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Preface
Research in the behavioral sciences is prone to different types of errors. These errors are very common and are rather persistent. This book tries to counteract common errors by describing methods to prevent and correct them.

              The selection of topics reflects my experience in teaching research methods and in consulting on methodological aspects of behavioral research. Errors may occur in all parts of empirical studies: selection of participants, design and implementation of the study, measurements, data analysis, and reporting. The topics of the chapters cover most parts of empirical studies: Chaps.
              2
              and
              3
              discuss the selection of participants, Chaps.
              4
              –
              6
              designs, Chaps.
              7
              –
              10
              measurements, and Chaps.
              11
              –
              14
              and
              16
              –
              18
              data analysis. Chapter
              15
              focuses on reliability, which is a measurement concept. It is put between the chapters on data analysis because it addresses the relation between reliability and data analysis. Chapter
              19
              focuses on reporting of research results. The last chapter focuses on scientific misconduct, which is the most serious type of error. The focus of each chapter is on methods that are relatively easy to understand and implement. Readers who are interested in more advanced methods have to study the relevant literature.
            
The intended readers are upper undergraduate (bachelor) and graduate (research master and dissertation) students, and researchers of the behavioral sciences (i.e., psychology, education, and related fields). The only prerequisites are introductory courses in methodology and statistics at the undergraduate (bachelor) level of academic psychology and education programs. However, the discussion of statistical and psychometrical concepts and methods is relatively abstract and aims at students who are interested in behavioral science research. The book is appropriate for a course on research methods. Each of the chapters discusses a specific topic and can be studied independently of the other chapters. Therefore, separate chapters can be used as supplementary material of research methods, statistics, and other courses.
I thank Herman J. Adèr, Denny Borsboom, Joop J. Hox, Rik Mellenbergh, and Eric-Jan Wagenmakers, for their valuable comments on parts of the manuscript, Springer’s Editors Shinjini Chatterjee, Arumugam Deivasigamani, Divya P. Karthikesan, and Christopher Wilby, for their editorial work, Han L. J. van der Maas and Louise Stutterheim for their support, and Ineke van Osch for her excellent assistance in preparing this book.

Gideon J. Mellenbergh
Amsterdam, The Netherlands
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Abstract
The main objective of scientific research is to solve problems. Empirical studies are affected by random and systematic errors
. Random errors
 decrease the precision of study results, but do not bias these results. In contrast, systematic errors
 bias study results. Errors and methods to prevent and correct errors are introduced, and are put into the context of the different parts of empirical studies (i.e., research questions, literature review, sampling, operationalizations, design, implementation, data analysis, and reporting).
Keywords
Precision and bias of study resultsPrevention and correction of errors
This book discusses errors that affect empirical studies in the behavioral sciences (i.e., psychology, education, and related disciplines), and methods to prevent and correct these errors. The first chapter introduces the errors and methods to counteract errors. Section 1.1 briefly mentions the main objectives of empirical research, Sect. 1.2 distinguishes random and systematic errors
, and Sect. 1.3 puts these errors into the context of the different aspects of empirical studies. Each of the following chapters addresses a specific topic. Errors were selected that are rather common in behavioral research, and methods that are relatively easy to apply in practice.
1.1 Research Objectives
The general objective of scientific research is to solve problems. Some problems are generated by science itself, for example, the question on the effect of horizontal eye movements on free recall is a problem that comes from psychology itself (see Matzke et al., 2015). Other problems come from the interaction of science and society. For example, the question on the effects of a new mathematics course on students’ performance comes from the interaction of teaching practice and education.
A distinctive feature of scientific research is that problems are systematically handled. Research strategies and methods are applied, and are justified by rational arguments. The scientific study of problems is verifiable and open to discussion. As a consequence, scientific knowledge is cumulative. The growth of knowledge may stagnate, but in the long run it increases. The cumulative nature of scientific knowledge is obvious if the state of science of today is compared with that of, say, 200 years ago.
Different types of research studies are distinguished (de Groot, 1969; Mellenbergh, 2008). A theoretical study is non-empirical. It studies the literature, but it does not collect data. In contrast, an empirical study collects data. Empirical studies have different objectives. The objective of a descriptive study is to describe a state of affairs, for example, the mastery of mathematics by 16-year old students. An exploratory study goes a step further than description. It aims at finding interesting relations and hypotheses, for example, the difference in mastery of mathematics between boys and girls, minority and majority group students, students of different socio-economic backgrounds, and so on. The objective of a confirmatory study is to test hypotheses, for example, the hypothesis that a new mathematics teaching method is more effective than the standard method. These hypotheses have to be specified before the study is conducted, and not after that. The objective of a prediction study is to predict future behavior, for example, the prediction of students’ success at college from their test scores at high school. Finally, the objective of an instrument construction study is to make or revise an instrument, for example, an educational test or psychological questionnaire, and to study its psychometric properties.
The boundaries between these study types are not sharp. Description and exploration are often combined into one study. A confirmatory study tests hypotheses, but it also may explore the data to derive new hypotheses that have to be tested in follow-up studies. Moreover, different studies or study parts can be planned. For example, an exploratory study is planned that precedes the confirmatory study. The exploratory study searches the data for hypotheses, and these hypotheses are tested in the confirmatory study. Another example is a questionnaire construction study as part of a confirmatory study that needs the questionnaire to test a substantive hypothesis.
1.2 Random and Systematic Errors

