic insofar as inappropriate information and thus harmful stress may be specifically reduced.[image: ../images/470128_1_En_6_Chapter/470128_1_En_6_Fig1_HTML.png]
Fig. 6.1Stochastic effects of social boundary regulation: (a) shows the probability distribution of x when the boundary is too permeable. (b) shows the decrease of diffusion after enhanced regulation of social boundaries and reduced Q


Of all four clusters of psychotherapy modalities, the behavioral, psychodynamic, humanistic-experiential, and systemic therapies, the latter approaches have the most elaborate theory concerning social boundary regulation. Systemic therapies often seek to address psychological problems by means of spatial or topological mappings, e.g., by working with embodied family constellations. The construct of a (sub-)system boundary can be easily demonstrated and discussed using the metaphorical configurations and distances between clients who are located in a spatial constellation.
6.3 Regulating the Stochasticity of Emotional Processing
Stochastic inputs may additionally arise in connection with the up- or downregulation of emotions, concerning the intervention class “emotional processing” in Fig. 3.​2. Common factors of psychotherapy such as “catharsis” and “affective experiencing” are contributors to this class; they denote that the client experiences emotions and affects that may have been suppressed before but are associated with the client’s problems. Again, catharsis and affective experiencing possess deterministic components—for instance, therapists will guide the emotional process of their clients based on own hypotheses. The therapist may encourage the novel expression of anger emotions in a client who has previously only expressed depressed feelings. Yet, the stochastic component of such interventions is an (often massive) upregulation of emotional expression in general.
“Mindfulness” is a further common factor that has an effect on emotional processes. Mindfulness is defined as the nonjudgmental awareness and acceptance of one’s thoughts, perceptions, and feelings. The nonjudgment and acceptance inherent to this complex multidimensional construct (Bergomi, Tschacher, & Kupper, 2013) leads to a downregulation of emotionality, especially in the sense that emotional stimuli and responses are perceived more clearly, but no longer automatically acted upon or responded to. This is true for all emotions, i.e., for positive-affective and negative-affective processes. The resulting effect is a general emotional calming of the individual, hence a decrease of Q. We will later see that this effect is not only important as a change factor for clients (i.e., as an intervention in personality disorders characterized by emotional instability and overexpression) but also for therapists in the prevention of burnout (Delgadillo, Saxon, & Barkham, 2018).
Meditation and relaxation techniques have in common that the mental focus is directed to repetitive and trivial events. This is achieved by ritualistic practices such as observing one’s breathing or the muscular tension of body parts that are scanned in a predetermined sequence (the so-called body-scan exercise). The result is again an attenuation of emotional processes. In the mindfulness literature, the effect is sometimes named a decentering of consciousness.
We have to keep in mind again that all attenuation of emotional and motivational processes may have deterministic consequences as well. In the synergetics approach, we recognize motivational parameters as control parameters (Tschacher & Haken, 2007). Therefore, the change of valent motivation, affordances, and attention parameters (Haken & Tschacher, 2017) has an impact on self-organization. Hence, any increase or decrease of emotion and motivation also addresses the parameters k and x0 in the Fokker-Planck equation or modifies the attractor landscape, which characterizes a contextual deterministic intervention as shown in Fig. 5.​3.
6.4 Regulating the Stochasticity of Cognitive Processing
Stochastic inputs to x may result from a client’s cognitive variables. A client’s cognition can also be viewed as a boundary of the variable of interest, x. Thus, we again search for ways in which cognitive processing can be nonspecifically and randomly modulated.
Among the large number of cognitive common factors and techniques (Pfammatter & Tschacher, 2016), we found these techniques to positively contribute to the class “cognitive processing” of Fig. 3.​2: “reality testing” (developed in cognitive-behavioral psychotherapy, CBT), “role play” (CBT), “focusing” (client-centered psychotherapy), “chair technique” (Gestalt therapy), “transference interpretations” (psychoanalysis), “problem-solving training” (CBT), and several others. Some techniques were negatively linked with cognitive processing, such as “progressive muscle relaxation” (behavior therapy), “therapeutic abstinence,” and “free association” (psychoanalysis).
It is obvious, however, that the majority of these techniques are generally applied in a goal-directed and specific manner. Therefore, the impact of such techniques is largely deterministic. In our impression, it is only the negatively associated techniques, i.e., relaxation, therapeutic abstinence, and free association, which may exert influences on the stochastic dynamics of cognitive processing. These three interventions are candidates for downregulating (relaxation) or augmenting (free association, abstinence) Q. Free association especially is a psychoanalytical technique that invites previously censored cognitive material to consciousness, which as a consequence also becomes more open to random inputs. Free association can diffuse and defocus cognitive processing (Fig. 6.2).[image: ../images/470128_1_En_6_Chapter/470128_1_En_6_Fig2_HTML.png]
Fig. 6.2Stochastic effect of the “free association” technique: (a) shows the probability distribution of cognitive processing x prior to (b) after free association


Some techniques in systemic psychotherapy, which are unfortunately not very well researched, have the effect of introducing cognitive confusion to a system. Take, for example, the following homework assignment that is given to a client with obsessive-compulsive symptoms: “Tomorrow, you must repeat your compulsive ritual exactly eleven times, no more and no less.” This prescription is apparently paradoxical because it implies both a client’s surrendering to the compulsory act and his or her control over it. It is logically difficult to dissolve the inherent contradiction for cognition. Therefore, psychotherapeutic techniques of “paradoxical intention,” which are sometimes also implemented in the context of trance inductions and therapeutic hypnosis, may have the effect of increasing Q. As we have seen in the previous chapter, however, paradoxical interventions are also used in family therapy with the directive intention to destabilize problem behavior only, hence as a specific deterministic technique.
6.5 The Functionality of Stochastic Interventions
Why at all should we try to regulate the stochastic inputs to x in psychotherapy—after all, the inputs are still random, i.e., not predictable? The increase or decrease of random inputs, however, does have a clear functionality, but these effects depend on the current state of the system. If the system shows stable functioning, but in a detrimental and adverse region of state space, we may wish to destabilize the attractor of the system by increasing its stochasticity Q. Increasing Q has the effect of an expansion of the probability distribution of x, thereby supporting fluctuations of system behavior into other regions, which may not be as detrimental. Through larger fluctuations, the system may become able to explore regions of alternative functioning, where the system may then be restabilized (by subsequently decreasing Q).
A different scenario is given when a system already dwells in a favorable state but has insufficient stability, i.e., detrimental states may be accessible in neighboring state space. In the case of an attractor landscape with several attractors, some of them unfavorable, system functioning is in danger of relapse to a detrimental stable state. Under such circumstances, it is advisable to establish a low level of stochasticity, in order to avoid critical fluctuations that may lead to relapse. Filtering the inputs from the environment is then an option. This is of course part of common wisdom—for example, convalescing persons profit from the environment of a spa that downregulates stimulation levels.
Which methods are available to quantify the stochastic term of Fokker-Planck processes? In Sect. 9.​3, we will elaborate a type of time-series analysis that specifies the stochasticity of a state variable x. The standard errors of the (deterministic) slopes for each value of x can be illustrated by the function Q(x), which is shown in several figures throughout Chap. 9. As we have seen in the example of a state variable “anxiety,” it is meaningful to exactly localize the area in state space where stochastic activity occurs. Chance events at unfavorable areas such as high anxiety can be helpful because they help in destabilizing deterministic attractors in this area.
6.6 Deterministic and Stochastic Interventions Versus Specific Techniques and Common Factors of Psychotherapy: How Are They Related?
In Chap. 3, we mentioned the current debate (Wampold & Imel, 2015) in psychotherapy research: one group of scientists considers the nonspecific “common factors” as the major forces of therapeutic change, whereas the other group maintains that specific techniques are responsible for change. It has already become clear in our discussion that neither of the two groups can ultimately prevail because the nonspecific and specific change factors are both necessary ingredients of psychotherapy and commonly depend on one another in a hierarchical fashion. Unspecific common factors unfold their impact at a level that differs from the specific-technique level of intervention. At the same time, however, the higher level depends on the lower level so that we are confronted with coexistence rather than clear-cut antagonism. This is represented by the vertical arrows in Fig. 6.3. Common factors, i.e., contextual interventions, and techniques, i.e., specific interventions, however, have different profiles of action. Together with the stochastic inputs, this amounts to a three-factor conceptualization of therapeutic interventions and impacts.[image: ../images/470128_1_En_6_Chapter/470128_1_En_6_Fig3_HTML.png]
Fig. 6.3Diagram of how the traditional distinction of common factors versus specific techniques (red boxes) relates to the Fokker-Planck model (blue boxes). Common factors and specific techniques are located at different levels of the hierarchy of therapeutic interventions (vertical arrows). Common factors have deterministic effects of the contextual type, whereas techniques have specific deterministic effects


The specific-nonspecific debate is not identical to our distinction of the deterministic and stochastic components of the Fokker-Planck model of therapeutic intervention. The adherents of the nonspecific mechanisms in psychotherapy prefer a philosophy of human change due to which the therapist can only provide a nonspecific context for a “social healing” process (Wampold, 2015). In this view, therapy offers the prerequisites for change, but the client has to do the changing all by him- or herself. The therapist hermeneutically and indirectly supports the change process and the solution of problems, but will not decide on the direction and concrete goals of change. The theoretical background of this nonspecific theory of psychotherapy can be linked to the assumption of growth motivations and self-actualization (in humanistic-experiential therapies) or to constructivist or autopoietic epistemological assumptions in systemic therapies (Maturana & Varela, 1980). In the extreme “postmodern” version of constructivism, the client is the only expert for finding solutions, and the therapist’s function is just catalytic—to mobilize the client’s resources to do this (de Shazer, 1991). In our model, such nonspecific and nondirective interventions can be effective (if they are in fact effective) only through contextual effects, i.e., by modifying the affordances of the self-organizing system. Therefore, we likewise counted such interventions among the deterministic interventions (Fig. 6.3).
In addressing the stochastic effects of therapeutic interventions, we found that numerous deterministic interventions at either hierarchical level also possess elements that increase Q, the diffusion parameter of the Fokker-Planck equation. Deterministic and stochastic components of therapeutic interventions cannot be completely disentangled—causation and chance coexist in psychotherapy process. Interventions in psychotherapy commonly consist, at varying ratios, of a mixture of both components. This observation provides an important argument for our choice of the Fokker-Planck model in describing psychotherapy process, because this modeling approach combines both causation and chance. Thus, in Fig. 6.3 both the common factors and the specific techniques additionally contribute to the regulation of stochastic inputs.
In our discussion in Chaps. 5 and 6, we found that the four major therapy approaches have differing profiles of action because they prefer different types of interventions. In Table 6.1 we illustrate these profiles. We also point out the prototypical effect on attractors and on state space volumes for each of the three types of interventions and inputs.Table 6.1Overview of intervention types in psychotherapy, summing up the discussion of Chaps. 5 and 6. Size of symbols scales with the significance of an intervention for the respective therapy approach (BT, behavioral psychotherapies; Psa, psychoanalysis and psychodynamic psychotherapies; HEP, humanistic-experiential therapies; SPT, systemic psychotherapies)


[image: ../images/470128_1_En_6_Chapter/470128_1_En_6_Tab1_HTML.png]


Table 6.1 shows that different therapy approaches are not restricted to a specific and fixed type of intervention. There is a choice, and likely there are various roads that may lead to positive outcomes, even within the same therapy approach. This is not to say that the road to take is arbitrary. We will therefore address the commonalities of the different roads of treatment in the next chapter: How can a therapist, within his or her treatment concept, decide on the most appropriate mixture of deterministic and/or stochastic interventions for a given problem? When should a therapist use contextual interventions?
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7.1 Different Types of Psychopathological Problems
In Chap. 2, we introduced current theories and classifications of psychopathology. In analogy to the system of interventions, we find in psychopathology a hierarchy of symptoms, syndromes, and spectra. Quite in the spirit of the micro-macro view of synergetics, a large number of components are manifest at the microscopic level of a complex system, and there is a macroscopic level of only few large-scale patterns that can emerge through self-organization. In the case of psychopathology, the components are the single signs and symptoms of disorders, and the patterns are at the spectrum level of psychopathology.
In the development of our core model, the Fokker-Planck equation, we have regarded single variables or states—the Fokker-Planck model put forward in Chap. 3 is one-dimensional. It is therefore straightforward to consider the symptom level of psychopathology first, where we also deal with single psychopathological signs that are later aggregated in the form of a syndrome and then a spectrum of psychopathology. Which phenomena are found at the level of psychopathological signs? We realize that signs and symptoms show clear forms of stability behavior, i.e., they are under the influence of attracting forces. In a very general approach, the underlying attractor(s) may be either (1) too strong, (2) too weak, or (3) in the wrong region. The respective therapeutic action may thus have to destabilize, stabilize, or shift these attractors. The Fokker-Planck parameters are accordingly x0, k, and Q − x0 is the deterministic shift of the attractor, k stands for the deterministic force, and Q is the stochastic input to the system.
Let us proceed with an empirical example, on which we can apply simulated “interventions.” The histogram shown in Fig. 7.1 provides the probability density of depression symptoms in a single female client, monitored over a time span of about 2 years. The variable “depression” was measured by the self-report questionnaire Beck’s depression inventory (BDI-II, Beck, Steer, & Brown, 1996), which has 21 items; their total score represents an estimation of overall depression. We are aware that depression has several facets and is thus a multidimensional construct. Nevertheless, let us assume in this chapter, for the sake of simplicity, that depression consisted of a single, uniform dimension. Thus, our state variable x is, in this example, simply the BDI-II total score of depressive symptoms. As each item of the BDI-II has a score of 0, 1, 2, or 3, accordingly the maximum total score is 63. The convention concerning the clinical meaning of score ranges is this: minimal depression (total scores x ≤ 13), mild depression (14 ≤ x ≤ 19), moderate depression (20 ≤ x ≤ 28), and severe depression (29 ≤ x ≤ 63).[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig1_HTML.png]
Fig. 7.1Histogram of empirical values of n = 267 observations of depression of a single client, measured by Beck’s depression inventory (BDI-II). The range (dotted red lines) of the BDI-II is 0 (no depression) to 63 (maximum possible depression value). The histogram is approximated by three additive Gaussians (solid red line)


The histogram raw data can be approximated by three additive Gaussians, which is illustrated by the red curve in Fig. 7.1 (computations were done using JMP 11, SAS Institute Inc.). This means that there are three regions of the depression symptomatology of this client that have heightened probability: a low to no depression region around BDI-II = 5, a moderate depression region, and a severe depression region (with the three central values indicated by dark columns in Fig. 7.1).
We now assume that this client enters psychotherapy during an exacerbation of depression as shown by the attractor landscape of Fig. 7.2. This figure rests on the mirror relationship between a probability distribution and an attractor landscape (cf. Fig. 1.​6). The client’s current depression is about 40, which indicates a severe depressive episode. Her depressive symptoms have not been lower than 34 for a longer period of time, which means that daily fluctuations were not sufficient for her to leave the basin of the current “severe” attractor.[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig2_HTML.png]
Fig. 7.2Attractor landscape of a client with depression (same data as Fig. 7.1). The probability density is inverted and represented by the shaded areas. The current state of the client is represented by the red ball (BDI-II of about 40, severe symptomatology). V(x), psychopathological potential, and potential minima are stable states, i.e., attractors


The therapeutic intervention is now to increase the stochastic inputs into this client’s emotional system, e.g., by increasing the activity level of the client who had responded to her symptoms by a withdrawal from almost all activities—social, physical, or intellectual. Counteracting withdrawal and avoidant behavior is a way of nonspecifically regulating the boundary of a system—in Chap. 6 we introduced such interventions as examples of predominantly stochastic interventions. The idea is that rigid boundaries, such as those realized by a highly avoidant depressed client, will ward off any input from her environment, be it “good” or “bad.” We assume therefore that this increase of the activity level and reduced avoidance will produce random inputs to all regions of the attractor landscape.
We simulated this effect in Fig. 7.3 by adding a computer-generated uniform random input (in the range of −10 to 10) to all data that are shown in Fig. 7.1. In other words, we have increased the Q of the Fokker-Planck model, which is linked to an expansion of distributions and an inflation of state space volumes (cf. Chap. 4). The result of such stochastic inputs in the example is a marked destabilization of the “severe” attractor, shown in Fig. 7.3: This attractor is now flatter, and its central value has shifted to the reduced value of BDI-II = 32. This shows that purely stochastic and undirected interventions can have beneficial effects on the client’s psychopathology. Additionally, and equally important, it is now much easier to “push” the system into the middle attractor, which would be linked with only mild symptoms.[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig3_HTML.png]
Fig. 7.3Attractor landscape of client with depression (same data as Fig. 7.1 but with random inputs added). The (inverted) probability density is represented by the shaded areas. The client’s current state is represented by the red ball (BDI-II of about 32, i.e., still severe symptomatology)


This push can be either the result of stochastic fluctuations, or it may be performed by a deterministic intervention. Below in Info-Box 7.1, we show how a momentary deterministic push to the system state can be modeled. A deterministic intervention may be realized by a homework assignment suggested by the therapist with the goal to selectively focus on, and thereby enhance and reinforce, emotionally positive experiences. As a result, it may be expected that the client system next comes to reside in the attractor with values of about 20, which means mild to moderate depression (Fig. 7.4). This middle attractor now is very stable; its potential “valley” is the deepest throughout the attractor landscape.[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig4_HTML.png]
Fig. 7.4Attractor landscape of client with depression. After some deterministic intervention, the client resides in the middle attractor


At this point, treatment has arrived at clinically significant improvement, but there is still a considerable load of symptoms. The therapist is now confronted with the shape of the attractor landscape—further stochastic destabilization may allow transforming this shape still more, but it will not remove the stable attractor at moderate depression values, and will likewise not shift this attractor. This is shown in Fig. 7.5, where the attractor landscape of Fig. 7.4 was modified again with an additional uniform random input (range of −20 to 20). Stochastic intervention maintains the problematic attractor but destroyed the healthy attractor, which is now situated at “impossible” values outside the defined range of the BDI-II. Thus, further destabilization of the attractors by stochastic interventions will no longer prove helpful at this point of treatment. As we have argued previously in Sect. 4.​4, stochastic processes alone lead to the eventual destruction of all structure because of an expansion of the distribution function P(x).[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig5_HTML.png]
Fig. 7.5Attractor landscape of client with depression, after further stochastic input (same data as Fig. 7.4, with further random inputs added). The range of defined values of the BDI-II is shown by dotted lines


How can we model a satisfactory intervention when the client has entered the situation shown in Fig. 7.4? There are two options: First, we may tailor a highly specific deterministic intervention to this client, which will “lift” her into the leftmost attractor with depression values of around 8, representing mild or absent depression. Second, we may try and change the attractor landscape altogether so that the healthy attractor becomes the most stable attractor that has the deepest valley in the landscape (i.e., the attractor attains the minimum potential).
Option 1, the application of deterministic antidepressive techniques, may result in shifting the client’s state into the mild or absent depression values. A large number of such interventions have been developed in the psychotherapy literature by cognitive-behavioral psychotherapists (Beck, Freeman, & Davis, 2004). They suggest directed cognitive techniques such as “reality testing”—therapist and client explore the evidence that actually speaks for depressive thoughts and beliefs. A new development is to alter the embodiment of depression by working with the nonverbal manifestation of negative thought content and negative emotion (e.g., Michalak et al., 2009). A further possibility is to use antidepressive medication as an add-on to psychotherapy. The remaining problem of option 1, however, is to scaffold the improvements against relapses, as the more stable, “deeper” attractor with moderate depression is still present in Fig. 7.4. Relapse due to random fluctuations will remain a pending problem, which endangers the sustainability of the results of deterministic interventions. One may reduce the stochasticity Q by boundary regulation interventions as mentioned in Chap. 6.
Option 2 is to modify not the state of the client in the attractor landscape directly but the landscape itself. This option rests on the finding of synergetics that attractors and the types of attractors depend on external parameters, the so-called control parameters (Haken, 1977) or affordances (Greeno, 1994; Tschacher & Dauwalder, 1999). These parameters have critical values that determine when pattern formation sets in and also when qualitatively novel patterns emerge from older patterns. Therefore, the shape of attractor landscapes is a function of control parameter values. Such parameters describe aspects of the context of a self-organizing complex system, especially those aspects that “drive” the self-organizing process. In physical systems, these are commonly the sources of energy that permeate the systems. In psychology, the driving parameters are so-called affordances, which possess a motivational function (Tschacher, 1997; Tschacher & Haken, 2007, cf.  Sect. 10.6).
Both options are deterministic interventions, yet they have impacts at a different level of the client system. Option 1 addresses interventions that directly influence the state x of the system in the attractor landscape, i.e., system behavior. Option 2 addresses interventions that change the attractor landscape itself and, mediated through the changed landscape, consequently change the behavior of the system. Option 1 is a primary deterministic intervention; option 2 is a secondary deterministic intervention (cf. Fig. 5.​3). As it implies a shift of control parameters or affordances in the context of the system, we called option 2 interventions “contextual interventions” (cf. Sect. 5.​3).
It is our impression that some of the common factors of psychotherapeutic interventions explicitly have the function of control parameters or affordances. When we consider the common factors listed in Table 3.​1, these are often of a motivational character. This is true of all common factors that are associated with emotional and affective processes: “affective experiencing,” “catharsis,” “hope,” “corrective emotional experience,” and “emotion regulation.” It is also true of motivational common factors—“resource activation,” “readiness to change,” and “self-efficacy” are aspects of the driving forces of a client, as they describe a general unleashing of motivation of the client. Finally, the common factor “therapeutic alliance” is defined at least partially by trust, affirmation, and warmth, which are again emotional-motivational variables.
We may thus assume that a marked increase of motivational common factors should have a selective impact on depression scores—depression being characterized by avolition and feelings of emotional emptiness, thus a deficiency of motivation. In our fictitious quantitative example of the female client, we may thus assume that the probability of higher expressions of depression is decreased and states of no or weak depression become emphasized (Fig. 7.6). We multiplied minimal depression values by a factor of 0.8 and mild and moderate depression values by a factor of 0.6 and reduced severe depression values by 11 points to simulate a contextual deterministic intervention. The result of such intervention is a qualitative change in the client’s attractor landscape. The most stable attractor is now in the region of minimal depression, the moderate depression attractor has almost vanished, and there is a remaining but less stable attractor at the border between moderate and severe depression. Such circumstances in a client would be considered full recovery from symptoms indicating full treatment success.[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig6_HTML.png]
Fig. 7.6Attractor landscape of client with depression, after control parameter changes due to a contextual intervention (BDI-II data as in Fig. 7.2, minimal values multiplied by 0.8 and mild and moderate values by 0.6, severe depression values reduced by 11 points)


7.2 Stages of Psychotherapeutic Change: Stochastic, Deterministic, and Contextual
In the previous section, we discussed several types of response to therapy using a descriptive approach. The psychopathology of a single client was represented by her depression symptoms, which can be illustrated as an attractor landscape of symptomatology. The initial state of the client is depicted in Fig. 7.2, where the client presents with severe depression.
Several scenarios of intervention were subsequently simulated and illustrated. The first step of intervention consisted of a destabilization of the attractor that was active at initiation of treatment. In terms of the Fokker-Planck model, Q was increased. Stochastic inputs destabilized the severe depression attractor (Fig. 7.3).
This allowed, in a second step, lifting the state of the client out of the severe depressive episode into the middle, moderate depression attractor (Fig. 7.4). This second step may be realized by a deterministic intervention of low intensity by a single deterministic “push” or “kick,” because the destabilized severe depression attractor was no longer resistant to changes of the client’s state. A deterministic shift of the attractor is modeled by x0. The trajectory into the moderate depression attractor may even occur spontaneously, owing to random fluctuations.
The ensuing third step was more troublesome because the moderate depression attractor was now the most stable attractor of the landscape, connected to the absolute potential minimum. This can neither be altered by additional stochastic inputs alone nor by single deterministic “pushes” (Fig. 7.5). This step therefore involved interventions that directly address the shape of the attractor landscape. Synergetics proposes that such secondary change can be achieved by addressing the control parameters (affordances) of the client system. We assumed that parameter changes in contextual interventions are effected by the use of motivational common factors.
In conclusion, we described three qualitatively different types of intervention into psychopathological symptoms: stochastic interventions, deterministic interventions, and contextual interventions. Stochastic interventions destroy preexisting attractors by an unspecific increase of diffusion, deterministic interventions affect the state of the system inside an otherwise unchanged attractor landscape, whereas contextual interventions change the shape of the underlying attractors and thus secondarily also the state of the system.
7.3 Modeling Interventions of Psychotherapeutic Change
In the descriptive approach initiated in this chapter, we have distinguished three different types of therapeutic interventions that were instrumental in lifting a paradigmatic depressed client out of her psychopathology. We will now need to model these three steps more precisely in the context of the Fokker-Planck model of change that was introduced in Chap. 4.
The first step of a destabilization of an attractor by an increase of stochastic inputs is directly addressed in the Fokker-Planck equation:

            [image: $$ \frac{dP\left(x;t\right)}{dt}=\overset{D}{\overbrace{\frac{d}{dx}\left( kxP\left(x;t\right)\right)}}+\overset{S}{\overbrace{Q\frac{d^2P\left(x;t\right)}{dx^2}}} $$]

 (7.1)



          
The change of the probability dP of a state x (such as the client’s depression score) is a process, i.e., depending on time t. With deterministic inputs (term D) constant or zero, the S term of the Fokker-Planck equation (7.1) entails an expansion of the distribution of depression values, as we have observed in the changes between Figs. 7.4 and 7.5. Thus, the stochastic step is directly represented by the S term where Q is increased. Increased diffusion tends to destroy the structure of psychopathological states, and this is frequently an important step in psychotherapeutic treatment.
The second step was a deterministic intervention by which the state of the system was “pushed” out of a local attractor. We assumed then that the input affects behavior x at a specific value x0, such as in our example at a depression score of 32 (see Fig. 7.3). The mathematical idea that implements a momentary deterministic input within the Fokker-Planck framework is presented in Info-Box 7.1.
Info-Box 7.1: Modeling the Effect of a Momentary Deterministic Input
Let us consider deterministic interventions in the framework of the Fokker-Planck equation. First, we abbreviate the right-hand side of the equation in the following way:[image: $$ \frac{dP\left(x;t\right)}{dt}=\overset{L(x)P\left(x;t\right)}{\overbrace{\frac{d}{dx}\left( kxP\left(x;t\right)\right)+Q\frac{d^2P\left(x;t\right)}{dx^2}}} $$]

 (7.2)



Next, we regard the direct deterministic input as a momentary change of the distribution function P(x) that is added to the time-dependent Fokker-Planck equation as in the following:[image: $$ \frac{dP\left(x;t\right)}{dt}=L(x)P\left(x;t\right)+\delta \left(t-{t}_0\right)\delta \left(x-{x}_0\right)g(x)P\left(x;t\right) $$]

 (7.3)



The term added to the right-hand side of (7.3) stands for the intervention. It makes use of Dirac’s delta function (δ), which is a mathematical instrument to represent a sharply peaked input at a moment t = t0 and a location x = x0. The exact form of this input is modeled by g(x). In order to observe how the input affects the change of dP(x;t), we may integrate the extended Fokker-Planck equation (7.3) over time from t0 − θ to t0 + θ with θ very small.
The result of integration is not given in elaborate form here, as it can be illustrated in graphical form by Fig. 7.7, where we start from a simple Gaussian distribution in (a).[image: ../images/470128_1_En_7_Chapter/470128_1_En_7_Fig7_HTML.png]
Fig. 7.7Result of a momentary deterministic intervention into the state at x0. The probability distribution of behavior x (e.g., depression) becomes “indented” as a result. (a) before intervention; (b) immediately after intervention



The intervention changes the Gaussian probability distribution (Fig. 7.7a) to the graph at Fig. 7.7b, which has a markedly decreased probability at location x0. This means that the system state is likely to change to one of the two peaks in the neighborhood of x0. In the context of Fig. 7.3, where the client showed a stable state with a depression score of 32, this opens up a possibility of her moving toward more attenuated depression, i.e., depression scores of 20 as in Fig. 7.4.
The modified probability distribution of Fig. 7.7b, however, is only a momentary transformation of the probability distribution. Because of the general action of the Fokker-Planck dynamics, it will soon after the intervention again relax toward the previous distribution of Fig. 7.7a. Therefore, a sustained effect on the probability function is only to be expected when interventions are repeated or enduring. Repeating the intervention may then pave the way to reach the left (healthy) attractor of Fig. 7.4.
One must be aware, however, of one limitation of our argument in this chapter: in descriptive Figs. 7.2, 7.3, 7.4, 7.5, and 7.6, the attractor landscapes had three minima—the underlying distribution functions were thus more complicated than the single-peak Gaussians that can be derived from the Fokker-Planck framework. This means we have to model the data region by region, as, in certain regions of state space x, the distributions are approximately Gaussian. In compliance with this region-wise procedure, the landscapes in the figures were approximated by three additive Gaussians. When we assume that some effective intervention can be installed permanently, this will amount to an enduring and sustainable intervention, because it will modify the attractor landscape. In other words, we then have arrived at the third step, where a contextual intervention altered the probability distribution permanently and qualitatively changed the attractor landscape, so that the risk of relapse is largely reduced or even absent.
In summary, in this chapter we started from the insight that all real psychotherapies rest on a mixture of deterministic, stochastic, and contextual interventions. In psychotherapy practice, these different interventions cannot be disentangled in pure forms, in the same way as the specific and the nonspecific (“common”) factors of therapy effects cannot be easily separated from each other. We have nevertheless shown in a simulation example, the treatment of depression, how the different interventions may act on a client’s symptoms. In their idealized forms, the three types of interventions, deterministic, stochastic, and contextual, possess distinguishable profiles of action. Stochastic interventions have a diffusive and destabilizing effect on preexisting attractors as they deconstruct the attractor landscape. Deterministic interventions change the state of the system by a deterministic “push” in an unaltered attractor landscape, or they shift and modify an attractor. Contextual interventions come about by changing the control parameters that shaped this landscape in the first place, and thus such interventions modify the landscape. All three types of intervention may be manifest in a single therapy course but at different stages of treatment. There is probably no single best approach to treat symptoms. Several roads can lead to Rome.
Finally, we have discussed the different intervention types in the context of our main model, the Fokker-Planck equation. All types can be located within this modeling approach. Stochastic interventions simply correspond to the stochastic term of the equation, when the deterministic term is downregulated or zero. Then all states of symptom x receive random inputs. Deterministic interventions can be modeled by the local impact of delta functions, which lead to a momentary change of distributions that destabilize distinct states of symptom x and allow to shift the attractor. And finally, contextual interventions generalize on the deterministic interventions by introducing enduring local interventions, which results in sustainable changes of distributions and thus of the underlying attractor landscape.
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8.1 A “Minimal Model” of Therapeutic Intervention, Assuming the Slaving Principle
Up to this chapter, we have addressed the behavior of a single state variable x, whose changes in time can accordingly be described by one-dimensional differential equations. This is satisfactory for the mapping of a single state x, for instance, a psychopathological symptom in an ongoing treatment. Such dynamics can be sufficiently modeled by a one-dimensional Fokker-Planck equation. Yet, should we wish to study in more detail what happens in the therapeutic setting or specifically in the therapeutic relationship, we are dealing with two variables at minimum, namely, a therapist’s (th) and a client’s (cl) individual state. Hence we need to consider the two-dimensional case also. In the first section of this chapter, we will start by looking at therapist and client separately and then observe the coupling between the two.
Personal characteristic features of therapist and client shall be quantified by xth, xcl and by gth, gcl, where x are manifest states that can in principle be measured at any given moment, whereas g denotes long-term traits with respect to the same property as x, i.e., attributes of the personality of client and therapist. In the case of Gaussian distributions, g may simply be a mean value of a distribution of x. Importantly, our use of x and g for both client and therapist does not imply that xth and xcl must address the same property. xth, xcl and gth, gcl may denote semantically different measures; see this example:
Example 8.1
xth may denote the state variable “positive affect” of the therapist (i.e., energetic, confident, joyful momentary mood) and gth the therapist’s personality trait “generalized positive mood” (a trait akin to the Big Five’s “agreeableness,” which is the personality trait of a person commonly manifesting kindness and social positivity). In the client, xcl may denote the state variable “low anxiousness” of the client (i.e., low values of “worried, nervous, apprehensive momentary mood”) and gcl the client’s personality trait “low generalized anxiety” (low values of long-standing behavioral properties of a person who is commonly anxious, self-conscious, and shy, such as the Big Five trait “neuroticism”). Note that we choose the polarity of variables in such a way that high values denote favorable states.

To obtain a first intuition, we ignore fluctuations, i.e., the stochastic forces on the two actors of the therapeutic setting, therapist and client. We wish to model their interaction and propose the following Eqs. (8.1) and (8.2) for xth ≥ 0, xcl ≥ 0. The therapist’s behavior change is assumed to be[image: $$ \frac{d{x}_{\mathrm{th}}}{dt}=-{k}_{\mathrm{th}}{x}_{\mathrm{th}}+{g}_{\mathrm{th}}{k}_{\mathrm{th}}+{ax}_{\mathrm{cl}}{x}_{\mathrm{th}} $$]

 (8.1)



In Eq. (8.1), [image: $$ {k}_{\mathrm{th}}=\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{${\tau}_{\mathrm{th}}$}\right. $$] is a force constant, which can be expressed by the inverse relaxation time τth of the therapist. The first two terms on the right-hand side of (8.1) can be written as −kth(xth − gth) representing a deterministic force (or “tendency”) that restores the therapist’s state to the trait value gth after a perturbation of xth. As mentioned in Chap. 4, the relaxation time is the time needed for a system to return to steady state after some perturbation. gth is a personality constant of the therapist in steady state, and the term axclxth represents the coupling between the therapist and the client.
Our ansatz for the client’s behavior change is in Eq. (8.2):[image: $$ \frac{d{x}_{\mathrm{cl}}}{dt}=-{k}_{\mathrm{cl}}{x}_{\mathrm{cl}}+{g}_{\mathrm{cl}}{k}_{\mathrm{cl}}+{bx}_{\mathrm{th}}^2={k}_{\mathrm{cl}}\left({g}_{\mathrm{cl}}-{x}_{\mathrm{cl}}\right)+{bx}_{\mathrm{th}}^2 $$]

 (8.2)


kcl stands for the inverse relaxation time of the client, gcl is the client’s personality constant in steady state, and the coupling term [image: $$ {bx}_{\mathrm{th}}^2 $$] represents the impact of the therapist on the client. As can be seen, (8.1) and (8.2) are analogous except for their coupling terms.
This choice of the model (8.1) and (8.2) needs some justification. It is our goal here to propose a minimal model of therapeutic action. This minimal model is based on the expectation that the impact of the therapist on the client can be large, hence the quadratic coupling term [image: $$ {bx}_{\mathrm{th}}^2 $$] in the differential equation for the client’s behavior change (8.2). Correspondingly, we also expect that vice versa the impact of the client on the therapist (in Freudian terms, the countertransference) should possibly be small, so that in a simplified case, a in (8.1) may even be zero. In this case, the therapist’s action would be completely unaffected by the client’s behavior; there is no backward action from the client to the therapist. For values a, b smaller than zero, the interactive influence of the client or therapist is negative in the sense that it contributes to a reduction of the respective counterpart’s behavior change. In Eq. (8.1), a > 0 means that during a therapy process, some feedback is present, by which the client influences the therapist. Likewise in (8.2), b > 0 indicates positive action of the therapist on the client.
In a therapeutic working alliance, b > 0 is expected. a may be > 0 or < 0, although typically we may see a < 0, i.e., the client delimits and weakens the therapist’s action.
Example 8.2
The client’s “low anxiousness” increases (i.e., anxiousness decreases) when there is a combination of circumstances, which each corresponds to the two terms of the right-hand side of (8.2):	(1)kcl(gcl − xcl): this term should be high, which is fulfilled by short client’s relaxation times.

 

	(2)kcl(gcl − xcl): the term in brackets should also be high, i.e., client’s generalized anxiety should be low (which is unlikely, as gcl is a long-standing trait) and state anxiety should be high.

 

	(3)[image: $$ {bx}_{\mathrm{th}}^2 $$]: since the coupling term b is assumed to be positive, positive affect of the therapist should be high.

 





We will now make further assumptions with the goal to allow the application of the synergetic slaving principle (see Info-Box 8.1) to the present model. We therefore assume that kth ≪ kcl: in other words, the therapist’s relaxation times are much larger than the client’s. This means that the therapist reacts very slowly and carefully, whereas the patient is supposed to adapt quickly.
Interestingly, this assumption is supported empirically by research on those therapist variables that are associated with successful therapy outcomes. In large databases of therapeutic quality control, it is commonly found that some therapists are consistently more effective than others. There are however no simple answers to the question which therapist variables may account for such heterogeneity—therapist’s age, gender, gender-matching with the client, therapist’s preferred treatment modality, and years of therapist’s professional experience do not explain the over 5% of outcome variance that can be attributed to therapist effects (Lutz & Barkham, 2015). Among the most reliable findings to date is that it is the individual resilience and mindfulness of a therapist that can explain the heterogeneity among therapists. This means a therapist’s personal and emotional stability and hardiness in the face of adversity, together with a stance of nonjudgmental awareness, constitute important personality traits and coping styles that make psychotherapists more successful (Pereira, Barkham, Kellett, & Saxon, 2017). These recent empirical findings are clearly compatible with our assumption that relaxation times are important features and that the slaving principle may be applied to psychotherapy processes.
Info-Box 8.1: Slaving Principle
The slaving principle of synergetics is the core of self-organization processes occurring in complex dynamical systems, i.e., systems composed of many variables. These “variables” describe the states (as functions of time) of all single elements of the system, which in a complex system (one may think of all single neurons in a brain) amounts to vast numbers of different variables. When all these variables behave independently of one another, the whole system is in a state of maximal disorder. On the verge of self-organization, this disordered and high-dimensional regime changes in a short transition period because (few) slow variables entrain (i.e., “enslave”) the behavior of the (many) quick variables.
Such disorder-order transitions occur only in open systems, i.e., systems that are “driven” by energy inputs (the “control parameters” in physical and biological systems, Haken, 1977). Mental systems are driven by motivational and attentional parameters (often called “valence” or “affordance,” Lewin, 1936; Gibson, 1979). Self-organization occurs at a “critical point” of these driving parameters where highly ordered, self-organized behavior emerges from disordered behavior of the system. The slaving principle is thus a candidate mechanism by which we can model phenomena like (in psychology) gestalt perception, social synchrony, and entrainment. Generally in complex dynamical systems, the slaving principle underlies the spontaneous formation of temporal and spatial patterns.
Slow variables are those variables that have long relaxation times (i.e., small k). These slow variables assume the role of “order parameters,” i.e., they begin to completely govern all other system variables. The order parameters produce the observable patterns of the self-organized state of the system. Since only few order parameters (often just a single one) prevail at a critical point, the system has transited from high disorder into a highly coherent and ordered state.
Importantly, the slaving principle also holds independent of the self-organizing processes of complex systems, i.e., when there is only one slow and one quick variable as in the two-dimensional “minimal model” presented in Chap. 8. In physics, this process is called an adiabatic process. The adiabatic theorem was originally developed in quantum theory but also has applications in the macroscopic world and in thermodynamics.
Psychologically, a person who has long relaxation times may be characterized as being resilient and mindful—resilience is the ability to deal with stress and to remain competent when encountering adverse situations (instead of responding to stimuli too quickly). Likewise, mindfulness is one’s ability to not automatically respond to adversity but maintain a state of nonjudgmental attention to the present moment.