The behavioral
 sciences study human behavior by doing theoretical and empirical research. However, research is always troubled by errors. Error-free research does not exist. A theory can be inconsistent, a hypothesis can be too vague, a design can be inadequate (e.g., because the sample size
 is too small), the measurements can be doubtful (e.g., because the instruments are unreliable), the implementation of a study can be disrupted by unexpected factors (e.g., because of drop out of participants), the analysis of the data can be flawed (e.g., because the assumptions of the statistical test are severely violated), the reporting of study results can be biased, and the decision for publication can be incorrect.
Two types of errors are distinguished, that is, random errors
 and systematic errors
. 
              Random errors
              
             occur by chance, whereas 
              systematic errors
              
             are caused by unwanted factors. Example 1.1 demonstrates the difference between random and systematic errors
.
Example 1.1 Random and systematic errors

A sample
 of students is randomly selected from a population of students. A questionnaire is administered to the students of the sample. The questionnaire asks, among other things, on the number of hours a student spent studying and his (her) income of the past month. The students honestly answer the question on studying hours, but some students do not report the black money that they earned. The mean number of hours in the sample is an estimate of the mean number of hours in the population. In general, the sample mean will differ from the population mean because of random sampling of students. The difference between sample and population mean is random error. The mean income of the sample students will also differ from the population mean income. This difference comes from both random sampling (random error) and not reporting black money (systematic error). The tendency not to report black money is a factor
 that systematically affects the sample mean income.

Both random and systematic errors
 affect study results, but their effects are very different. Random errors
 decrease the precision of study results. For example, a large sample of students yields a more precise estimate of the population mean of the number of hours studying than a small sample. However, systematic errors
 bias study results. For example, the tendency not to report black money systematically underestimates the mean income.
Methodologists and statisticians developed strategies to counteract errors. Some of these strategies can only be applied before and during the collection of the data, whereas other strategies can only be applied after the data are collected. Combining the distinction between before (during) and after data collection and the distinction between random and systematic errors
 yields four main types of strategies to counteract errors (see Fig. 1.1).[image: ../images/459008_1_En_1_Chapter/459008_1_En_1_Fig1_HTML.png]
Fig. 1.1Main types of strategies to counteract errors




Random errors
 stem from chance processes that affect the precision of study results. The aim of strategies to counteract random errors
 is to increase the precision of study results by reducing the variance of the random errors
. In the design and implementation phases of a study special methods can be used to reduce random error variance during data collection. After the data are collected special statistical methods can be applied to reduce random error variance.