The difference between the therapist’s and the client’s relaxation times, which was mentioned in Example 8.2, requires a transition period that, because of the short client’s relaxation time, is short. During this period, the client adapts his/her state to that prescribed by the therapist. As this happens on a shorter time scale than that of the therapist, the therapist’s state appears as constant to the client. Mathematically, this amounts to setting in Eq. (8.2): [image: $$ \frac{d{x}_{\mathrm{cl}}}{dt}=0 $$], since client behavior is now entrained by the (approximately constant) therapist behavior. Thus we obtain an (algebraic) equation that allows expressing the state xcl at time t by that of xth at the same time, i.e.:[image: $$ {x}_{\mathrm{cl}}(t)={g}_{\mathrm{cl}}+\frac{bx_{\mathrm{th}}{(t)}^2}{k_{\mathrm{cl}}} $$]

 (8.3)



This expression for xcl can now be inserted into (8.1). Consequently, instead of the two differential Eqs. (8.1) and (8.2) that determine the time evolution (“trajectory”) in the two-dimensional state space (xcl, xth), we may deal with a one-dimensional state space. Since according to (8.3) xth fixes and entrains xcl, xth “enslaves” xcl and hence acts, in the parlance of synergetics, as an order parameter. According to dynamical systems theory, the only possible steady states in a one-dimensional state space are fixed points. After these insights, we now turn to the direct solution of (8.1) and (8.2).
The steady-state solution is given when the system comes to a rest, i.e., [image: $$ \frac{d{x}_{\mathrm{th}}}{dt}=\frac{d{x}_{\mathrm{cl}}}{dt}=0 $$]. In the case of (8.1), this yields[image: $$ 0=-{k}_{\mathrm{th}}{x}_{\mathrm{th}}+{g}_{\mathrm{th}}{k}_{\mathrm{th}}+{ax}_{\mathrm{cl}}{x}_{\mathrm{th}} $$]

 (8.4a)


or[image: $$ {x}_{\mathrm{th}}\left({k}_{\mathrm{th}}-{ax}_{\mathrm{cl}}\right)={g}_{\mathrm{th}}{k}_{\mathrm{th}} $$]

 (8.4b)


and thus[image: $$ {x}_{\mathrm{th}}=\frac{g_{\mathrm{th}}{k}_{\mathrm{th}}}{k_{\mathrm{th}}-{ax}_{\mathrm{cl}}} $$]

 (8.4c)



This means that if kth = axcl there is instability (a zero denominator is mathematically not defined). Also, the therapist must choose a value of a (i.e., the client’s reverse impact on the therapist) small enough in order not to minimize the denominator. If a > 0 and xcl > 0, the denominator in (8.3) may approach zero, and thus xth → ∞: the therapist’s state becomes unstable. Therefore, it is essential that the “countertransference” constant a be kept small, unless it is < 0.
In the context of Sect. 8.1, it suffices to put in (8.4c) a = 0, so that[image: $$ {x}_{\mathrm{th}}={g}_{\mathrm{th}} $$]

 (8.5)



Inserting (8.5) in (8.3) yields[image: $$ {x}_{\mathrm{cl}}={g}_{\mathrm{cl}}+\frac{b}{k_{\mathrm{cl}}}{g}_{\mathrm{th}}^2 $$]

 (8.6)



Equation (8.6) says that the client’s state depends on the client’s long-standing personality state and the impact of the therapeutic intervention. This intervention term on the right-hand side of Eq. (8.5) describes the effective impact the therapist has on the client’s state.
Anticipating results of our solution of the two-dimensional Fokker-Planck equation (see Sect. 8.4 below), we now include possible stochastic fluctuations in (8.6), assuming that Qth ≈ 0, i.e., the therapist is not influenced by random events, hence is self-efficacious and largely under internal control. To present our result, we use a mathematical notation by which the function ex is written as exp(x). This convention is used when the exponent x is a complicated expression as in (8.7). The model of the client’s probability distribution fcl in the steady-state limit, with t large, becomes[image: $$ {f}_{\mathrm{cl}}\left({x}_{\mathrm{cl}}\right)=N\exp \left(-\frac{1}{2}{Q}_{\mathrm{cl}}^{-1}{k}_{\mathrm{cl}}{\left({x}_{\mathrm{cl}}-{g}_{\mathrm{cl}}-\frac{b}{k_{\mathrm{cl}}}{g}_{\mathrm{th}}^2\right)}^2\right) $$]

 (8.7)


where Qcl is the effective noise, i.e., noise as sensed by the client. N is the normalization parameter, which takes care of the convention that all probabilities add up to 1.
Equation (8.7) describes a Gaussian distribution with a mean [image: $$ {\overline{x}}_{\mathrm{cl}}={g}_{\mathrm{cl}}+\frac{b}{k_{\mathrm{cl}}}{g}_{\mathrm{th}}^2 $$]. The variance (or the “width”) of this distribution is proportional to Qcl/kcl, i.e., Qclτcl. This means that the therapist strongly influences the mean value of the client’s states (through his or her squared personality trait gth), but not the variance (Fig. 8.1).[image: ../images/470128_1_En_8_Chapter/470128_1_En_8_Fig1_HTML.png]
Fig. 8.1Distribution of client’s states, following the therapeutic interaction with the therapist


The variance in (8.7), i.e., the range of the client’s behaviors, can only be influenced by regulating the stochastic influences (Qcl) that act on the client (the result of boundary regulation, as we elaborated in Chap. 6) and the client’s relaxation time τcl. We must therefore focus on the client-specific sensitivity, which “filters” the objective environmental noise Q (including the stochastic interventions triggered by the therapist). Thus, Qcl = ϕ · Q.
There are a number of psychological constructs that describe aspects of such filtering processes ϕ. “Openness to experience,” one of the factors in the Big Five model of personality (Costa & McCrae, 1992), is an approximation of ϕ because it describes the permeability and receptivity of the client’s personality. We have recently found empirically that “Openness to experience” in fact increases the duration of synchronization behavior in interacting dyads (Tschacher, Ramseyer, & Koole, 2018). “Observe,” an aspect of mindfulness, likewise deals with the individual’s awareness of external events (Bergomi, Tschacher, & Kupper, 2013) and is therefore also a psychological construct proportional to ϕ.
In general, therapeutic interventions are applied on (8.7). Which targets are there of such interventions? As we have seen in Chap. 6, interventions can be aimed at Qcl, both by generally modulating environmental noise and the patient’s filtering ϕ of the environment. Second, the original personality constant of the client gcl is still present in (8.7). It is a further goal of therapy to eventually alter long-standing personality traits by therapeutic interventions, by the therapist deterministically shifting gcl to a new value, using his or her own personality.
In conclusion, these general ideas mean that a minimal model of the therapist’s psychotherapeutic impact suggests the following guidelines: (1) the therapist should be resilient and “slow,” i.e., he/she should have long relaxation times (kth should be small), (2) the therapist should not underlie strong countertransference or otherwise be strongly influenced by the client (a should be small), and (3) he/she must, however, strongly influence the client (b should be large) and have a concise and stable personality (gth should be large). In other words, the exchanges between therapist and client are not on an equal footing, and the exchanges between therapist and client are clearly asymmetrical. Thus, good alliance and a working therapeutic relationship may mean a rather one-sided interaction. At first sight, this claim may sound controversial to some psychotherapists, especially in the light of humanistic and systemic psychotherapeutic convictions. Behavior therapy and cognitive-behavioral therapies, on the other hand, would rather endorse this view of the minimal model. We will come back to a discussion of such questions in Chap. 10.
8.2 The “Minimal Model” of Therapeutic Interventions with Oscillations: Evolution Equations in Two Dimensions
As we have shown repeatedly, psychotherapy always deals with stability behavior, i.e., with attractors and probability distributions that are defined in a specific location of state space, i.e., the space of all possible states of x (one may note that in the case of a one-dimensional system, the state “space” is of course only one-dimensional, geometrically a line). The task of a therapist is to change the location of the client’s attractors and often also the shape of these attractors. Dynamical systems theory distinguishes between different types of attractors. The simplest and most frequently discussed type is the fixed-point attractor. In fixed-point dynamics, the steady state of the system is a single fixed value of the state variable x. Thus, one-dimensional (1D) systems can exhibit such dynamics, and a 1D Fokker-Planck equation suffices to model this. We have introduced such equations in previous chapters.
Two dimensions, however, are needed to allow for a further important class of attractors, the limit cycles. The system’s state space must be 2D, a two-dimensional plane. Limit cycles represent stable oscillatory behavior, i.e., the system is in steady state when a regular oscillation is realized. The system is “at rest” as soon as it oscillates with a fixed periodicity. Cardiac activity is an obvious example—in the absence of perturbations, the heart keeps cycling with a more or less constant beat. Many biological systems show limit cycle behavior such as day-and-night (circadian) activity patterns. Some psychopathological disorders are also cyclical: for instance, bipolar disorders manifest regular periodic swings between depressive and manic mood and behavior (see Fig. 2.3).
Even more complicated attractive behavior is observed in chaotic systems, which have three or more state variables. In 3D systems (embedded in three-dimensional state spaces), deterministic chaos (Lorenz, 1963; Rössler, 1976) can occur, where the steady state generates noise-like unpredictability as well as regular patterns, both at the same time. Such “fractal” dynamics has generated much scientific and popular interest (Mandelbrot, 1982). Yet research has not provided strong evidence for the existence of chaos in psychological or clinical systems, possibly with the exception of episodes of chaotic brain dynamics in epileptic seizures (Jirsa, Stacey, Quilichini, Ivanov, & Bernard, 2014). Thus we will leave chaotic dynamics aside in our modeling of psychotherapy processes.
Let us however explore the possibility of oscillatory behavior in the scheme of the minimal model. We refer to Eqs. (8.1) and (8.2) again, because they describe a two-dimensional vantage point, which is also adequate for the depiction of client-therapist interactions. Denoting [image: $$ \frac{dx}{dt}\equiv \dot{x} $$], we reconsider the equations provided at the start of this chapter, which describe the temporal changes of therapist’s and client’s behavior:[image: $$ {\dot{x}}_{\mathrm{th}}=-{k}_{\mathrm{th}}{x}_{\mathrm{th}}+{g}_{\mathrm{th}}{k}_{\mathrm{th}}+{ax}_{\mathrm{cl}}{x}_{\mathrm{th}} $$]

 (8.8)


[image: $$ {\dot{x}}_{\mathrm{cl}}=-{k}_{\mathrm{cl}}{x}_{\mathrm{cl}}+{g}_{\mathrm{cl}}{k}_{\mathrm{cl}}+{bx}_{\mathrm{th}}^2 $$]

 (8.9)



In contrast to Sect. 8.1, the relative values of kth/kcl shall not be fixed a priori here. Thus, our discussion is now departing from the slaving principle (cf. Info-Box 8.1) that we assumed to hold in the previous section. The stationary solutions (i.e., where no longer behavior changes occur: [image: $$ \dot{x}=0 $$]) of (8.8) and (8.9) shall be written as[image: $$ {x}_{\mathrm{th}}={X}_{\mathrm{th}},\kern0.5em {x}_{\mathrm{cl}}={X}_{\mathrm{cl}} $$]

 (8.10)



In principle, stationary states need not signify attractors but may be merely locally stable, like a ball resting on the top of a hill. Thus, in order to analyze the (asymptotic) stability behavior of the system in the neighborhood of stationary states, we apply linear stability analysis: we add small values ξ, ς to the client’s and therapist’s state variables to test the stability of the stationary states:[image: $$ {x}_{\mathrm{th}}={X}_{\mathrm{th}}+\xi, \kern0.5em {x}_{\mathrm{cl}}={X}_{\mathrm{cl}}+\varsigma $$]

 (8.11)



Inserting into (8.8) and (8.9), we then obtain a modified formulation of the minimal system:[image: $$ \dot{\xi}=-{k}_{\mathrm{th}}\left({X}_{\mathrm{th}}+\xi \right)+{g}_{\mathrm{th}}{k}_{\mathrm{th}}+a\left({X}_{\mathrm{cl}}+\xi \right)\left({X}_{\mathrm{th}}+\varsigma \right) $$]

 (8.12)


[image: $$ \dot{\varsigma}=-{k}_{\mathrm{cl}}\left({X}_{\mathrm{cl}}+\varsigma \right)+{g}_{\mathrm{cl}}{k}_{\mathrm{cl}}+b{\left({X}_{\mathrm{th}}+\xi \right)}^2 $$]

 (8.13)



The solutions of (8.8) and (8.9) describe the changes of therapist’s and client’s behavior, which due to (8.11) can be expressed by the sum of the stationary terms containing Xth, Xcl and the varying terms containing ξ, ς. Only the latter are relevant for changes. This yields[image: $$ \dot{\xi}=-{k}_{\mathrm{th}}\xi +{aX}_{\mathrm{cl}}\xi +{aX}_{\mathrm{th}}\varsigma +\left( a\xi \varsigma \right) $$]

 (8.14)


[image: $$ \dot{\varsigma}=-{k}_{\mathrm{cl}}\varsigma +\left(b{\xi}^2\right)+2 b\xi {X}_{\mathrm{th}} $$]

 (8.15)



Under the assumption that ξ, ς are small, we may also disregard the nonlinear terms printed in brackets in (8.14) and (8.15). We finally obtain a system of linear homogeneous equations, and we may explore the solutions of this system. To solve the linearized equations, we make use of a connection between complex numbers and trigonometric functions (i.e., functions that describe oscillatory behavior). This step is reasonable because our goal is to explore possible oscillatory behavior in the therapist-client system. For mathematical details on the solution of this equation system, see Info-Box 8.2.
Info-Box 8.2: Solution of the Linear Equation System (8.14) and (8.15)
We set[image: $$ \xi ={\xi}_0{e}^{\left(\Lambda -k\right)t},\varsigma ={\varsigma}_0{e}^{\left(\Lambda -k\right)t} $$]

 (8.16)


where Λ is a complex number Λ = Λr + iΛi. This provides us with the opportunity to make use of a well-known connection between complex numbers and trigonometric functions: eiα =  cos α + i sin α!
To illustrate the further steps, we discuss as an example that the relaxation times of therapist and client are identical (which is counter to the assumptions of the slaving principle):[image: $$ {k}_{\mathrm{cl}}={k}_{\mathrm{th}}=k $$]

 (8.17)



We obtain after dividing Eqs. (8.14) and (8.15) by eΛt:[image: $$ \Lambda {\xi}_0={aX}_{\mathrm{cl}}{\xi}_0+{aX}_{\mathrm{th}}{\varsigma}_0 $$]

 (8.18)


[image: $$ \Lambda {\varsigma}_0=2b{\xi}_0{X}_{\mathrm{th}} $$]

 (8.19)



In algebra, the coefficients determine which solutions exist for a linear equation system; there may be no solution at all. According to the theorems of algebra, in order to possess solutions, the determinant of the system must be zero; thus in case of (8.18) and (8.19),[image: $$ \left|\begin{array}{cc}\Lambda -{aX}_{\mathrm{cl}}&amp; -{aX}_{\mathrm{th}}\\ {}-2{bX}_{\mathrm{th}}&amp; \Lambda \end{array}\right|=0 $$]

 (8.20)



Then to satisfy (8.20):[image: $$ {\displaystyle \begin{array}{l}\left(\Lambda -{aX}_{\mathrm{cl}}\right)\Lambda -2{abX}_{\mathrm{th}}^2=0,\kern0.5em \mathrm{i}.\mathrm{e}.:\\ {}{\Lambda}^2+{aX}_{\mathrm{cl}}\Lambda -2 ab=0\end{array}} $$]

 (8.21)



The solution is[image: $$ \Lambda =\frac{1}{2}{aX}_{\mathrm{cl}}\pm {\left(\frac{1}{4}{a}^2{X}_{\mathrm{cl}}^2+2{abX}_{\mathrm{th}}^2\right)}^{\frac{1}{2}} $$]

 (8.22)


[image: $$ \mathrm{If}\;\frac{1}{4}{a}^2{X}_{\mathrm{cl}}^2+2{abX}_{\mathrm{th}}^2&lt;0 $$]

 (8.23)


then Λ is a complex number that we write in the form[image: $$ \Lambda =\gamma + i\omega $$]



where the frequency ω is given by[image: $$ \omega ={\left(-\left(\frac{1}{4}{a}^2{X}_{\mathrm{cl}}^2+2{abX}_{\mathrm{th}}^2\right)\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}. $$]




Consequently, the exponential functions in (8.16) can be written as eiωt ⋅ e(γ − k)t. Because eiωt can be expressed by cos (ωt) and sin (ωt) (see above!), the solutions ξ, ς (8.16) become periodic functions of time representing oscillations.

As the result of the argumentation in Info-Box 8.2, we find that the minimal model of client-therapist interaction can show oscillations expressed by the periodic functions cos (ω t) and sin (ωt). Because of (8.16), which depends on the relaxation behavior (through k), these oscillations are damped (since the exponential function e(Λ − k)t in (8.16) contains e−kt, which approximates zero with increasing time t).
If aXcl ≈ 0 and we start counting time t such that for t = 0 the client’s variable is zero, ξ(0) = 0, then the solution to (8.14) and (8.15) reads[image: $$ \xi (t)=A\cos\ \left(\omega t\right){e}^{- kt} $$]

 (8.24)


[image: $$ \zeta (t)=B\sin\ \left(\omega t\right){e}^{- kt} $$]

 (8.25)



The amplitude A is fixed by the requirement that at t = 0, A equals the therapist’s variable, A = ξ(0) = Xth, i.e., the steady-state solution. The amplitude B must be chosen such that both Eqs. (8.24) and (8.25) are satisfied. By inserting ξ and ζ in the linearized Eqs. (8.14) and (8.15) with aXcl = 0, we readily obtain
[image: $$ B=-\left(1/a\right){\left(2| ab|\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.} $$], where |…| means: take the positive value.
Our solution ξ(t), ζ(t) shows that both variables oscillate at the same frequency ω. Yet the curves of cos (ωt) and sin (ωt) are shifted against each other. Figure 8.2 shows the curves for ξ(t), ζ(t) under the assumption that A > 0, B > 0 (which requires a < 0), i.e., the therapist’s behavior is impeded by the client. For the purpose of illustration, we put A = B = 1.[image: ../images/470128_1_En_8_Chapter/470128_1_En_8_Fig2_HTML.png]
Fig. 8.2Oscillations of therapist’s and client’s state variables as a solution of the minimal model. ϑ, phase shift; ωt, period of the oscillation


The size ϑ of this shift in Fig. 8.2 is called phase shift. In the present example, we may use the formula [image: $$ \sin\ \left(\omega t\right)=\cos\ \left(\omega t-\frac{\pi }{2}\right) $$] or, using ϑ, sin (ωt) =  cos (ωt − ϑ), where [image: $$ \vartheta =\frac{\pi }{2} $$].
Thus, the phase shift is positive. This means that the client’s ζ reaches its maximum at a later time than the therapist’s ξ(t). The therapist is “leading,” and the client is lagging behind and following the therapist. Leading and following are common empirical findings in the literature on interpersonal synchrony (e.g., Karvonen, Kykyri, Kaartinen, Penttonen, & Seikkula, 2016; Kupper, Ramseyer, Hoffmann, & Tschacher, 2015). Such empirical studies will be addressed more closely in Sect. 8.3.
So far, we have derived the phase shift ϑ under the assumptions aXcl ≈ 0, and a < 0. The treatment of the cases aXcl ≠ 0, and a > 0 or a < 0 is somewhat involved. To summarize the result of an elaboration, the phase shift ϑ is determined by the equation[image: $$ \tan \kern0.37em \vartheta =\frac{\omega }{\gamma } $$]

 (8.26)



When γ < 0 and we let γ → 0, the right-hand side of (8.26) goes to minus infinity: [image: $$ \frac{\omega }{\gamma}\to -\infty $$]. The corresponding solution of the tangent function thus is [image: $$ \vartheta =\frac{\pi }{2} $$], in accordance with our previous result.
The extent of oscillatory processes depends on the parameters. The prerequisites for the presence of oscillations are ab < 0 and b sufficiently large. In other words, a must be negative, i.e., the client tends to resist the therapist’s actions. b is positive, i.e., the therapist has an impact on the client’s states. With (8.20), i.e., with kcl ≈ kth, we have left the scope of the slaving principle (Info-Box 8.1). The mathematical treatment of the Fokker-Planck equation is then becoming very tedious. Our approach (8.8) and (8.9) nevertheless contains both options, the assumption of fixed-point dynamics following the slaving principle and the assumption of oscillatory dynamics of therapist and patient, hence of limit cycle attractors, depending on kcl, kth.
As a further step in discussing oscillatory behavior, we may also address the question of synchronization between the therapist and the client from the mathematical ansatz of the minimal evolution equations (see Info-Box 8.3). To this end, we calculate how the phase shift ϑ between the therapist’s and client’s actions (cf. Fig. 8.2) depends on the parameters of the minimal model (Eqs. (8.8) and (8.9)).
Info-Box 8.3
As our vantage point, we go back to Eqs. (8.18) and (8.19).
But we now, corresponding to (8.16), formulate Λ differently:[image: $$ {\Lambda}_{\pm }=\gamma \pm i\omega, \kern0.5em \mathrm{where}\kern0.5em \gamma =\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\;{aX}_{\mathrm{cl}},\kern0.5em \omega ={\left(-\left(\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\;{a}^2{X}_{\mathrm{cl}}^2+2{abX}_{\mathrm{th}}^2\right)\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}&gt;0 $$]

 (8.27)



Using the abbreviation[image: $$ c=\frac{1}{2{bX}_{\mathrm{th}}} $$]

 (8.28)


we can rewrite (8.19):[image: $$ {\xi}_0^{\pm }={\Lambda}_{\pm }c{\zeta}_0^{\pm } $$]

 (8.29)


and because of (8.26)[image: $$ {\xi}_0^{\pm }=\left(\gamma \pm i\omega \right)c{\zeta}_0^{\pm } $$]

 (8.30)



Because of (8.16) and (8.17), the general solution of (8.18) is[image: $$ \xi =\left({\xi}_0^{+}\;{e}^{i\omega t}+{\xi}_0^{-}\;{e}^{- i\omega t}\right){e}^{- Kt} $$]

 (8.31)


with the abbreviation[image: $$ K=k-\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\;{aX}_{\mathrm{cl}} $$]

 (8.32)



Because of (8.30) we rewrite (8.31) as[image: $$ \xi =\left(\left(\gamma + i\omega \right)c{\zeta}_0^{+}{e}^{i\omega t}+\left(\gamma - i\omega \right)c{\zeta}_0^{-}{e}^{- i\omega t}\right){e}^{- Kt} $$]

 (8.33)



The general solution to (8.15) is[image: $$ \zeta =\left({\zeta}_0^{+}{e}^{i\omega t}+{\zeta}_0^{-}{e}^{i\omega t}\right){e}^{- Kt} $$]

 (8.34)



We are looking for real solutions, and for (8.33) and (8.34) to be real, the following must be given:[image: $$ {\zeta}_0^{+}={\left({\zeta}_0^{-}\right)}^{\ast }, $$]

 (8.35)


where [image: $$ {\left({\zeta}_0^{-}\right)}^{\ast } $$] is the complex conjugate of [image: $$ {\zeta}_0^{+} $$]. We now express ζ+ by[image: $$ {\zeta}^{+}={\overline{\zeta}}_0{e}^{- i\vartheta} $$]

 (8.36)


where [image: $$ {\overline{\zeta}}_0 $$] is a real positive amplitude and ϑ denotes a phase. Thus (8.34) becomes[image: $$ \zeta ={\overline{\zeta}}_0\left({e}^{i\omega t- i\vartheta}+{e}^{- i\omega t+ i\vartheta}\right){e}^{- Kt} $$]

 (8.37)



For the sake of simplicity, we abbreviate ωt − ϑ = Δ. Thus, written with real expressions, (8.37) becomes[image: $$ \zeta =2{\overline{\zeta}}_0\cos\ \left(\Delta \right){e}^{- Kt} $$]

 (8.38)



In precisely the same way, we may cast (8.33) into the form[image: $$ \xi =2c{\overline{\zeta}}_0\left(\gamma \cos\ \left(\Delta \right)-\omega \sin\ \left(\Delta \right)\right){e}^{- Kt} $$]

 (8.39)



To introduce the phase shift ϑ as defined in and after Fig. 8.2, we write (8.39) as[image: $$ \xi =2c{\overline{\zeta}}_0D\cos\ \left(\Delta +\vartheta \right){e}^{- Kt} $$]

 (8.40)



By applying the trigonometric law cos (Δ + ϑ) =  cos (Δ) cos ϑ −  sin (Δ) sin ϑ to (8.40), and comparing the result with (8.39), we obtain an equation for D and ϑ:[image: $$ D\cos\ \vartheta =\gamma, \kern0.5em D\sin\ \vartheta =\omega $$]

 (8.41)



Because of sin2ϑ + cos2ϑ = 1, we must require[image: $$ {D}^2={\omega}^2+{\gamma}^2 $$]

 (8.42)


where D > 0 because of the definition of the phase shift. Using (8.42) we form by division [image: $$ \frac{D\sin\ \vartheta }{D\cos\ \vartheta }=\tan\ \vartheta $$] so that again due to (8.41),[image: $$ \tan\ \vartheta =\frac{\omega }{\gamma } $$]

 (8.43)



Finally, we use ωt − ϑ = Δ in (8.38) and (8.40) so that[image: $$ \zeta =2{\overline{\zeta}}_0\cos\ \left(\omega t-\vartheta \right){e}^{- Kt} $$]

 (8.44)


[image: $$ \xi =2c{\overline{\xi}}_0D\cos\ \left(\omega t\right){e}^{- Kt} $$]

 (8.45)




The central result of Info-Box 8.3 is a formula for the phase shift, supporting what we already claimed above in (8.26). Thus, the oscillatory properties of the therapist-client system can in principle be linked with the parameters of the minimal model k, a, and b.
The discussion in this section has shown that the minimal model of psychotherapy, in the shape of two-dimensional evolution equations, allows for both oscillations and synchronized phase-shifted coupling of therapist and client behavior. This theoretical model is therefore consistent with empirical findings of interactional synchrony, where following and leading synchronies are commonly found.
8.3 Empirical Studies on Synchrony and Social Coupling
In our approaches to model the dyadic system of therapist and client in psychotherapy, we acted on two assumptions in order to be able to formulate a minimal model of relationship. First, we were assuming that therapists and clients display stable behavior that can be characterized by their respective relaxation times, τcl = 1/kcl and τth = 1/kth. In general, the smaller the relaxation time, the “stronger” or “deeper” is the attractor that governs stability behavior of that person.
Second, the existence of coupling is an obvious prerequisite of any social relationship, and we therefore introduced coupling constants a, b to refer to the impact each person may have on the other. To be effective, the therapist must in principle be or become coupled to the client. The couplings of processes (characterized by the coupling constants), which each obey some asymptotic dynamics (characterized by the relaxation times), are the two assumptions that our model of the therapeutic alliance rests upon. Therefore, in empirical research on therapist and client processes, we should focus on these two aspects:	The empirical evidence of asymptotically stable processes

	The empirical evidence of coupling




To date, the psychotherapy literature has generated abundant research on the therapeutic relationship or alliance, which has shown that the quality of the alliance is a major predictor of therapy success (Orlinsky, Grawe, & Parks, 1994). However, this research in its overwhelming majority has been merely cross-sectional. Psychotherapy research is for the most part still in a pre-dynamical stage, and even so-called process research in psychotherapy is seldom based on real process data, i.e., time series. We have criticized this state of affairs repeatedly (Salvatore & Tschacher, 2012; Tschacher, 1997; Tschacher & Ramseyer, 2009). Only very recently, things have started to change.
Concerning the aspect of coupling, with the advent of the research agenda of dyadic nonverbal synchrony, a rapidly growing interest in the dynamics of therapist-client relations has come to the fore (Koole & Tschacher, 2016). Synchrony research explores social coupling via the entrainment of two or more individuals, which can be computed based on the individuals’ behavior over time. The synchronization phenomenon is sometimes also called resonance, mimicry, attunement, contagion, mirroring, etc. One of the novelties of this line of research in psychotherapy is that behavior is monitored with high frequency, so that the data permit to observe the “here-and-now” of the therapeutic coupling. Previously, such high-resolution data were only monitored in phenomenological studies and video analyses, for instance, in supervision settings where single therapy cases are explored qualitatively. The novel development is that microscopic synchronization processes are now being studied using quantitative methods, so that quantification can complement the qualitative research of previous years. The majority of studies have used correlational statistics to detect synchrony. In short, the cross-correlation function (CCF
              
            ) of the client’s and the therapist’s time series is computed, and the mean cross-correlations are regarded as an indicator of the degree of therapist-client synchrony (a precise account of the methodology of synchrony is provided in Sect. 9.​4).
The datasets of current synchrony research address different sources of nonverbal behavior. At present, most time series of this research approach represent body movement data, which can be conveniently generated by actigraphic sensors or other motion capture systems. Movement time series can alternatively be derived very economically using video analysis (through motion energy analysis, MEA, Grammer, Honda, Schmitt, & Jütte, 1999). An example of MEA measures was given in Fig. 1.​3. Some work has also been done studying conversations; then the assessment of synchrony can be based on prosodic variables, such as the pitch of interlocutors’ voices (Reich, Berman, Dale, & Levitt, 2014). A growing number of studies are focusing on physiological data, especially the electrodermal activity (skin conductance response) of participants in an interaction (Coutinho et al., 2018; Karvonen et al., 2016). Some “hyperscanning” studies have begun to extend the range of recorded time series to central nervous physiology, i.e., to variables of brain activity. The acquisition of cortical activation using near-infrared spectroscopy (NIRS
              
            ) may offer a viable method that monitors central nervous signals, which nevertheless can be applied even in more naturalistic settings (Koole & Tschacher, 2016; Zhang, Meng, Hou, Pan, & Hu, 2018). There is also some research using hyperscanning on the basis of magnetic resonance tomography (MRT
              
            ), but this setup does not allow to study natural social interaction as participants are severely restricted by a motionless supine position inside the noisy environment of an MRT scanner.
The current state of research has yielded clear proof of existence for nonverbal synchrony. It has been repeatedly shown that synchronies of motor behavior in natural psychotherapy settings have moderate to strong effect sizes, which may be assessed by testing against pseudo-synchrony generated by Monte Carlo bootstrapping, so-called surrogate tests (Paulick et al., 2018; Ramseyer & Tschacher, 2011, 2016). This is also true for synchrony of physiological time series in couple therapy (Karvonen et al., 2016) and in interactions among spouses (Coutinho et al., 2018). Altogether, there are by now reliable indications that coupling in the sense of our minimal model of therapeutic relationship is a quite common phenomenon. Importantly, this synchrony can be measured in behavioral variables that are not under conscious control of the participants—electrodermal activity is a signal of the involuntary sympathetic activation of the autonomous nervous system. In the case of nonverbal behavior, motor activity was usually monitored in naive participants—the participants were commonly not aware of the goals of analysis. In other words, nonverbal synchrony is a spontaneous phenomenon, not a willful act of imitating or mimicking one’s interaction partner. The spontaneous emergence of synchrony appears to be a phenomenon analogous to self-organized processes of pattern formation as described by synergetics (cf. Info-Box 5.1).
Concerning the aspect of the stability component of the minimal model, we must address the relaxation times. These have however not been a topic of psychological research or psychotherapy research. Nevertheless, some signatures of attracting behavior can be observed in available time series. Time series have been analyzed for autoregressive properties using the autocorrelation function and, in the context of dyadic interaction, using the cross-correlation function (CCF
              
            ), so that we can make use of the connection between autoregression and point attractors. The presence of autoregression dynamics with significant autocorrelation coefficients at lags of a few seconds points to the presence of fixed-point attractors with relaxation rates at a similar range of several seconds. For example, in an actigraphic study of motor activity of n = 100 schizophrenia patients (Walther, Ramseyer, Horn, Strik, & Tschacher, 2014), significant autocorrelations had a mean duration of approximately 7.8 s, and this duration varied with the symptoms of patients. In patients with affective disorders (unpublished data), this duration extended over 10.8 s. In cross-correlations of dyadic behavior, we found an average of 6.0 s in healthy interactants (Tschacher et al., 2018) and the same duration in a psychotherapy course monitored over an extended period of time (Ramseyer & Tschacher, 2016) (Fig. 8.3).[image: ../images/470128_1_En_8_Chapter/470128_1_En_8_Fig3_HTML.png]
Fig. 8.3Cross-correlation function (CCF
                      
                    ) of client and therapist movement behavior in psychotherapy (adapted from Ramseyer & Tschacher, 2016). Red graph, the average CCF over 27 therapy sessions of a client-therapist dyad. Blue (light blue) graphs, the single (average) CCFs of surrogate data. For a duration of about 6 s, the real CCFs exceed the surrogate CCFs


In sum, synchrony research yields empirical reasons to assume that dyadic behavior is characterized both by coupling and by asymptotic stability. Stability points to the presence of attractors that can be described by relaxation times and the position of their fixed points.
It is interesting to explore the psychological meaning of synchrony—is it associated with properties of interest such as common factors of therapeutic interventions and with therapy outcome? Research so far has supported that nonverbal synchrony may have such properties, as it was found linked with the quality of the therapeutic alliance (Ramseyer & Tschacher, 2011, 2016), with the client’s self-efficacy and with positive therapy outcome. In healthy conversing dyads, higher synchrony entailed increased positive affect and decreased negative affect (Tschacher, Rees, & Ramseyer, 2014). A majority of studies has thus confirmed the generally prosocial impact of nonverbal synchrony, a finding that supports our assumptions expressed in Sect. 8.2.
The mathematical models in Sects. 8.1 and 8.2 have introduced the coupling constants a, b. In Sect. 8.3 we reported that therapist-client coupling, or synchrony, can be computed using two empirical time series, where the coupling is operationalized by the cross-correlation of the time series. Cross-correlations are computed using a time lag L between the two time series. The time lag L of cross-correlated time series is obviously linked to the phase shift ϑ of two oscillatory state variables, as shown in Fig. 8.2. But how?—can we connect the oscillatory approach to the cross-correlational approach, and can we estimate the coupling constants using the cross-correlations we find in empirical data?
To explore this open question, we will proceed as follows:
We will connect the central measure of the minimal model, the phase shift as elaborated in Sect. 8.2, with the coupling constants of the minimal model. This yields an equation that contains δ and the coupling constants. The mathematical treatment of this step is in Info-Box 8.4. According to Info-Box 8.4, the relation between the phase shift δ and the coupling constants a, b is—in a very good approximation (cf. 8.46) – this:[image: $$ \tan\ \vartheta =-{2}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}{\left(\raisebox{1ex}{$b$}\!\left/ \!\raisebox{-1ex}{$\left|a\right|$}\right.\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\frac{g_{\mathrm{th}}}{g_{\mathrm{cl}}+{bg}_{\mathrm{th}}^2/{k}_{\mathrm{cl}}} $$]

 (8.46)



Besides a and b, three more constants enter this relation: the personality constants of therapist and client gth, gcl and the client’s inverse relaxation time kcl. The relation (8.46) has been derived under the assumption of negative and small a, i.e. ∣a∣≪b. Equation (8.46) however provides us with only one equation for the two unknowns a, b. A second equation is needed, which is provided by (8.57) that relates ∣a∣b to ω. Thus to calculate a, b, we need the empirically measured quantities δ and ω. This information can be obtained from the properly normalized cross-correlation function that we denote by [image: $$ \widehat{C}(L) $$]. This is treated in Info-Box 8.5.
When these steps have been accomplished, one can turn to empirical work with measured time series in Chap. 9, where we explore the attractors of one-dimensional time series. Based on the empirical cross-correlations of two-dimensional time series, we also explore the attractors arising from the coupling between therapist and client.
Info-Box 8.4: Relationship Between Phase Shift and Coupling Constants
We will start with the phase shift ϑ that was established in Eq. (8.26) as [image: $$ \tan\ \vartheta =\frac{\omega }{\gamma } $$]. ω is the frequency by which the two state variables oscillate, and γ is a damping constant, as can be concluded from an inspection of Info-Box 8.2, Eqs. (8.16) and (8.22). Conferring to Eq. (8.22), we put[image: $$ \omega ={\left(-\left(\frac{1}{4}{a}^2{X}_{\mathrm{cl}}^2+2{abX}_{\mathrm{th}}^2\right)\right)}^{\frac{1}{2}} $$]

 (8.47)


[image: $$ \gamma =\frac{1}{2}{aX}_{\mathrm{cl}} $$]

 (8.48)



In these equations, Xcl, Xth represent the stationary solutions of the client’s and therapist’s state variables xcl, xth in analogy to Eqs. (8.3) and (8.4c):[image: $$ {X}_{\mathrm{th}}=\frac{g_{\mathrm{th}}{k}_{\mathrm{th}}}{k_{\mathrm{th}}-{aX}_{\mathrm{cl}}} $$]

 (8.49)


[image: $$ {X}_{\mathrm{cl}}={g}_{\mathrm{cl}}+\frac{bX_{\mathrm{th}}^2}{k_{\mathrm{cl}}} $$]

 (8.50)



Stability of the solution requires that the damping is negative, γ < 0, which means because of Xcl > 0, that[image: $$ a&lt;0 $$]

 (8.51)



The frequency ω (see 8.47) must be real, which means[image: $$ -\left(\frac{1}{4}{a}^2{X}_{\mathrm{cl}}^2+2{abX}_{\mathrm{th}}^2\right)&gt;0 $$]

 (8.52)



This requires that ab < 0, and therefore because of (8.51)[image: $$ b&gt;0 $$]

 (8.53)


as well as[image: $$ \frac{1}{4}{a}^2{X}_{\mathrm{cl}}^2&lt;\left|a\right|{bX}_{\mathrm{th}}^2 $$]

 (8.54)



Upon closer examination, we see that this is true for |a| ≪ b. Thus from (8.47) follows that[image: $$ \omega \approx {\left(2\left|a\right|b\right)}^{\frac{1}{2}}{X}_{\mathrm{th}} $$]

 (8.55)



As in our model the effect of the client on the therapist is small (a is small), we therefore may substitute (8.49) simply by[image: $$ {X}_{\mathrm{th}}={g}_{\mathrm{th}} $$]

 (8.56)


with gth as the therapist’s long-term mean of the state variable X, in other words the therapist’s trait or “personality.” With this, (8.55) becomes[image: $$ \omega \approx {\left(2\left|a\right|b\right)}^{\frac{1}{2}}{g}_{\mathrm{th}} $$]

 (8.57)


and (8.50) becomes[image: $$ {X}_{\mathrm{cl}}={g}_{\mathrm{cl}}+\frac{bg_{\mathrm{th}}^2}{k_{\mathrm{cl}}}. $$]

 (8.58)



We can now insert γ (8.48) with (8.58) and ω (8.57) into Eq. (8.26):
[image: $$ \tan\ \vartheta =\frac{{\left(2\left|a\right|b\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}{g}_{\mathrm{th}}}{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.a\left({g}_{\mathrm{cl}}+\raisebox{1ex}{${bg^2}_{\mathrm{th}}$}\!\left/ \!\raisebox{-1ex}{${k}_{\mathrm{cl}}$}\right.\right)} $$], or after transformation, Eq. (8.46).
Let us discuss this result (8.46). If we find that the therapist has a notable effect on the client, the term [image: $$ \raisebox{1ex}{${bg}_{\mathrm{th}}^2$}\!\left/ \!\raisebox{-1ex}{${k}_{\mathrm{cl}}$}\right. $$] is exactly what the therapeutic intervention has added to the dysfunctional mean client state gcl. This means the therapeutic impact is high when the therapist’s coupling constant, the therapist’s trait, and the client’s relaxation time (since τcl = 1/kcl) are high.

Info-Box 8.5: Relationship Between Phase Shift and Cross-Correlations
Let us turn to the question how we may derive the phase shift ϑ and the frequency ω from the cross-correlations we find empirically. We stated in Sect. 8.2 with regard to the “minimal model” that ϑ is proportional to the time lag [image: $$ L=\raisebox{1ex}{$\vartheta $}\!\left/ \!\raisebox{-1ex}{$\omega $}\right. $$] by which the client is lagging behind the therapist, i.e., that the therapist is leading in the interaction. In the following, 〈…〉 denotes the first moment of a sample of time series values, i.e., its temporal mean. We write the cross-correlation function (time lag L) of the client’s and the therapist’s time series as[image: $$ C(L)=\left\langle {X}_{\mathrm{th}}(t){X}_{\mathrm{cl}}\left(t+L\right)\right\rangle $$]

 (8.59)



With the help of[image: $$ {X}_{\mathrm{th}}(t)=\left\langle {X}_{\mathrm{th}}(t)\right\rangle +\xi (t),\left\langle \xi \right\rangle =0 $$]

 (8.60)


[image: $$ {X}_{\mathrm{cl}}(t)=\left\langle {X}_{\mathrm{cl}}(t)\right\rangle +\zeta (t),\left\langle \zeta \right\rangle =0, $$]

 (8.61)


we can rewrite the cross-correlation as[image: $$ C(L)=\underset{\mathrm{const}.}{\underbrace{\left\langle {X}_{\mathrm{th}}\right\rangle \left\langle {X}_{\mathrm{cl}}\right\rangle }}+\underset{\tilde{C}(L)}{\underbrace{\left\langle \xi (t)\zeta \left(t+L\right)\right\rangle }} $$]

 (8.62)


[image: $$ \mathrm{where}\;{\left\langle \tilde{C}(L)\right\rangle}_L=0! $$]

 (8.63)



Therefore we can determine [image: $$ \tilde{C}(L) $$] using Fig. 8.4. To do this, we subtract the mean of all cross-correlations 〈C(L)〉from the value of the ordinate, [image: $$ \tilde{C}(L) $$].[image: ../images/470128_1_En_8_Chapter/470128_1_En_8_Fig4_HTML.png]
Fig. 8.4Cross-correlations [image: $$ \tilde{C}(L) $$] in relation to lags, L


Note that ξ(t) and ζ(t) are empirically measured (or measurable) quantities giving rise to the empirically determined cross-correlation [image: $$ \tilde{C}(L) $$]. To see how we can determine the phase shift ϑ and the frequency ω, we resort to our model that we have treated in detail in Info-Box 8.3:[image: $$ \xi (t)=2c{\overline{\zeta}}_0D\cos\ \left(\omega t\right){e}^{- Kt} $$]

 (8.64)


[image: $$ \zeta (t)=2{\overline{\zeta}}_0\cos\ \left(\omega t-\vartheta \right){e}^{- Kt} $$]

 (8.65)



We insert (8.64) and (8.65) with t replaced by t+L in [image: $$ \tilde{C}(L) $$] (cf. (8.62)) and obtain for small enough damping[image: $$ \tilde{C}(L)=\mathrm{const}.\left\langle \cos, \left(\omega t\right),\cos, \left(\omega \left(t+L\right)-\vartheta \right)\right\rangle $$]

 (8.66)



Because of cos (ω(t + L) − ϑ), [image: $$ \tilde{C}(L) $$] is a periodic function of L with period 2π/ω. To evaluate (8.66) we have to evaluate the average 〈…〉 in (8.66) by the integral (with T = 2π/ω)[image: $$ 1/T\underset{0}{\overset{T}{\int }}\left(\cos \left(\omega t\right)\cos \left(\omega \left(t+L\right)-\vartheta \right)\right) dt, $$]



whose evaluation yields[image: $$ \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\cos\ \left(\omega L-\vartheta \right) $$]

 (8.67)



Thus the theoretically determined cross-correlation [image: $$ {\tilde{C}}_{\mathrm{theory}}(L) $$] is given by[image: $$ {\tilde{C}}_{\mathrm{theory}}(L)=\mathrm{const}.\cos\ \left(\omega L-\vartheta \right) $$]

 (8.68)



Now we are in the position to determine the parameters ϑ and ω, by a best fit between the theoretical cross-correlation (8.68) and the empirical cross-correlation [image: $$ \tilde{C}(L) $$] (8.62). We choose (8.68) in a way that its maximum coincides with the empirically found Lmax of Fig. 8.4.

In conclusion, we may state that the phase shift ϑ and the frequency ω can be determined by a best fit between cos (ω(t + L) − ϑ) and the empirically derived cross-correlation [image: $$ \tilde{C}(L) $$]. The coupling constants a, b can be calculated from (8.57) and (8.46).
8.4 Formulation of the Two-Dimensional Fokker-Planck Equation
We will now complete the modeling of the two-dimensional therapist-client relationship by formulating the respective Fokker-Planck equation. This is necessary because in order to deal with the impact of chance events (stochastic processes) on the therapeutic alliance, we have to resort to a Fokker-Planck equation that can replace the evolution equations of previous sections in this chapter. Like the evolution equations of our “minimal model,” the Fokker-Planck equation contains two variables for the respective states of the therapist and client, xth and xcl. The structure of this two-dimensional Fokker-Planck equation is quite analogous to that of the one-dimensional equation. On the left-hand side of the equation stands the temporal change of the distribution function, which now depends on xth, xcl and time t, f(xth, xcl; t), i.e.:[image: $$ \frac{df\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)}{dt} $$]

 (8.69)



Again in analogy to the one-dimensional case, the right-hand side consists of two parts, the deterministic part denoting causation (also called the drift term) and the stochastic part denoting chance (called the diffusion term).
As we are now dealing with two state variables, each of the two terms consists of two contributions. In the explicit case of the minimal model, the total deterministic drift term reads[image: $$ -\frac{\partial }{\partial {x}_{\mathrm{th}}}\left(\left\{-{k}_{\mathrm{th}}{x}_{\mathrm{th}}+{g}_{\mathrm{th}}{k}_{\mathrm{th}}+{ax}_{\mathrm{tcl}}{x}_{\mathrm{th}}\right\}f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)\right) $$]



[image: $$ -\frac{\partial }{\partial {x}_{\mathrm{cl}}}\left(\left\{-{k}_{\mathrm{cl}}{x}_{\mathrm{cl}}+{g}_{\mathrm{cl}}{k}_{\mathrm{cl}}+{bx}_{\mathrm{th}}^2\right\}f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)\right) $$]

 (8.70)



Note that in the brackets {…} the same expressions appear as in the corresponding right-hand sides of (8.1) and (8.2) of Sect. 8.1.
In generalization of the diffusion term of the one-dimensional Fokker-Planck equation, the diffusion term of the two-dimensional Fokker-Planck equation also has two parts, namely:[image: $$ {Q}_{\mathrm{th}}\frac{\partial^2}{\partial {x}_{\mathrm{th}}^2}f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)+{Q}_{\mathrm{cl}}\frac{\partial^2}{\partial {x}_{\mathrm{cl}}^2}f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right) $$]

 (8.71)



In the framework of our model, we will assume that the therapist is well “shielded” against chance events, so that we may put Qth ≈ 0. Psychologically this means that the therapist, at least in the therapy sessions, is not prone to environmental random “kicks,” endogenous affective instability, or like influences. We see resilience, stamina, and perseverance as therapists’ virtues, which is supported by findings on “therapist effects” (Pereira et al., 2017). Especially therapist mindfulness, which contains the aspect of non-reactivity (Bergomi et al., 2013), is likely associated with low values of therapist’s Q. Therefore, the complete two-dimensional model reads[image: $$ {\displaystyle \begin{array}{c}\frac{df\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)}{dt}=-\frac{\partial }{\partial {x}_{\mathrm{th}}}\left(\left\{-{k}_{\mathrm{th}}{x}_{\mathrm{th}}+{g}_{\mathrm{th}}{k}_{\mathrm{th}}+{ax}_{\mathrm{tcl}}{x}_{\mathrm{th}}\right\}f\Big({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\Big)\right)\\ {}-\frac{\partial }{\partial {x}_{cl}}\left(\left\{-{k}_{\mathrm{cl}}{x}_{\mathrm{cl}}+{g}_{\mathrm{cl}}{k}_{\mathrm{cl}}+{bx}_{\mathrm{th}}^2\right\}f\Big({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\Big)\right)\\ {}+{Q}_{\mathrm{cl}}\frac{\partial^2}{\partial {x}_{\mathrm{cl}}^2}f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)\end{array}} $$]

 (8.72)



The crucial question is now, of course, how we may solve Eq. (8.72)? Whereas in the one-dimensional case, the Fokker-Planck equation could be solved in a simple closed form at least for the steady state, in the present two-dimensional case, this is only possible under the specific conditions of the slaving principle of synergetics (see Info-Box 8.1). These are however not fulfilled for Eq. (8.72)—we sacrificed the assumptions of the slaving principle in order to obtain the oscillations that are occasionally found empirically.
The therapist acts as the zeitgeber for the synchronization with the client. This assumption can be put under empirical scrutiny, for example, by exploring asymmetries in the observed synchronization behavior of therapeutic dyads, where therapist as zeitgeber amounts to so-called therapist leading. Ramseyer and Tschacher (2011) found that therapist leading was in fact more pronounced at least in initial stages of psychotherapy.
The slaving principle suggests a specific ansatz for the total distribution function f(xth, xcl; t) as a product of two factors that refer to the therapist, fth, and the client, fcl. Thus we put[image: $$ f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)={f}_{\mathrm{th}}{f}_{\mathrm{cl}} $$]

 (8.73)



The crucial question is how to determine these factors. According to the slaving principle, the behavior of the fast variable, in the present case xcl, is “enslaved” by the slow variable, i.e., xcl is entrained by xth. This means that the distribution function fcl does not only depend on xcl but also on a “prescribed” interventional variable xth. Therefore we may write fcl in a special form as a conditional probability:[image: $$ {f}_{\mathrm{cl}}={f}_{\mathrm{cl}}\left({x}_{\mathrm{cl}}|{x}_{\mathrm{th}};t\right) $$]

 (8.74)



In other words, we view xcl “under condition of” xth. Additionally, we have claimed above that the therapist’s variable xth is only weakly or not at all influenced by xcl. This entails that fth depends only on xth, i.e.:[image: $$ {f}_{\mathrm{th}}={f}_{\mathrm{th}}\left({x}_{\mathrm{th}};t\right) $$]

 (8.75)



Thus our ansatz for the solution of (8.72) reads[image: $$ f\left({x}_{\mathrm{th}},{x}_{\mathrm{cl}};t\right)={f}_{\mathrm{th}}\left({x}_{\mathrm{th}};t\right){f}_{\mathrm{cl}}\left({x}_{\mathrm{cl}}|{x}_{\mathrm{th}};t\right) $$]

 (8.76)



Our further mathematical procedure is purely technical (cf. Haken’s book on synergetics (Haken, 1977)) and boring for the reader, so that we may skip it here. Yet the result is highly relevant and sheds light on the processes in the present context. It turns out that the client’s distribution function approximately obeys a one-dimensional Fokker-Planck equation, namely:[image: $$ \frac{d{f}_{\mathrm{cl}}}{dt}=-\frac{\partial }{\partial {x}_{\mathrm{cl}}}\left(\left\{-{k}_{\mathrm{cl}}{x}_{\mathrm{cl}}+{g}_{\mathrm{cl}}{k}_{\mathrm{cl}}+{bx}_{\mathrm{th}}^2\right\}f\right)+{Q}_{\mathrm{cl}}\frac{\partial^2f}{\partial {x}_{\mathrm{cl}}^2} $$]

 (8.77)


where xth can be treated as a time-independent parameter that is prescribed by the therapist. Psychologically, we assume high self-efficacy and self-management abilities on the therapist’s side, so that the therapist decides on his or her own state. Since the client adapts quickly, we need only consider the steady-state solution to (8.77), which reads[image: $$ {f}_{\mathrm{cl}}\left({x}_{\mathrm{cl}}|{x}_{\mathrm{th}}\right)=N\exp \left\{-\frac{1}{2}{Q}_{\mathrm{cl}}^{-1}{k}_{\mathrm{cl}}{\left({x}_{\mathrm{cl}}-{g}_{\mathrm{cl}}-\raisebox{1ex}{${bx}_{\mathrm{th}}^2$}\!\left/ \!\raisebox{-1ex}{${k}_{\mathrm{cl}}$}\right.\right)}^2\right\} $$]

 (8.78)


where N is a normalization factor. Eq. (8.78) is a Gaussian of width[image: $$ \frac{1}{2}{Q}_{\mathrm{cl}}^{-1}{k}_{\mathrm{cl}} $$]

 (8.79)


and a maximum at[image: $$ {x}_{\mathrm{cl}}={g}_{\mathrm{cl}}+{k}_{\mathrm{cl}}^{-1}{bx}_{\mathrm{th}}^2 $$]

 (8.80)



As outlined above in Sect. 8.1, the results (8.79) and (8.80) imply that the therapist’s interventions may shift xcl but do not influence the client’s response to chance events. As we have formulated there, the client’s stochastic behavior depends solely on the client’s filtering of environmental events. This stochastic filtering process cannot be taken over by the therapist directly—the therapist has no input into Qcl and thus on the diffusion in (8.79). Yet indirect work in the sense of stochastic interventions, which can shape therapeutic boundary regulations, is feasible (cf. Chap. 6).
How is xth to be fixed? At first sight, xth may be arbitrarily chosen by the therapist by an act of “free will.” But the answer given by our model is somewhat different. We have initially assumed that the therapist is well “shielded” against fluctuations so that we can put Qth = 0. In this case, the therapist’s xth obeys the deterministic Eq. (8.73). When xth, as a function of time, starts from a freely chosen xth(initial), it comes to a rest at xth = gth! From this follows that gth is the maximum value of xth that can be used to shift xcl according to Eq. (8.80).
This means, the therapist intervenes through his or her personality. Therapist personality is the “Archimedean function” that can effect therapeutic change in a client. However, because kth is small (i.e., the therapist’s relaxation time is long), this process may go on for a long time, and the therapist must choose his or her “influence parameter” b large enough.
With this, we have concluded the structural-mathematical modeling of the process of psychotherapy. Psychotherapy researchers will now wish to apply the ideas expressed in the structural-mathematical equations to reality, i.e., to their measurements and observations. This is the topic of Chap. 9.
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9.1 Modeling Psychotherapy Process
In previous chapters, we have raised a large number of in-principle issues concerning psychotherapy process and have offered theoretical and mathematical models. To briefly wrap up our results so far – we have proposed that in the case of a normally distributed stochastic variable x(t), we must focus on the probability distribution of this variable, P(x). Quite generally, the change of such distributions can be modeled by master equations (“influx versus outflux: what is added to a certain state x, and what is subtracted from this state?”). Master equations can describe both causal and stochastic processes. While master equations deal with discrete variables, in the limit of continuous variables master equations can be transformed into Fokker-Planck equations. The so-called drift (D) term of Fokker-Planck equations describes causal processes, whereas their diffusion term represents the stochastic part (S), which expresses the change of the variance of the probability distribution (Chap. 4). Taken together, we assumed that the change of the probability distribution of a state x can be understood as “change = causation + chance,” i.e.:[image: $$ \frac{dP\left(x;t\right)}{dt}=D+S $$]

 (9.1)



The theoretical result of Chap. 4 was thus that the change of the probability of x depends on time t and also on x itself. Changes may not be uniform in all regions of x and may also be different at different times t. And in general, Eq. (9.1) claims that all change is a mixture of deterministic and stochastic dynamics. In Chaps. 5, 6, and 7, we therefore discussed qualitatively, in psychological language, how deterministic, stochastic, mixed, and contextual interventions in psychotherapy may come to affect the states of clients (and of therapists).
In Chap. 8, we extended the mathematical discussion to the two-dimensional formulation of the Fokker-Planck equation, thereby defining a minimal model of dyadic psychotherapy. The discussion in Chap. 8 showed that the minimal model allows not only for fixed-point attractors but also for more complex, namely, periodic, attractors (“limit cycles”). Shared oscillatory coupling in the sense of phase-shifted synchrony of therapist and client can be mathematically derived from the minimal model we constructed. The two-dimensional Fokker-Planck equation can be simply solved for therapy systems provided that the core premise of the slaving principle of synergetics is fulfilled—therapists must have much longer relaxation times than their clients. Hence therapists must be more stubborn and resilient and less volatile and excitable than their clients.
An empirical-minded psychotherapy researcher, however, will have further, quantitative desires. Research reaches beyond theoretical models and their descriptive application to psychotherapy—research needs to cope with real measurements. Psychotherapy researchers are accustomed to compute regression models on the basis of sampled datasets. Regression models often have the purpose of estimating outcome measures as dependent variables (e.g., how much the severity of problems has been alleviated after therapy; see Chap. 2). The independent variables, i.e., the predictors in such regression modeling, are often process measures of psychotherapy courses, such as the various interventions described in Chap. 3. Such regression research does effectively answer crucial questions like: which attributes of psychotherapy process can predict the dependent variables in a statistically meaningful way? These models will even allow estimating the ratio of stochastic and deterministic forces in a model, a goal we have repeatedly stressed in previous chapters. Hence, what can researchers learn beyond the statistical models they are already using?
Two issues, however, are commonly left unanswered by the conventional regression statistics of psychotherapy research. The first is that conventional models largely lack the ability to use time series information. It has been argued (Salvatore & Tschacher, 2012) that while psychotherapy is undoubtedly a process unfolding in time, conventional methodology and data acquisition implicitly treat psychotherapy as if this was not the case. Common methodology analyzes therapy process by averaging snapshots of it, whose mean values can then be compared. Even most “process research” in psychotherapy pretends that the data may be processed as if they were cross-sectional. The straightforward solution, however, is that we must work with differential equations, or with their discrete analogs, difference equations, to make use of the abundant temporal information. Thus, our claim appears as trivial as it is mandatory: methodology must exploit the temporal information of psychotherapy process, and we therefore favor time series analysis over the currently prevailing regression modeling.
The second point is that the values spanned by the state variable x may not be simply characterized by one attractor, but by several. This is illustrated, for instance, by Fig. 9.1, which uses the example of a client’s depression severity over a period of 2 years (cf. Sect. 7.​2). From the attractor landscape of Fig. 9.1 follows that there may be three relative maxima of probability. In other words, x is potentially a more complicated variable than what is sufficiently described by one average value and its corresponding standard deviation.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig1_HTML.png]
Fig. 9.1Attractor landscape derived from the distribution of a client’s depression ratings x over a period of time


We therefore wish to explore in the following how we may derive the attractor landscape of a system from a time series of measurements of a state variable. Can we estimate our preferred mathematical ansatz, the Fokker-Planck equation, on the basis of empirical time series data?
When we consider this problem of deriving the Fokker-Planck equation from empirical data in a mathematically rigorous fashion, we must acknowledge that a fundamental problem is raised: the equation is formulated as a differential equation that presupposes continuous time t and a continuous state variable x. All realistic measurements in psychotherapy, however, produce discontinuous data only. Thus we cannot work with ever smaller dx and dt because only relatively few values of x and t are available at all. But then again, this situation is much like the situation in psychological research in general, where the supposed continuous Gaussian functions of statistical methodology are commonly approximated by limited samples containing few empirical values.
9.2 Estimating the Deterministic Term of the One-Dimensional Fokker-Planck Equation from Empirical Time Series: Causation
Let us therefore develop a simple scenario for how we may derive the relevant parameters of the one-dimensional Fokker-Planck equation from empirical time series. We are searching for a procedure to estimate the causation and the chance inherent in the data, hence the deterministic and the stochastic parts of the equation. The simplest form of the Fokker-Planck equation contains the expression −kx to represent deterministic forces, and the constant Q to represent stochastic tendencies. In the following we show how we may derive, instead of −kx and Q, the more general functions K(x) and Q(x), which express how k and Q vary with different values of state x.
We assume that the depicted process is stationary, i.e., its inner and external conditions shall not change. As shown in Haken (2006) “Information and Self-Organization,” K(x) and Q(x) are determined by two mean values.
We will only discuss the simple case of an “ideal” measurement, knowing this is not realistic in the field of psychotherapy: we assume that the intervals between measurements can be arbitrarily small (Δt → 0), and the value of measures can be arbitrary, with the number of measurements arbitrarily large (n → ∞). At all times[image: $$ {t}_n=\triangle tn,\kern0.7em n=1,2,3,\underset{\leftharpoondown }{\rightharpoonup } $$]



there shall exist measurements of a time series xn (Fig. 9.2).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig2_HTML.png]
Fig. 9.2Example of a time series


First, we now wish to derive the mean slope depending on the respective values of x. In the example of Fig. 9.2, we may choose the value x = x1 and then search for realizations of this same value at later times in the time series. In the depicted data, this may be x8 at time n = 8. We then determine the local slope by using the values of the successive measurements (Fig. 9.3).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig3_HTML.png]
Fig. 9.3Slopes in the time series example shown in Fig. 9.2


Given a sufficiently large number of measurements, we can now average over all slopes that belong to a specific value of [image: $$ x={x}_1={x}_8=\underset{\leftharpoondown }{\rightharpoonup } $$]. This average slope is linked to a specific value x = x1 of the time series. We then continue with a second x, in our example x = x2, looking for realizations in the time series with xn = x2 (in the example of Fig. 9.2, this would be x6), and again compute the average of the slopes, etc. We finally arrive at a function such as the one shown in Fig. 9.4, which displays on the abscissa the measured values of x and on the ordinate the respective slopes. In the not-so-ideal world of empirical measurements as in Fig. 9.2, we may define “buckets” (neighborhoods of x) instead of exact values of x and compute the slopes for all x that fall inside a bucket.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig4_HTML.png]
Fig. 9.4Curve of the relationship between x and the local slopes


In the ideal case, the sum of all linear approximations of slopes yields a continuous curve as depicted in Fig. 9.4. This curve is exactly the function K(x) that describes the deterministic part of the Fokker-Planck equation. From K(x) we can directly reconstruct the attractor landscape from the potential function V(x) of the dynamics that generated the time series in the first place; more precisely, K(x) is its (negative) derivative: [image: $$ K(x)=-\frac{dV(x)}{dx} $$].
9.3 Estimating the Stochastic Term of the One-Dimensional Fokker-Planck Equation from Empirical Time Series: Chance
We will now proceed to the approximation of the stochastic term of the one-dimensional Fokker-Planck equation, Q(x), on the basis of an empirical time series such as shown in Fig. 9.2. In addition to the “deterministic” slopes, we can also determine the squared deviations of the slopes from their means. This provides us with a measure of the variance of the slopes for all values of x. Again, for sufficiently small intervals between measurements and high numbers of measurements, this yields a continuous curve Q(x). This curve shows which specific amounts of stochasticity are to be found at which values of the state variable x. If there is little variation in Q(x), we may approximate the curve by a constant Q, which thus provides the parameter of the Fokker-Planck equation (Eq. 7.​1). If not, the Fokker-Planck equation can be substituted by the Fokker-Planck-Îto equation (Haken, 2006).
In sum, we have described an empirical procedure by which we can estimate the two terms of the one-dimensional Fokker-Planck equation on the basis of a measured time series of any state variable x. This procedure allows the computation of the deterministic function K(x) as well as a visualization of the deterministic attractor landscape underlying the system, V(x). It will additionally provide an estimate of the stochastic term of the Fokker-Planck equation. A web-based algorithm to approximate the Fokker-Planck equation from empirical time series is available (Tschacher, 2016: website www.​embodiment.​ch). Later in this chapter, in Sect. 9.5, we will provide examples of naturalistic time series, for whom we estimated these functions V(x) and Q(x).
9.4 Estimating the Coupling of the Two-Dimensional Fokker-Planck Equation from Empirical Time Series: Synchrony
As we already reported in Sect. 8.​3, in recent years an empirical field has evolved in psychotherapy that explores the manifestation of synchronization, or in short synchrony, in the psychotherapy setting. As we have shown in Sect. 8.​2, synchrony results from the coupling terms of the minimal model we introduced in Sect. 8.​1, axclxth and [image: $$ {bx}_{\mathrm{th}}^2 $$]. In order to be able to simplify the equations of the minimal model proposed there, we assumed to choose the coupling constants a small and b > 0.
In this chapter, we report on methodological avenues to estimate the coupling terms of therapeutic interactions from empirical time series. The goal of this research was generally twofold. First, as a “proof of existence,” it was necessary to show that coupling existed at all, i.e., to show that the assumption a, b > 0 could be supported against control conditions. Second, several studies explored the functionality of synchrony with respect to outcome. A review of this research is given by Koole and Tschacher (2016). We will not go into the second point here, but focus on the methods—how can we explore the assumption of coupling between therapist and client based on empirical measurements? “Proof of existence” of therapeutic synchrony means that we wish to support or refute the claim that therapist and client behavior is synchronized.
Algorithms that estimate synchrony address the coupling between xcl and xth. In contemporary psychotherapy research, these state variables commonly consist of measurements, which were sampled at high frequency (exceeding 1 Hz) and which cover time spans of sufficient duration, usually spanning at least 5 min; time spans can go up to the length of whole therapy sessions, hence about 50 min. In much recently published research, the type of data covered by the state variables was simultaneously occurring movement behavior, which can be conveniently sampled by video analysis, actigraphy, or motion tracking of therapists’ and clients’ motor behavior. The resulting synchrony is commonly termed nonverbal synchrony or movement synchrony.
Further appropriate state variables are physiological signals simultaneously monitored from therapist and client in a session (Tschacher and Meier, 2019). Most frequently, electrodermal activity was recorded by electrodes placed on the fingers (Coutinho et al., 2018), and sometimes respiration activity was sampled by breathing belts attached to the chests or electro-cardiac parameters using photoplethysmography. The hyperscanning procedures based on electroencephalographic variables are rare in this research because of the vulnerability for motion artifacts.
Here we will not discuss the various psychological meanings of each of these different types of data. It may suffice to say that nonverbal movement may be seen as an expression of “body language” conveying social information, whereas physiological activity is closely connected to emotional experiencing.
Synchrony computation processes two-dimensional datasets, and most methods function within the time domain using windowed cross-correlations (WCC
              
            ) of the paired time series (Fig. 9.5).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig5_HTML.png]
Fig. 9.5The windowed cross-correlation (WCC
                      
                    ) function of two time series Xcl, Xth. The time series are segmented (segments 1 to 8 of the therapist data and 1* to 8* of the client), the cross-correlation function is computed in each segment (i.e., in 1;1*, 2;2*, etc.), aggregated per lag L in each segment, then aggregated a second time over all segments of the time series, and then depicted as an overall cross-correlation function of the two time series (right panel)


We now describe an approach for the computation of synchrony using WCC and surrogate controls (surrogate synchrony, SUSY, cf. www.​embodiment.​ch). SUSY derives the cross-correlations segment-wise—time series are cut into segments of, for example, 50 s, and the cross-correlations within each segment are computed within a certain range of lags L. A default value in many studies is that lags up to 5 s (−5 s ≤ L ≤ 5 s) are chosen, i.e., all cross-correlations within a 10-s window are considered. In the examples in Figs. 9.5, 9.6, and 9.7, we chose −4 s ≤ L ≤ 4 s. Thus, segment-size and window-size are basic parameters that have to be fixed in SUSY. Synchrony can then be defined as the aggregated sum of all these cross-correlations. This operationalization thus includes the simultaneous (lag 0) correlation as well as time-lagged correlations. The time-lagged correlations cover all other lags within the window signifying responses of therapist to client as well as responses of client to therapist. WCC represents a default procedure used in most previous research (Tschacher et al., 2014). All cross-correlations are transformed using Fisher’s Z transformation; the absolute Z values are aggregated separately in each segment of the entire time series. Finally the aggregated Z values of all segments are averaged across the entire time series to obtain a value of synchrony for the therapist-client dyad, [image: $$ {\overline{Z}}_{\mathrm{real}} $$].[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig6_HTML.png]
Fig. 9.6The windowed cross-correlation function (WCC
                      
                    ) of surrogate time series of Xcl, Xth. The surrogate cross-correlation function is computed in shuffled segments (in the example 1;2*, 2;3*, 3;6*, 4;7*, etc.). After aggregation, a surrogate cross-correlation function is generated (right panel)

[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig7_HTML.png]
Fig. 9.7The result of SUSY is the effect size ESsy that expresses the degree to which the empirical cross-correlation function (Fig. 9.5) exceeds the surrogate cross-correlation function (Fig. 9.6). ESsy corresponds to the area under the green curve minus the area under the red curve, divided by the standard deviation of the surrogates


A subsequent step in studies applying SUSY consists of surrogate tests (Moulder et al., 2018; Ramseyer & Tschacher, 2010). Surrogate time series can serve as a control condition for the aggregated Z values produced by WCC. Surrogates of a single dataset can be obtained by the random shuffling of the single segments of the time series (see Fig. 9.6): when a two-dimensional time series contains n segments, n (n − 1) permutations can be realized, each forming a time series in which therapist and client data are however falsely arranged with respect to simultaneity, but the mean as well as standard deviation and other characteristics of the time series are preserved. Thus, segment-shuffled surrogates provide a good control condition.
WCC
              
             is then run on all n (n − 1) surrogates, and the effect size ESsy of “real” synchrony [image: $$ {\overline{Z}}_{\mathrm{real}} $$] with respect to averaged “false” surrogate synchrony [image: $$ {\overline{Z}}_{\mathrm{surr}} $$] can be computed using the standard deviation (SD) of “false” surrogate synchronies, hence [image: $$ {\mathrm{ES}}_{\mathrm{sy}}=\left({\overline{Z}}_{\mathrm{real}}-{\overline{Z}}_{\mathrm{surr}}\right)/\mathrm{SD}\left({Z}_{\mathrm{surr}}\right) $$]. The effect size ESsy can be visualized as the area between the curves in Fig. 9.7. We abbreviate this two-step algorithm for the computation of synchrony using WCC and surrogate controls by the acronym SUSY.
We developed a further algorithm for the time domain, which is based on the correlations of local slopes instead of the cross-correlations, providing a concordance index (CI
              
            , cf. www.​embodiment.​ch). A simple version of the CI was previously developed and used to assess physiological synchrony by Marci and Orr (2006) and Karvonen et al. (2016). The CI computes synchrony via correlations of window-wise slopes of a two-dimensional time series that contains a series A with therapist data and a series B with client data. All slopes of A and B are determined in the following manner: define as a parameter the window-size (e.g., 2 s) and, as a further parameter, the segment-size (e.g., 10 s). Then a slope (using mean squares regression lines) is computed for A and B inside the first window of segment n, the window is shifted by 1 s, and the slopes are again computed, until all windows in segment n are considered. The slopes in segment n of time series A are correlated with those in the same segment of B. The principle of this approach is illustrated in Fig. 9.8.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig8_HTML.png]
Fig. 9.8The principle of the concordance index (CI
                      
                    ) algorithm. In segments of time series A and B, the local slopes of regression lines (black) are computed in all windows that cover the segment. The CI is based on the correlations of the slopes of A with those of B


The procedure is repeated until all segments of A and B are considered. All correlations are transformed to Fisher’s Z correlations, and the mean Z of the two-dimensional time series is computed. This procedure and the segment-wise shuffling used to create surrogate time series are performed in analogy to the method described above for SUSY, yielding [image: $$ {\overline{Z}}_{\mathrm{real}}^{\prime } $$] and [image: $$ \mathrm{E}{\mathrm{S}}_{\mathrm{sy}}^{\prime } $$].
The CI of a segment is defined by the natural logarithm of the sum of all positive correlations divided by the absolute value of the sum of all negative correlations. The CI of the complete time series is defined by the average over all segments, thus [image: $$ \overline{\mathrm{CI}} $$]. Using segment shuffling, an effect size [image: $$ \mathrm{ES}\left(\overline{\mathrm{CI}}\right) $$] is computed in the same manner as detailed above for SUSY.
Before we focus on empirical assessments in the next section, let us briefly address the limitations to these empirical applications. In all naturalistic time series, the functions K(x) and Q(x) will not be as well-behaved as can be expected from Fig. 9.4, simply because some assumptions for the time series will not be met. Especially in psychotherapy research, the time steps of measurement cannot be arbitrarily small because a minimum temporal distance between measurements must be obeyed. Also, the number of empirical measurements can, for practical reasons, not be arbitrarily large. In addition, the longer the time period of measurement, the more likely there will be parameter changes and context variation, so that the stationarity of the time series may no longer be given. Finally, in empirical psychotherapy research one is often confronted with scaling issues—data originating from questionnaire scales have discrete steps as was reported in Sect. 1.​2. Therefore, discrete and truncated time series will generate noncontinuous results so that we will have to live with non-differentiable functions and we may have to approximate the continuous curves.
9.5 Examples of Fokker-Planck Parameter Estimation in Time Series
We developed several algorithms that allow the assessment of the parameters of the Fokker-Planck models based on empirical time series. In the following, we will give a variety of examples how the coupling strength of the minimal model (Chap. 8) and the deterministic and the stochastic terms of the one-dimensional Fokker-Planck equation (Sects. 9.2 and 9.3) can be approximated.
9.5.1 Example 1: Body Motion of Two People (Two-Dimensional System)
Coupling and Synchrony
Our first example is taken from an interaction between two participants over 5 min. The participants were instructed with the humorous task of discussing the composition of a five-course menu that only consists of food and drinks both participants decidedly dislike. The data of the time series represent body movement monitored by video analysis, taken from the experimental study of Tschacher, Rees, and Ramseyer (2014). The time series are given in Fig. 9.9 (only initial third of data shown for clarity).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig9_HTML.png]
Fig. 9.9Time series of movement x of two people in an interaction task. First 1000 time points are shown only, which cover 100 s (sampling rate 10 Hz)


We have computed the synchrony of this dataset using SUSY, as introduced in the previous section. The parameter settings were segment-size = 30 s and window-size = 10 s. We find a (very large) effect size ESsy = 3.51 of the “real” synchrony value [image: $$ {\overline{Z}}_{\mathrm{real}}=0.239 $$] demonstrating that the movement behavior of the two interacting persons was clearly synchronized. Figure 9.10 shows that the synchrony is not centered at lag L = 0, which means that one participant systematically assumed a leading role in this interaction. This is in congruence with our discussion in Sect. 8.​2, where we modeled the case of phase-shifted coupling. We described the relation of synchrony with the coupling constants a, b of the minimal model in Info-Boxes 8.​4 and 8.​5. The necessary information for the assessment of a, b and for phase shift and frequency is in principle given by the cross-correlations shown in Fig. 9.10. The phase shift in the present example was 1 s.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig10_HTML.png]
Fig. 9.10Movement data: Cross-correlations (ordinate) plotted against the various lags in a window −5 s to 5 s, using the SUSY algorithm


The alternative synchrony measure, the concordance index (CI
                  
                ), which is computed on the basis of slopes, shows a more refined picture. Here we find a concordance index of [image: $$ \overline{\mathrm{CI}}=-0.386 $$], which has an effect size of [image: $$ \mathrm{ES}\left(\overline{\mathrm{CI}}\right)=-0.785 $$] against surrogates, showing a moderate to strong negative effect. When we determine the effect size of slopes using absolute values, we obtain [image: $$ \mathrm{E}{\mathrm{S}}_{\mathrm{sy}}^{\prime }=1.58 $$], a large effect size. Our interpretation of the coupling strengths of this single dataset is thus again that strong coupling is present, like we found using SUSY. The correlation of slopes in CI points to an antiphase or phase-shifted nature of the interaction between the two people, i.e., increasing movement in one participant is coupled with decreasing movement in the other.

9.5.2 Example 2: Respiration Time Series (One-Dimensional)
Deterministic Fokker-Planck Term
We will use a different time series to give an example of assessing the constituents of the Fokker-Planck equation, the deterministic term (“causation”) and the stochastic term (“chance”). The dataset is one-dimensional; it represents the respiration activity of a client in a psychotherapy session during 1 min. The sampling rate was 16 Hz, and the time series thus has 960 data points (Fig. 9.11).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig11_HTML.png]
Fig. 9.11Respiration data (ordinate: arbitrary values x of a stretch-sensitive respiration belt) covering 60 s (sampling rate 16 Hz)


We estimate the function K(x) that describes the deterministic part of the Fokker-Planck equation by computing the local slopes. To do this, the data of the state variable x were “bucketized,” i.e., instead of computing the slope for each single x value, we computed the slope for each bucket that spans a certain range of values. Bucketizing is preferable in datasets where there are many values of x that occur only once—thus no means and variances are defined for these singular instantiations of x. The shape of the curves does not qualitatively change with different bucket sizes. In Fig. 9.12, we chose a bucket size of 5. The left panel of this figure shows the function K(x), i.e., the mean slopes per bucket of x. The function was approximated by a spline, a piecewise polynomial interpolation (software JMP Pro 11, SAS Institute). This interpolation approach was used in all figures of this section.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig12_HTML.png]
Fig. 9.12Respiration data: Left, K(x) yields the mean slopes of the time series shown in Fig. 9.11. Right, potential function V(x) of the time series, which points to a stable state at x = 30


From K(x) we can directly reconstruct the attractor landscape V(x) of the dynamics that generated the time series (Fig. 9.12, right). The attractor is approximately located at x = 30.

Stochastic Fokker-Planck Term
We approximated the function Q(x) by the standard errors of the mean slopes, in each (bucket of) x. The standard error is the square root of the variance divided by the sample size at each location (bucket) of the state variable. This curve is shown in Fig. 9.13. A plateau of low levels is found around the attractor at x = 30. Stochasticity is higher outside the attractor, where we also observe higher fluctuations.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig13_HTML.png]
Fig. 9.13Respiration data: Q(x) yields the standard errors of the mean slope in each x. The normalized value is Qnorm = 7.21


We computed a normalized value Qnorm of the stochastic term as the mean standard error averaged over all x and then divided by the sampling rate. In the respiration data, this value of stochasticity is Qnorm = 7.21. The normalized value Qnorm may be interpreted as the mean rate of noise or entropy production per second of the system.

9.5.3 Example 3: Simulated Autoregressive (Markov) Process (One-Dimensional)
Deterministic Fokker-Planck Term
We provide a further example using a simulated time series that was computer-generated by an autoregressive process (a “Markov process”) with a coefficient of 0.9, Xt = 0.9Xt − 1 + at (Fig. 9.14). Here at denotes random kicks centered in zero. Autoregressive processes are known to generate point attractors.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig14_HTML.png]
Fig. 9.14200 values of autoregression data (abscissa, time step t; ordinate, arbitrary units of x)


We again computed the mean slopes of the time series and approximated the function K(x) using splines. Based on K(x) we derived the potential of the process underlying the time series. Bucket size was fixed at 15 values of x. As can be seen in Fig. 9.15, the potential of a point attractor can be clearly recognized, with the fixed point at x = 0 as expected.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig15_HTML.png]
Fig. 9.15Autoregression data: Left, mean slopes of the time series shown in Fig. 9.14. Right: Potential function, pointing to a stable state at x = 0



Stochastic Fokker-Planck Term
We again approximated the function Q(x) by the standard errors of the mean slopes (Fig. 9.16).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig16_HTML.png]
Fig. 9.16Standard errors of the mean slopes of the time series shown in Fig. 9.14. The normalized value is Qnorm = 9.16, assuming a sampling rate of 1 Hz



9.5.4 Example 4: Electrocardiograms (Two-Dimensional)
Deterministic Fokker-Planck Term
In the context of a project to explore sociophysiological coupling, we monitored physiological data from a female therapist and her female client (Tschacher & Meier, 2019; for partial evaluations, see Tschacher & Brunner, 1995; Ramseyer & Tschacher, 2016). Here we analyze data of simultaneously monitored heart activity of both participants for demonstration purposes only. This dataset consists of two electrocardiograms simultaneously recorded from electrodes fixed at the chest of each participant; the sampling rate was 80 Hz, the units x are microvolts, and 2 min at the beginning of a randomly picked therapy session are covered in the present time series. The two recorded time series are exemplified by Fig. 9.17, which shows a 10-s cutout. As can be seen, the time series have markedly differing amplitudes and frequencies—pulse rates during the period of the cutout were about 90/min in the therapist and 102/min in the client. The amplitudes (up to 250 μV in the therapist data and 150 in the client data) are not meaningful because the placement of electrodes, clothing, and other context parameters cannot be reliably standardized, especially not under the field conditions of this psychotherapy research project.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig17_HTML.png]
Fig. 9.17Electrocardiogram time series of client (red) and therapist (blue). A 10-s cutout is shown (sampling rate 80 Hz, x in units of microvolts)


We computed the mean slopes and the potential functions of both time series separately. We did not apply bucketizing to the raw data. The functions are plotted in Fig. 9.18. Both potential functions point to attractor-like minima at about x = 125.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig18_HTML.png]
Fig. 9.18Electrocardiogram data: Deterministic signatures of the time series of 2 min of simultaneous electrocardiogram. The functions K(x) are printed left, potential function V(x) printed right. Client (red graphs, upper panels), therapist (blue graphs, lower panels). The potential functions indicate clear stability of the therapist data and some instability of the client data



Stochastic Fokker-Planck Term
We approximated the functions Q(x), which show the amounts of stochasticity to be found in the two cardiac time series depending on the state variable x. We computed the local standard error of the mean slope for each x, which is the square root of the variance divided by the sample size at each location x. The results are given in Fig. 9.19. The curves show that the stochasticity is relatively low in the regions of the attractors, in the range of approximately 120 < x < 130.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig19_HTML.png]
Fig. 9.19Electrocardiogram data: The stochastic function Q(x) approximated by standard errors of the mean slope. Client (left), therapist (right). The normalized values are Qnorm = 0.41 for the client data and 1.22 for the therapist data



Coupling and Synchrony
We analyzed the (unlikely) possibility of a coupling of cardiac activity in client and therapist. Such coupling is unlikely because it appears dubious that the incidence of single heartbeats can be entrained in two interacting individuals. We again applied surrogate synchrony (SUSY) using windowed cross-correlations with surrogate controls. Parameter values were chosen at segment-size = 20 s and window-size = 10 s. The effect size ESsy =  − 0.14 and the “real” synchrony value [image: $$ {\overline{Z}}_{\mathrm{real}}=0.022 $$] suggest that the cardiac time series were not synchronized. This is also obvious when cross-correlations are plotted against surrogates in Fig. 9.20. Real and surrogate cross-correlations overlap largely.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig20_HTML.png]
Fig. 9.20Electrocardiogram data. Left: Cross-correlations (ordinate) plotted against the various lags in a window −5 s to 5 s, using the SUSY algorithm. Right: Smoothed cross-correlations for better visualization, same ordinate. Green, real data; red, surrogate data



9.5.5 Example 5: Simulated Bimodal Autoregressive (Markov) Process (One-Dimensional)
Deterministic Fokker-Planck Term
In this further simulation example, we constructed a time series generated by an autoregressive process with a coefficient of 0.5, but we divided the time series into two halves. We added a constant of 200 to the first half, whereas in the second half, this constant was subtracted and all values were increased by 50%. Therefore this time series was markedly nonstationary and should therefore produce an attractor landscape with two attractors, one centered at x = 200 and the other centered at x = −200. Figure 9.21 is the time series plot, and Fig. 9.22 shows the mean slopes and the potential function of this nonstationary time series. Figure 9.23 illustrates the stochastic signature of the time series.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig21_HTML.png]
Fig. 9.21Bimodal autoregression data: Time series

[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig22_HTML.png]
Fig. 9.22Bimodal autoregression data: Left, mean slopes of the time series shown in Fig. 9.17. Right: Potential function, indicating two stable states (point attractors at x = 200 and at x = −200)

[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig23_HTML.png]
Fig. 9.23Bimodal autoregression data: The stochastic function Q(x) approximated by the standard errors of the mean slope of the time series shown in Fig. 9.21. The normalized value is Qnorm = 18.8


Figure 9.22 shows that the two-attractor landscape of the simulated dynamics is expressed in the mean slopes of the time series. One may note that the basin of the attractor at x = −200 is larger than that of the attractor located at x = 200. Thus the methodology allows, in empirical or simulated data, the detection of potential landscapes with multiple attractors such as in Fig. 9.1. The stochastic function Q(x) has a sharp peak at x=0, which corresponds to the saddle that separates the two basins of attraction shown in the potential function in Fig. 9.22. This means that chance (i.e., instability) is highest at that state x, where the system has to “decide” which of two stable attractors to choose, in order to “break the symmetry.” In dynamical systems theory, such a state is called a separatrix, and the high stochasticity at the separatrix reflects critical fluctuations. In bistable dynamical systems, critical fluctuations generally have this symmetry-breaking function (Guckenheimer & Holmes, 2002).

9.5.6 Example 6: Respiration (Two-Dimensional)
Deterministic Fokker-Planck Term
This two-dimensional example is again taken from a project on sociophysiological coupling, where we monitored physiological data from a female therapist and her female client. The data are from the same therapy course as in example 2 above, but from a different session. The dataset represents simultaneously monitored respiration behavior over a therapy session of 50 min (sampling rate 16 Hz, the units of x are arbitrary units of the stretch-sensitive respiration belts worn by each participant). The two recorded time series are exemplified by Fig. 9.24, which shows a period of 1 min of respiration activity.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig24_HTML.png]
Fig. 9.24Respiration time series of client (red) and therapist (blue). A 1-min cutout from a 50-min session is shown


As can be seen, the time series show oscillations around a mean of approximately x = 0, and the breathing rhythm of both participants in the interaction appears not consistently synchronized in this randomly selected minute of the session.
We computed the mean slopes and the potential functions of both time series separately, not applying bucketizing. These functions are plotted in Fig. 9.25. Both potential functions show marked attractor-like minima at about x = 0. Compared to example 2 (Fig. 9.12), the shape of the potentials and of the functions K(x) is more clear-cut, which is due to the statistical power of the dataset (50 min monitoring instead of 1 min).[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig25_HTML.png]
Fig. 9.25Respiratory data: Deterministic signatures of the single time series of a 50-min session. The functions K(x) are printed left, potential functions V(x) printed right. Client (red graphs, upper panels), therapist (blue graphs, lower panels). Both potential functions point to marked stability at x = 0



Stochastic Fokker-Planck Term
We approximated the functions Q(x), which show the amounts of stochasticity to be found in the two respiratory time series. We again computed the local standard error of the mean slope for each x. The results are given in Fig. 9.26. The curves show that the stochasticity is uniform and low in the regions of the attractors, which are located at approximately x = 0.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig26_HTML.png]
Fig. 9.26Respiratory data: The stochastic function Q(x) approximated by standard errors of the mean slopes. Client (left), therapist (right). The normalized values are Qnorm = 6.30 for the client data and 5.19 for the therapist data



Coupling and Synchrony
We analyzed the respiratory coupling of client and therapist in this session. In principle, and other than cardiac activity (example 1), respiratory activity can be directly observed in the other person in a conversation; consciously synchronizing one’s breathing pattern with a client has even been proposed as a therapeutic technique (Bandler & Grinder, 1982); however to our knowledge this has not been empirically studied. Breathing is influenced by talking and may thus be spuriously synchronized by regular turn-taking rhythms in a therapeutic conversation. We applied surrogate synchrony (SUSY) using windowed cross-correlations with surrogate controls. Parameter values were chosen at segment-size = 120 s and window-size = 10 s (i.e., maximum lag 5 s). The latter window-size largely rules out turn-taking oscillations, because speaking turns usually have periods exceeding 5 s.
The effect size found by SUSY was ESsy = 0.26, which is a small effect size, and the “real” synchrony value was [image: $$ {\overline{Z}}_{\mathrm{real}}=0.10 $$]. Both values suggest that the time series were synchronized to a small degree. Figure 9.27 shows the respective cross-correlations. Real and surrogate cross-correlations show a clear difference in that there is significant synchrony at a phase shift of +3 s and at −3 s. In addition to the default procedure of SUSY, which computes synchrony on the basis of absolute cross-correlation values, we additionally computed synchrony without taking the absolute values (Fig. 9.27 right panel). The effect size without taking the absolutes was very high, ES∗sy = 7.44. We may thus assume that respiratory coupling was present in this therapy session. The time series of patient and client were significantly coupled with a phase shift of about −3 s—the client was leading by 3 s in this session.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig27_HTML.png]
Fig. 9.27Respiratory synchrony. Left: Cross-correlations (ordinate) plotted against the various lags in a window −5 s to 5 s, using the SUSY algorithm. Right: Analogous SUSY computation, but without taking the absolutes of correlation values (green, real data; red, surrogate data)



9.6 Fokker-Planck Terms of Two-Dimensional Time Series
In the empirical examples of Sect. 9.5, we have estimated the deterministic and the stochastic terms of the Fokker-Planck equation of one-dimensional time series only. Two-dimensional systems such as the interaction of two individuals (e.g., client and therapist) were treated by the SUSY (“surrogate synchrony”) approach, i.e., by assessing the windowed cross-correlation function and comparing this function to the cross-correlation function of surrogate controls. In the following, we will complete the two-dimensional analysis by additionally estimating the Fokker-Planck terms of the cross-correlation functions obtained by SUSY. In effect, we will thereby reduce the two-dimensional system of social interaction to a one-dimensional dataset, namely, the “time series” of the cross-correlations that are sequentially ordered by their lags L. This one-dimensional dataset can then be analyzed by the one-dimensional Fokker-Planck equation as in the examples of Sect. 9.5. We consider this a practical proxy for empirical assessments of two-dimensional systems using the Fokker-Planck scheme. The applications in this section will make use of the two-dimensional empirical datasets that were already introduced in the previous section.
9.6.1 Example 1*: Two Simultaneously Monitored Movement Time Series
Our first example was taken from an interaction between two participants over 5 min (cf. Sect. 9.5.1). The data are movement data monitored during an interaction between the two people lasting 5 min (Tschacher, Rees, & Ramseyer, 2014). The time series are illustrated by Fig. 9.9. We will now further analyze the obtained cross-correlations (depicted in Fig. 9.10). As stated above, the two dimensions of the interaction dynamics are thereby reduced to one dimension, and we can focus on the Fokker-Planck properties of cross-correlations between the two measured data streams.
Two cross-correlation series have resulted from the application of SUSY: Zreal and Zsurr—Fisher’s Z-transformed cross-correlations of original (“real”) and surrogate (“surr”) movement time series, ordered by increasing lags L (cf. Sect. 9.4). In the present case, the cross-correlations span a window of 10 s, which yields, due to the sampling rate of 10 Hz, series of n = 101 correlations for Zreal and Zsurr, respectively. All values are positive because SUSY transforms all correlations to positive Z values.
We estimated the functions K(x) that describe the deterministic part of the Fokker-Planck equation of Zreal and Zsurr. Here the values of the “state” variable x are given by correlation values, ranging in this example from 0.15 to 0.45. Bucket size was chosen to span 0.01. Figure 9.28 shows the potential functions of both the real cross-correlations and the surrogate cross-correlations.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig28_HTML.png]
Fig. 9.28Movement coupling: Potential functions, i.e., deterministic signatures of the cross-correlations of a 5-min interaction. Original correlations (Zreal, green graph) and surrogate correlations (Zsurr, blue graph). Zreal suggests the presence of two attractors


Figure 9.28 illustrates that there is a clear deterministic signature in the cross-correlations Zreal, likely indicating two attractors, the stronger one at a correlation value of approximately 0.21, and a smaller attractor at 0.32. This signature is clearly distinguishable from the deterministic signature of Zsurr where no signs of attracting behavior are visible in the potential function. Determinism in Zsurr is of course not to be expected, as Zsurr stems from shuffled surrogates that were generated as random controls by SUSY. One may note that the potential minimum of the “small” attractor of Zreal is not significantly different from the surrogate values. This supplements the results shown in Fig. 9.10.
The stochastic functions Q(x) of the Zreal and Zsurr series are shown in Fig. 9.29. The normalized value for Zreal was computed by the mean of all standard errors divided by the sampling rate, it is Qnorm = 21.4, and for the Zsurr: Qnorm = 1.73. Thus stochasticity in the surrogate cross-correlations is lower, by about one order of magnitude, than in the real cross-correlations—this appears counter-intuitive but is explained by the generation of surrogate controls in SUSY by averaging over many runs of segment-wise shuffled time series (cf. Sect. 9.4). The highest values of Q(x) of real cross-correlations are observed between 0.25 and 0.3, which is again the region of state space where the separatrix between the two attractor basins of Fig. 9.28 is approximately located.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig29_HTML.png]
Fig. 9.29Movement coupling: Stochastic signatures of the cross-correlations of 5 min of interaction. Ordinate: Standard errors (SE) of original correlations (SEreal, blue graph) and of surrogate correlations (SEsurr, red graph)


9.6.2 Example 4*: Two Simultaneously Monitored Electrocardiograms
The second two-dimensional dataset consisted of simultaneously monitored heart activity of a female therapist and her female client (cf. Sect. 9.5.4). The sampling rate was 80 Hz, the units of X are microvolts, and 2 min at the beginning of a therapy session are covered (see Fig. 9.17 for an illustration of the time series). The cross-correlation series were generated by SUSY, where Zreal denotes the cross-correlations of the actual cardiac time series and Zsurr the mean cross-correlations of the surrogates. Both series consist of 801 values (10 s sampled at 80 Hz plus one correlation at lag L = 0). Zreal ranges between values 0.007 and 0.045, and Zsurr between 0.01 and 0.034. These numbers already suggest that the coupling of the cardiac time series is likely nonsignificant.
We estimated the functions K(x) that describe the deterministic part of the Fokker-Planck equation of Zreal and Zsurr (Fig. 9.30). The stochastic functions are shown in Fig. 9.31.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig30_HTML.png]
Fig. 9.30Cardiac coupling: Potential functions, i.e., deterministic signatures of the cross-correlations of 2 min of interaction, with ranges of abscissa and ordinate chosen as in Fig. 9.28 to facilitate comparison with the amount of coupling of example 1*. Original correlations (Zreal, green graph) and surrogate correlations (Zsurr, red graph)

[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig31_HTML.png]
Fig. 9.31Cardiac coupling: Stochastic signatures of the cross-correlations of 2 min of interaction. Ordinate: Standard errors of original correlations (SEreal, blue graph) and of surrogate correlations (SEsurr, red graph)


The potential functions are located in an area of very small cross-correlations, indicating that no coupling was present. The shape of the functions appears paraboloid, which indicates the presence of Gaussian noise, a premise of the Fokker-Planck approach. The stochastic functions are shown in Fig. 9.31. The normalized value for Zreal, computed by the mean of all standard errors divided by the sampling rate, is Qnorm = 10.67 and Qnorm = 4.83 for the Zsurr.
9.6.3 Example 6*: Two Simultaneously Monitored Respiration Time Series
The third two-dimensional dataset consisted of simultaneously monitored respiration of client and therapist (see example 6 in Sect. 9.5.6). The potential function of the cross-correlations of the real data point to attractor-like stability at cross-correlation values of approximately 0.1, whereas the shuffled surrogate data produce no clear signature of an attractor (Fig. 9.32). The potential values of the real data are much lower than those of the surrogate data, demonstrating that deterministic dynamics in the real data are present, albeit at low levels of cross-correlations. Figure 9.33 displays the stochastic function of the respiratory cross-correlations. The function Q(x) in this figure may be interpreted to reflect the reduced stochastic fluctuations in the attractor at cross-correlation values of approximately 0.095 and a possible separatrix at approximately 0.105.[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig32_HTML.png]
Fig. 9.32Respiratory coupling: Potential functions, i.e., deterministic signatures of the cross-correlations of 50 min of therapy. Left: With ranges of abscissa, yet not ordinate, chosen as in Fig. 9.28 to facilitate comparison with the amounts of coupling in examples 1* and 4*. Right: Same data with adapted range of abscissa, for better legibility. Original correlations (Zreal, green graph) and surrogate correlations (Zsurr, red graph)

[image: ../images/470128_1_En_9_Chapter/470128_1_En_9_Fig33_HTML.png]
Fig. 9.33Respiratory coupling: Stochastic signatures of the cross-correlations of 50 min of interaction. Ordinate: Standard errors of slopes of original correlations (SEreal, green graph) and of surrogate correlations (SEsurr, red graph)


9.7 Discussion of Time Series Estimation
We have shown steps toward an empirical approach that is grounded in our formal models of psychotherapy process. In the context of psychotherapy research, it is of utmost importance to be able to connect theory with empirical measurement and thereby reduce the scientist-practitioner gap. We could demonstrate that the deterministic and stochastic signatures of empirical time series of different origin—body movement, breathing behavior, physiology, simulated Markov processes—can be meaningfully approximated from the datasets. The potential functions that we derive from calculations of mean slopes illustrated the presence of point attractors. In several cases we found that the stochasticity is reduced in the attractor basins and enhanced outside the basins. We also assume that the stochastic signature of separatrices (i.e., states between attractors) is mirrored by maxima of the stochastic signatures. The calculation of synchrony/coupling in two-dimensional time series using the cross-correlation function and surrogate controls in the SUSY approach can distinguish significantly synchronized from mutually uninfluenced processes. The hypothesized presence of coupling can be supported or rejected, and the phase shift of an interaction can be quantified, all based on naturalistic empirical time series. In the case of cardiac time series (example 4), the findings suggested rejection of the hypothesis of coupled dynamics.
We are aware that further steps must follow. The functions K(x) and Q(x) of a system may be normalized by the same factor, so that signatures of causation and chance can be meaningfully compared between time series with different properties (duration, sampling rate, amplitude). Some issues of the methodology are not yet finally clarified, such as how the stochasticity is best represented. We chose the standard error (not the standard deviation) to illustrate the stochasticity at each location of state space, because it is normalized by the number of observations at that location. This may however cause erratic findings when there are few observations in some regions of state space x and/or when highly varying numbers of observations are present per region of state space.
More empirical work also needs to be done in order to connect the SUSY approach and the concordance index (CI
              
            ) approach to our theoretical treatment of oscillations in the elaboration of the minimal model (Info-Box 8.​5). We have shown that it is in principle possible to link the empirical cross-correlations to phase shifts ϑ and oscillation periods ω, and compute from these the coupling constants of the minimal model. We stated in the previous chapter that one can determine ϑ and ω by a best fit of the empirical cross-correlations as, e.g., shown in Fig. 9.27. We found empirical phase shifts in examples 1 and 6 of the present chapter by visual inspection of the cross-correlation functions. Yet in naturalistic psychotherapy and social interaction, it is not straightforward to view the behavior as oscillatory when phenomenologically no regular oscillations are observable. Other than under laboratory conditions, where oscillations can be prescribed (e.g., Haken, Kelso, & Bunz, 1985), natural conversations have no regular rhythms apart from linguistic turn-takings. Therefore the integration of frequency-based models and correlation-based models in naturalistic data remains to be investigated.
We have emphasized our special interest in dense time series with very high sampling rates above one Hertz, thus “big data.” Having said this, it is also feasible to apply the developed tools to conventional time series. Psychotherapy research generates time series data when administrating questionnaires repeatedly (such as session reports after each therapy session, e.g., Ramseyer et al., 2014) or by ecological assessment (experience sampling) methods (Reisch et al., 2008). It is in principle possible to compute the functions K(x) and Q(x) even in such more coarse-grained data. It is also worth considering the application of SUSY and CI when repeated self-report data are available from people interacting, e.g., therapist’s and client’s independent assessments of the therapeutic alliance in session reports.
The goal of the present chapter was to demonstrate that the mathematical ideas of the Fokker-Planck approach can be applied to real process data. The computational tools are thus available, and they allow for the estimation of causation and chance, in one-dimensional as well as two-dimensional systems. Especially, the algorithms point to the locations of interest in the respective state spaces of the processes. We have thus paved the way for more systematic empirical studies, e.g., datasets containing process data of samples of psychotherapy sessions measured in comparable contexts and under experimental conditions.
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In this concluding chapter, we wish to suggest topics on which psychotherapy research should focus in more detail in the future. The first three topics are direct implications and consequences of the Fokker–Planck approach that we have introduced throughout this book. The remaining topics, which cover embodiment, free energy, and affordances, are of a more general nature. In sum, this chapter offers a discussion of current research from our point of view and makes suggestions for new directions of research on psychotherapy.
10.1 Focusing on Dynamics
A seemingly trivial point that we nevertheless have to make first is that we need to conceive of psychotherapy as a process, as dynamical. It is trivial because any intervention, any treatment, and any therapy outcome are by definition based on processes, on “events” or “things that change.” This is likewise true for the most fundamental constituents of psychology and psychotherapy, human behavior, and human experience. Our claim of focusing on dynamics is however not so trivial in the light of the methods and theories that are still dominating current psychotherapy research. The majority of psychotherapy researchers are still preoccupied with group comparison, not with time series analyses. Time as a dimension is seldom explicitly considered, and if so, the methodology is commonly one of a comparison of measurement snapshots, such as “pre-therapy,” “post-therapy,” and “follow-up.” Our approach to psychotherapy process decidedly deviates from this mainstream approach in that we always start with the premise of explicit time, and consequently we are dealing with state variables that are functions of time.
Hence time matters obviously. In addition, in psychology the temporal perspective is crucial in a further, quite particular way (Stern, 2004)—people can only be fully conscious now, i.e., during the present moment. A person may sometimes “dwell” in the past or future, as in reminiscing or in daydreaming, yet both of these experiences qualitatively differ from a person’s existence in the now. The experience of the present has some duration, it is not like a knife’s edge as in physical clock time, but rather extended (Tschacher, Ramseyer, & Koole, 2018). This “now” lasts a few seconds (Pöppel, 1997). Any kind of experience, perception, or emotionality occurs at this time scale of a few seconds, which due to Varela (1999) represents “a strict correlate of present-time consciousness.” Within the duration of the now, people are able to integrate things and events into a whole by gestalt formation—people create a state of consciousness and a sense of self, of “being there.” And this durational now is in constant motion into the future.
It is essential to explore the now because psychotherapy always works with elements of consciousness, and thereby addresses both access consciousness (conscious information processing, Dehaene, 2014) and phenomenal consciousness (what it feels like to be conscious, Chalmers, 1996). When psychotherapy is successful, a client’s consciousness is necessarily altered—improved clients connect things and events differently and they experience events and themselves differently.
Our focus on this particular mental temporality entails methodological implications. It is for this reason that we chose, in Chap. 9, time series with high sampling frequencies that allow analyzing precisely the time scale of the conscious now. We chose state variables (physiological signals and nonverbal behavior) that can be monitored with high temporal resolution, and that at the same time can serve as correlates and operationalizations of mental processes.
Nevertheless, the presented methods can also be applied to time series data that represent other time scales such as repeated self-reports assessment, e.g., originating from session reports. Causation, chance, and synchronization will likewise characterize such datasets, where the minimal lag is the time interval between sessions. As yet, virtually no empirical research exists in this field.
Our emphasis is thus and in general not on the single measurement. Other than in conventional psychological research, we do not attempt to approximate the “true value,” such as the true set of attributes of a therapist or a client (cf. Chap. 1). Rather, we wish to refine our knowledge of the “true dynamics” of a therapist, a client, and their relationship.
We are aware of the circumstance that there is a natural limit to this knowledge because uncertainty and chance events belong to the nature of complex dynamics. We are interested in revealing the location—within state space—of attractors that deterministically govern the processes of psychotherapy, but we are interested as well in the location in state space of instability and fluctuations, i.e., where in state space we may expect chance events. We have shown how such localizations can be achieved in the datasets of Chap. 9. We were able to reconstruct the state space of these systems (i.e., the systems of a therapist, a client, and a therapist–client relationship) only because we conceived of them as functions of time.
In this book, we have focused on point attractors (the asymptotically stable states of variables) and limit cycles (the stable synchrony found in the therapeutic alliance), as they are the basic and the most frequent types of stable states. Point attractors can be found in systems with state spaces of any dimension, limit cycles in two- and higher-dimensional systems. We have developed the theory (Chap. 8) and the most convenient modeling approach together with empirical realizations (Chap. 9) for one- and two-dimensional systems in this book. We believe that such dynamics covers the large majority of events relevant in psychotherapy—also because some degree of noise is always present in the datasets, which tends to smear out the delicate effects of higher dimensions.
More complicated and higher-dimensional attractors may nevertheless be present in principle—there is a large “zoo” of chaotic and the so-called strange attractors (Thomson & Stewart, 2002). One may also consider the fractality of physiological time series (Buszáki, 2006). Thus, questions of fractality and chaotic stability may be examined more deeply in the future.
Unraveling of the “true dynamics” is the main target of our causation-and-chance approach. Consequently, a dynamical analysis of the single case and its corresponding time series must always be conducted as an initial step. Yet how may we arrive at generalizations, i.e., how can we move beyond single-case analyses, however sophisticated these may be? The answer lies in aggregating the single cases, as we described in the methodology of time series panel analysis (TSPA, Tschacher & Ramseyer, 2009). TSPA is a hierarchical method with two levels: The signatures of the deterministic, the stochastic and, if applicable, the synchronization processes are assessed across a sample of single cases, which yields distributions of these signatures in the sample. In a subsequent cross-sectional step, the associations of these signatures with traditional process and outcome variables that were also measured in the single cases can be determined. This will provide additional insights into what our dynamical signatures “mean.”
10.2 Focusing on Phenomena of Synchronization
In the two-dimensional model developed in Sect. 8.​2, and in departing from the slaving principle, we explored possible oscillatory dynamics of therapist and client. We found that therapeutic interaction can show oscillations expressed by periodic functions, where the therapist acts as the 
              zeitgeber
              
             for the synchronization with the client; hence, the therapist is considered “leading” and the client becomes entrained with some phase shift, i.e., lag. This aspect of our modeling approach may be seen in continuation of older ideas that originated from Milton Erickson’s trance therapy (Rossi, 1980). The concepts of therapist “leading” (i.e., synchrony with some lag) and “pacing” (i.e., synchrony with negative lag) became quite popular in the context of the so-called neurolinguistic programming (NLP: Grinder & Bandler, 1981), yet the once widespread NLP practice in psychotherapy and coaching lacked empirical evidence in general, also specifically concerning the aspects of leading and pacing. The latter shortcoming can now be seen in a new light because of the research agenda of nonverbal synchrony, which has attained a proof of concept for nonverbal synchrony in psychotherapeutic interactions (e.g., Ramseyer & Tschacher, 2011; Paulick et al., 2018). This current research has had the side effect of revitalizing some previous NLP concepts, e.g., by showing that there may be symptom-specific pacing/leading patterns in schizophrenia (Kupper, Ramseyer, Hoffmann, & Tschacher, 2015).
Building on the proof of concept for synchrony, much more work needs to be done in this field of psychotherapy research. There are at present several open questions regarding phenomena of synchronization.
What are the most appropriate variables to map synchronization dynamics in psychotherapy? Candidates are variables representing body movement, prosody and linguistic features, and physiology (sympathetic, vagal, or central nervous). At present, there is a clear predominance of studies using body movement. This is due to the economical and non-invasive video-based monitoring method of motion-energy analysis (MEA). Yet movement synchrony is just one aspect of the embodiment of social interaction, and it is conceptually not very closely related to the therapeutic relationship.
What are alternative measures? Eye movements promise psychologically relevant information (Stukenbrock, 2018), but their monitoring in psychotherapy sessions is rather demanding. Physiological measures likewise allow closer approximations to cognitive and emotional processes, yet with the disadvantage that these measures depend on sensors or on taking samples, which both rule out unobtrusive data acquisition. Additionally, in some physiological monitoring (such as taking assays of hormone concentrations in saliva) the attainable sampling rates are too limited for the type of dynamical analysis we proposed in the previous section. Thus the state of research is characterized by a trade-off between the suitability of the variables, the economy of data acquisition, and the present technological options. These options are still developing rapidly, so that quite likely this trade-off will assume different shapes in the future. More research based on physiological and eye-movement synchrony will come within reach with advanced technology of sensors, which would clearly be welcomed, at least for scientific purposes. For example, it is foreseeable that the number of hyperscanning studies based on NIRS will increase (Zhang, Meng, Hou, Pan, & Hu, 2018).
Can our claim of therapist “leading” (Sect. 8.​2) be supported empirically? We found indications that leading, which is more prominent in the initial stages of therapy, may be related to the quality of the therapeutic relationship (Ramseyer & Tschacher, 2011), but this finding was derived from MEA and is in need of replication. Studies with physiological measures do not yet allow generalizations (Karvonen, Kykyri, Kaartinen, Penttonen, & Seikkula, 2016). Hence more work on pacing and leading is obviously needed, so that our hypothesis for the two-dimensional model can be tested.
Which are the most appropriate algorithms to compute synchrony? In Chap. 9, we have introduced and applied surrogate synchrony (SUSY) and the concordance index algorithm, which are both based on cross-correlations. Synchrony may also be assessed via the Fourier transform through wavelet analysis, i.e., based on frequency. In addition, various methods of surrogate testing are possible (Moulder, Boker, Ramseyer, & Tschacher, 2018). Different parameter settings and procedures in surrogate tests entail diverging effect sizes for the synchrony of the same dataset, which limits the replicability of findings (Ramseyer & Tschacher, 2016; Altmann, 2013). Additionally, there are discussions regarding the usefulness of preprocessing of the time series: Some researchers apply smoothing filters and transformations on the data, whereas others prefer using raw data. We tend to vote for the latter option in order not to introduce spurious serial structure to the time series, but a systematic study of the effects of preprocessing is needed. In general, it is mandatory to compare and possibly standardize the data processing methods in this field, so that eventually guidelines will become available that can advise the most appropriate algorithm, surrogate method, parameter setting, and preprocessing for any given dataset.
10.3 Focusing on the Archimedean Function of the Therapist
In the first and the last section of Chap. 8, we discussed how therapists
              
              
             may obtain a grip on their clients’ states. We applied the synergetic slaving principle, which states that “fast” state variables come under the influence of “slow” variables in a complex system. This principle has been successful as a core axiom in general self-organization theory (Haken, 1977). If we assume that the therapists’ state variables are generally “slow” variables, i.e., if therapist behavior is characterized by long relaxation times, the distribution of client states becomes entrained by the states of their therapists. Additionally, we claimed that, in return, therapist states are only weakly influenced by the client and thus can be prescribed by the therapist autonomously. As a result, the client’s distribution of states obeys a one-dimensional Fokker–Planck equation, which details four sources of input on the client—the deterministic inputs from the therapist’s state (1) and from the client’s own state (2), and additionally, in the spirit of the Fokker–Planck approach, inputs from external chance events acting on the therapist (3) and on the client (4). The fifth source of input, contextual interventions (5), comes on top of the four Fokker–Planck input types, and we will focus on these in Sect. 10.6.
Considering these four input components, input (1) is most significant because, as mentioned, therapist states will modify the client due to the slaving principle (Sect. 8.​1) or due to entrainment in oscillatory behavior (Sect. 8.​2). The other deterministic input (2) is somewhat trivial because all change of a client necessarily depends on the client’s own (initial) state. Next, we assumed that efficient therapists are well shielded against environmental fluctuations—hence (3) is small, which is consistent with the resilience and mindfulness findings in the therapist effects literature (e.g., Lutz & Barkham, 2015). Thus the client’s filtering of environmental events (4) is the only remaining stochastic input factor to client states.
Archimedes, the Syracusean mathematician of the third century B.C., designed, among other machines, the pulley and achieved insights into the mechanical principle of leverage. He famously claimed: Provide me with a fixed point and I will lift the earth off its hinges! We allude to this statement when we speak of the Archimedean role of the therapist. The unmoving pivot that allows change in psychotherapy, we think, becomes manifest in the therapist’s personality, and the levers may be the therapeutic interventions.
Expressed by the four sources of input this means: If a therapist’s states are independent of fluctuations because they are shielded against chance events—small (3)—these states will ultimately come to rest at the attractor of the therapist, which is a personality trait (in the recent literature called a “therapist variable”). This is true for all initial values of the therapist’s state variable. This process may last some time—we relied on the slaving principle, and thus the therapist contributes a “slow” variable! Hence the therapeutic change process deriving from input (1) actually depends on the therapist’s personality, i.e., therapist variables act as the “pivots” of therapeutic intervention. Change additionally relies on fluctuations (4), on chance impacts acting on the client.
Therefore, the psychotherapeutic techniques and common factors (the interventional “levers”), which are traditionally considered to be the very change mechanisms of psychotherapy, should be expressed predominantly by only two input types (1) and (4). Concerning (4), we have discussed how common factors influence several aspects of boundary regulation in Chap. 6, and thereby support the client’s filtering capabilities. Concerning (1), we reported the findings of current research on therapist variables in Chap. 3.
When we derive from our theoretical models that the therapist’s personality and the client’s boundary regulation are the essential ingredients of successful psychotherapy, we observe that currently research on the former issue is growing, but the latter aspect of boundary regulation is not yet an explicit topic in psychotherapy research. This is partly explained by the fact that boundary regulation permeates many established common factors and intervention techniques, and is therefore a conceptually hidden ingredient of psychotherapy. For the main part, however, it is true that stochastic factors have not yet attracted the awareness of psychotherapy researchers. Viewed with the lens of the Fokker–Planck approach and given the likely significance of random events for client states, we propose to shift the research focus to also cover the aspect of the filtering and regulation of chance events in psychotherapy.
What does this mean for the practice of psychotherapy? Expressed in psychotherapeutic language, the simplified wrap-up of Sect. 8.​1 is this: First, the client must be coupled more strongly to the therapist than the therapist is to the client. Thus ideally, the therapist → client coupling b should be large, whereas the client → therapist coupling constant a should be low, so that the therapist can act autonomous and independent of the client’s states. Therapists should be resilient, mindful, and abstinent, or else they will not be able to instigate interventions successfully. This client → therapist coupling constant may even be negative (which can represent some degree of resistance against treatment).
Second, the client must have learned during therapy how to filter environmental stochastic fluctuations, and thereby acquire the art of boundary regulation. This filtering ability should of course not attenuate the causal therapeutic interventions.
Third, concerning relaxation times, the therapist should generally be “slow,” which is an attribute in full accordance with therapist resilience and mindfulness. The client may be “fast” initially to comply with the slaving principle assumption, yet in the course of treatment and maybe towards termination of therapy, client’s relaxation time may also increase in order to optimize the therapist’s leveraging the location of client states (the mean of the distribution according to Eq. 8.​7 in Sect. 8.​1), while the diffusion (the variance of Eq. (8.​7)) of client states remains sufficiently narrow due to boundary regulation. In other words, when there are a few fluctuations the diffusion is small and thus the client’s attractor is well-defined and clearly bounded.
10.4 Focusing on Embodiment
Psychotherapy has the goal of influencing a client’s mental processes. It is a consciousness-altering learning procedure that uses language as its main instrument. Sigmund Freud’s concept of the “
              Redekur
              
            ” (talking cure) reflects this view prominently, underlining the distinction between psychological therapy and somatic therapy. His sharp distinction, however, has blurred the fact that psychotherapy does not take place in a bodiless, cognitivistic sphere. Therefore the behavioral and the humanistic approaches, which emerged as antitheses to psychoanalysis, had a point when they integrated motor behavior and body awareness into psychotherapy. The recent discussion on embodiment in psychology has generally demonstrated that cognition importantly depends on its physical contexts—cognition is embodied by somatic processes and situated by the physical environment. The psychological self is not an abstract device of information processing, but is embodied and extended (Fuchs, 2016; Kyselo, 2014).
This entails obvious implications for psychotherapy (Tschacher & Pfammatter, 2016), which are gradually being explored by novel body-based approaches. For instance, the psychotherapy of psychosis has been complemented by treatments that contain body-work and even elements of dance therapy (Röhricht, 2009; Martin, Koch, Hirjak, & Fuchs, 2016). It was reported that embodied approaches may help remediate the negative symptoms of schizophrenia, which are notoriously difficult to manage. The growing number of mindfulness-based therapies likewise relies on embodiment ingredients.
Consequently, it seems overdue that psychotherapy research should fully recognize the significance of bodily variables—not in the sense of a reductionistist neuroscience but in that of an integrative framework (Kotchoubey et al., 2016) that may be based on dual-aspect philosophy of mind: there is a bidirectional relationship between mind and body, which is the premise of embodiment. The cognitivistic emphasis on information processing alone is too narrow a foundation for psychotherapy. Psychotherapy research should come up with an extended conceptualization, especially with respect to the discussion of common factors, and the terminology of psychotherapy should better reflect the significant impact of embodiment.
Our claim that state variables should have high temporal resolution also points in this direction of acknowledging the embodied aspects of psychotherapy: only motor-behavioral and physiological measures allow sampling rates of 1 Hz or higher. Thus, to explore the time scale of consciousness quantitatively, as we are proposing in this book, we have to focus on bodily variables. Indirectly, this approach in psychotherapy research may have the interesting side effect of revealing new aspects of the philosophical mind–body discourse along the way.
10.5 Focusing on Free Energy
Friston’s free-energy principle
              
              
             (Friston, 2010) is the core element of a brain theory and a genuine extension of the concept of free energy in thermodynamics. A biological system (an agent) embodies a hypothetical model of its environment and continuously tests this model by a mechanism called predictive coding: Perceiving is viewed as a sequence of making predictions on the consequences of an action, then acting, and then resolving the prediction error. As the environment also contains the system’s own physical states, this scheme is again an example of circular causality. Through such continuous action-perception sequences the system optimizes its model by using free energy as a measure of its adaptation to the environment. Friston’s definition of free energy is negative log-probability or “surprise” (Friston, 2011). Free energy sensu Friston thus denotes the potential function V(x), which in synergetic information theory exactly has this meaning (Haken & Portugali, 2016).
The term “free energy” comes with the problem of suggesting a link with thermodynamics, which however is merely a formal analogy. In the context of thermodynamics, free energy is juxtaposed to the temperature and entropy of a system, but temperature is not a meaningful variable when focusing on information. Much confusion has resulted because entropy and information entropy (“Shannon entropy”) were often not differentiated in the wake of Prigogine’s theory of non-equilibrium thermodynamics. Biological and mental systems however strive to minimize informational “free energy,” not thermodynamic entropy, when they approach towards surprise-free harmony with their surroundings.
We introduced the potential of a system in connection with the deterministic term of the Fokker–Planck equation in Chap. 4—the location of the attractor is where the potential has its minimum value. We also computed the informational free energy, i.e., the potential function, in several exemplary systems in Sect. 9.​5 on the basis of empirical time series. Using the tools presented in Chap. 9, informational free energy of one- and two-dimensional systems can be conveniently analyzed. This will, for the first time, allow establishing this concept in psychotherapy on the basis of quantitative data. It is then straightforward to explore the hypothesized process of free-energy minimization and study how it relates to semantic variables in psychotherapy such as ratings of process and outcome. To date, no such studies exist in psychotherapy.
10.6 Focusing on Affordances
In Chap. 7 (Sects. 7.3 and 7.4), we distinguished three different types of therapeutic interventions and impacts—deterministic, stochastic, and contextual. The term contextual is used because open complex systems possess a specific kind of context: in terms of synergetics, this is expressed by the system’s control parameters. In irreversible thermodynamics, the contextual parameters describe non-equilibrium situations such as when sources of energy drive a system, and are “dissipated” by the system (Nicolis & Prigogine, 1977).
We reported in Chap. 5 that especially the humanistic and systemic approaches of psychotherapy make use of contextual interventions (see also Info-Box 5.​1 on self-organization). The philosophy of humanistic therapy holds that in favorable contexts, an individual will show a tendency towards self-actualization, towards “making the best out of oneself.” Thus, humanistic-experiential therapists expect that an individual will unfold his or her potential optimally unless actively hindered. The general idea of the self-actualization concept is quite in the spirit of modern complexity theory and synergetics: depending on its contextual parameters, a complex system does reveal a tendency towards self-organization. In modern psychological systems theory, the most often used term for a contextual variable is affordance (Gibson, 1979; Bruineberg & Rietveld, 2014), which Gibson adopted from Kurt Lewin’s concept of “valence” (originally Aufforderungscharakter, Lewin, 1936). In psychotherapy research, there is an apparent similarity between the contextual intervention via affordances and the “contextual model” of psychotherapy (Wampold, 2015). The contextual model emphasizes the predominant effectiveness of “common factors” as a practice of “social healing.” This model denies that specific and precisely tailored interventions can explain the effectiveness of psychotherapy, but unspecific contextual circumstances can—which is in open discordance with the theory of behavior therapy.
In the language of psychotherapy, what are examples of such affordances? A suitable candidate is Grawe’s common factor of resource activation (Grawe, 2004), which belongs to the common-factors class “social relations and motivation” (cf. Fig. 2.​3). One may think of an active resource as a donor of motivational and emotional “energy.” Hence we may equate affordances with sources of motivation, from which self-organizing effects are derived. This is a process analogous to self-organization in physical systems, where effective control parameters are often sources of energy. One should keep in mind however that the energy concept in application to mental processes is metaphorical.
In previous work, we studied the peculiar relationship between affordances and mental self-organization (Tschacher & Haken, 2007a, 2007b; Haken & Tschacher, 2010). We found that self-organized patterns thrive on affordances in the sense that a self-organizing system depletes and reduces the very affordance that has brought into being the self-organized patterns in the first place. If the system is a mental system, this provides a structural description of intentionality and aboutness—self-organized mental patterns and actions are “about” the affordances, which they ultimately reduce and consume. The most optimal pattern is possibly that one which can reduce the affordance(s) acting on the system in the most efficient way. These are aspects of circular causality.
The management of affordances and pattern formation processes in psychotherapy are as yet not well understood. When we equate the activation of affordances with resource activation, as we proposed before, this psychotherapeutic common factor should generate novel attractors in clients’ state variables, or deepen the potential minima of existing attractors (i.e., minimize Friston’s free energy). In addition, our theory predicts that affordances as contextual parameters in turn will be reduced by the formation of attractors. These processes have yet to be explored in psychotherapy research, and the respective variables have to be operationalized.
A useful metaphor for affordance-driven dynamics may be the evolution of paths (Fig. 10.1). Paths in a steppe, or hiking trails in the mountains, evolve in a self-organizing process on the basis of affordances (unless of course the paths are externally prescribed by paved roads or manufactured trails). Such affordances are, for instance, steepness of ascent (“avoid steep trajectories”), terrain quality (“prefer even ground to rugged surfaces”), and smoothness of motion (“seek the shortest route, avoid local minima”). Path evolution can even become recursive, as when the pattern of a path turns into an affordance itself. An overused track becomes rippled and thus will be increasingly aversive, although its existence shows that it has originally reduced the affordances optimally—circular causality.[image: ../images/470128_1_En_10_Chapter/470128_1_En_10_Fig1_HTML.jpg]
Fig. 10.1Path evolution in grassy landscape—the erosion of the grass by vehicles shows which trajectories emerged in dealing with the affordances of landscape and terrain


Concerning psychotherapy, affordances can result from the basic needs a client has, such as the need for social attachment, or the need to experience self-esteem. Resource activation then means to activate these needs in the session, especially if they are insufficiently manifested in the client’s life, and thus their deficiency probably constitutes a (part of the) problem. In the case of a client’s insecure attachment, a therapist may choose to engage the common factor “mitigation of social isolation” (Table 3.​1) and thereby activate attachment resources. Such contextual intervention is indirect in the sense that merely the social affordances are activated, whereas the behavioral and experiential patterns, and the learning processes, are not directly prescribed or trained. These patterns emerge from the new behavior and experience via a self-organizational process. If successful, this “healing context” sensu Wampold generates a number of specific patterns, which can in principle be observed by their potential minima.
Cognitive dissonance is a motivational concept that was put forward by Festinger (1957) in connection with decision-making and attitude change through social influences. Dissonance is defined as an aversive motivational state resulting from incompatible beliefs, attitudes, and values, which are held by an individual at the same time. Hundreds of social-psychological controlled studies were conducted on this topic in the years since the 1960s, which have in common that they staged an experimental situation that creates dissonance in participants. We previously pointed out that the dissonance concept may be viewed as a further type of affordance in psychology (Tschacher & Haken, 2007a, 2007b), and the resulting behavioral or attitudinal pattern modifications are exactly those that can reduce the dissonance. By the way, the link between Gibson’s “affordance” and Festinger’s “dissonance” is again Kurt Lewin, in whose department Gibson worked, and who was also Festinger’s academic teacher.
These connections suggest that common factors of psychotherapy may be regarded as affordances that are the driving forces of contextual interventions. Our general predictions on the results of contextual interventions are testable—the generation of novel attractors, the depletion of the affordances involved—but as yet time series studies addressing contextual interventions are lacking.
10.7 Chances and Limitations
To begin with caveats and limitations, we proposed that self-organization processes should be regarded as a systems-theoretical background for self-actualization processes that Maslow put forward as growth motivation. Yet, the two processes, self-organization and self-actualization, are not strictly analogous—note that the “self” in self-organization is not identical to the psychological self in self-actualization (Tschacher & Rössler, 1996). We may also doubt that the generation of self-organized attractors is necessarily always beneficial as suggested in self-actualization—new patterns may not be the welcomed “good” patterns that humanistic psychotherapy rather assumes. Self-organization does not follow any in-built ethical rationale, it is just the process by which systems adapt to their affordant contexts. Therefore contextual interventions may also entail negative outcomes. There is a growing discussion on adverse side effects of psychotherapy (Linden, 2013), and there is no reason to believe that contextual interventions are in principle excluded from the risk of generating adverse effects.
A further limitation arises from the kind of data available in psychology. Mental processes and experiences can be directly observed from the first-person perspective, but there is no simple way to transform private experiential material to third-person objective datasets, on which we however rely when applying the mathematical tools we have been developing throughout this book. This is of course a fundamental problem of psychology, but it is especially bothersome when we follow the ambition of describing the short time scales that are linked with processes of consciousness. We have to resort to objective behavioral and physiological measures, and have to be well aware of the fact that we then depend on operationalizations. The mind cannot be measured directly, all we have at hand are bridging assumptions and the resulting correlates.
We have, in the course of modeling, inserted a number of premises to allow the models to produce what we know or assume is true—for instance, that therapists can change clients’ states. Therefore we modeled the therapeutic alliance not as a symmetrical relationship but chose the coupling terms and constants of the minimal model in a way that the therapeutic effect on the client can be larger than the client’s reverse effect on the therapist. This may be considered a limitation of our models as it rules out the, unfortunate but not completely unrealistic, treatment effect of a changed therapist and an unaltered client.
We believe nevertheless that the chances of our modeling approach outweigh the limitations. The Fokker–Planck model of psychotherapy distinguishes deterministic and stochastic impacts on clients and therapists—causation and chance—and when complemented by the slaving principle it additionally describes processes of coupling and entrainment, which is the working principle of self-organization. Thus we can model a large palette of change processes, which is exactly what is needed to encompass all the heterogeneous intervention methods that make up the field of psychotherapy. In saying this, we do not believe nor find that there is merely one road to Rome in psychotherapy. Psychotherapy is not an exclusively specific and deterministic enterprise, as a behavior therapist may claim, nor exclusively unspecific and contextual, as the supporters of the common factors approach say. Various types of impacts all play their roles, deterministic, stochastic, and contextual, and they may even become effective during one and the same therapy course, but at different time points.
The two-dimensional minimal model showed that oscillatory dynamics and limit cycle attractors may govern the therapist–client relationship, where the client follows the therapist with a certain lag or phase shift. This model offers a new conceptual link for current empirical research on nonverbal synchrony. It may especially prove valuable when the coupling of oscillatory behaviors (such as respiration: Varga & Heck, 2017, or periodic endocrine concentrations: Granada & Herzel, 2009) is concerned.
In formulating a minimal model of psychotherapy in the one-dimensional case, we found that an efficient “Archimedean” therapist exerts his or her influence on the client’s state by his or her personality. This archetypal therapist is a stable and slow person, which is consistent with findings on the function of resilience and mindfulness as therapist variables. The ideal working alliance is when the therapist remains independent of the client, whereas the client is strongly coupled to the therapist. This amounts to a new reading of the originally psychoanalytic concept of abstinence. Abstinence in our view is not to mean that the therapist must be opaque to the client, but rather that the client must be able to (subconsciously?) perceive the therapist’s state and personality. Transference must be larger than counter-transference because of the necessary asymmetry of therapist–client coupling. We thus clearly assume that we deal with agentic and self-efficacious therapists who are free and competent to choose their states on their own.
The theoretical and mathematical models we have developed in this book have allowed putting forward a number of novel tools for analyzing empirical data (Chap. 9). Using these applications, researchers of psychotherapy are enabled to precisely specify the deterministic and stochastic ingredients of therapies under study. Where in one- and two-dimensional state space can we detect sources of causation and of chance? We can now localize the regions of stability, i.e., the attractors in the potential landscapes and in the synchronization patterns of a single psychotherapy course. All these findings can be generalized—they are not restricted to the single time series because, by a subsequent aggregation step, samples of cases can be considered. Taken together, this will put psychotherapy research in a position to answer fundamental questions regarding the process of intervention. Which kinds of effects are entailed by interventions, and how do these interventions modify the deterministic and stochastic profiles in the state space of clients and therapists? Such research can reveal which interventions have which effects—specific interventions and common factors can accordingly be classified to entail deterministic effects (generating and stabilizing attractors in state space), boundary regulation effects (reducing stochastic profiles or destabilizing attractors), or contextual effects (generating new patterns in the attractor landscape).
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