Systematic errors
 come from unwanted factors that bias study results. The aim of strategies to counteract systematic errors
 is to prevent or correct for bias. In the design and implementation phases of a study special methods can be used to prevent bias during data collection. After the data are collected special statistical methods can be applied to correct for bias.
It is noted that different strategies can be used simultaneously in one study. For example, in the study of Example 1.1 a large sample could be used to increase the precision of the study results, and methods that guarantee students’ anonymity could be used to reduce bias in responding to the questionnaire.
1.3 Errors in Context
Generally, empirical studies have the following parts: (1) formulating research questions, (2) reviewing the literature, (3) sampling of units, (4) operationalizing variables, (5) designing the study, (6) implementing the study, (7) analyzing the data, and (8) reporting the study. Errors can occur in each of these parts. This section puts errors and methods to counteract errors into the context of these study parts.
1.3.1 Research Questions
Problems are often not yet ready for research because, for example, they are too broad or vague. Therefore, concrete questions have to be derived from the problem descriptions. These questions should adequately solve the problem, and should be answerable by research.
Some questions can be answered by research, but do not solve the problem, for example, because the question is only indirectly connected to the problem. The adequacy of questions for the problem can be assessed by consulting experts and studying the relevant literature.
Some interesting questions cannot be answered by research because of constraints. Human and animal research is constrained by laws and ethical standards that are set by professional organizations, such as, the American Psychological Association (APA) and the American Educational Research Association (AERA). A study has to be financed and is constrained by financial means. Moreover, studies are constrained by practical matters, such as, the availability of equipment and the cooperation of institutes.
1.3.2 Literature Review
The literature is searched for theories and empirical findings that are relevant for the research questions. Conventionally, empirical findings are qualitatively summarized, but, nowadays, they are often quantitatively integrated in a meta-analysis (Cumming, 2012, Chap. 7).
A review is often incomplete and biased. Some studies are hard to obtain because they are published in internal reports and memoranda, and classified studies are not available at all. Publication bias
 and replication aversion systematically affect literature reviews (see Chap. 19). Publication bias
 means that the results of a study affect the decision to publish a manuscript, for example, manuscripts that report statistically significant results have a higher acceptance rate than manuscripts that report nonsignificant results. Replication aversion means that original studies have a higher acceptance rate than replication studies. Recently, proposals have been made to counteract publication bias
 and replication aversion, and some of these are already implemented in editorial policies.
The literature review also might be biased by scientific misconduct
 (see Chap. 20). Fabrication
 of non-existing information (e.g., data), falsification
 of existing information, and questionable practices contaminate the literature. Questionable practices are strategies to present another picture than is warranted. Usually, questionable practices are applied by researchers, for example, an author who withholds nonsignificant results. However, also editors and reviewers may apply questionable practices, for example, a reviewer who recommends to reject a manuscript for publication because it harms his (her) own interests. Fabrication
 and falsification
 are deliberately applied to mislead the scientific community, but questionable practices are not always applied with the intention to mislead. Science must oppose against scientific misconduct
. At present, editorial policies are implemented to detect and prevent scientific misconduct
. Education must warn students against scientific misconduct
, and formal policies are needed to punish intentional misconduct.
1.3.3 Sampling
The target population
 of a behavioral study consists of a finite number of units. Usually, the units are humans, but also other units are studied, for example, schools, animals, and web pages. Mostly, it is impossible to study all units of the population because of, for example, financial or practical constraints. Therefore, a sample of units is selected, the study is conducted with the sample, and sample results are generalized to the population. The term “unit” is general, and will be replaced by terms that are appropriate within the context, for example, “participant”, “test taker”, and “school”.
A distinction is made between probability and nonprobability sampling
. A probability sample is selected from the population by applying a random procedure, for example, a computer algorithm that generates random numbers (see Chap. 2). The generalization of sample results to the population is based on statistical theory. The differences between sample statistics
 and corresponding population parameters
 are caused by random sampling error, Random sampling errors affect the precision of parameter estimates, but do not bias the estimates. The precision of an estimate is assessed by a confidence interval (CI)
. For example, the mean test score of a probability sample of test takers estimates the population mean test score, and the CI
 of this estimate assesses its precision. A large CI
 means that the estimate is imprecise, and a small CI
 that the estimate is precise. The estimation precision
 increases with sample size
, and by applying specific methods. The preferred method of selecting units is probability sampling
, but systematic errors
 easily creep in. For example, the definition of the population may be flawed, and selected persons may nonrandomly refuse to participate or drop out of the study. Although probability sampling
 was applied, the resulting sample is not really a probability sample anymore.

Nonprobability sampling
 is rather common in behavioral research (see Chap. 3). Samples are selected for convenience, for example psychology freshmen who participate in psychological studies and schools that volunteer in educational studies. Usually, these participants considerably differ from the members of the population. The generalization of the sample results to the population cannot be based on statistical theory, but is assumed on nonstatistical grounds. However, nonprobability sampling
 cannot guarantee that sample results are generalizable to the population. A strategy to study the generalizability is to compare the study results of different subsamples or groups, for example, male and female, younger and older, and minority and majority group participants. The generalization of study results is supported if the results are approximately the same for different subsamples or groups.
1.3.4 Operationalizations
Conditions, treatments, and theoretical constructs are described and operationalized. Instruments are often used to implement conditions and treatments, for example, computers and software to present stimuli, and brain scanners, and educational and psychological tests and questionnaires
 to measure constructs.
Measurements are affected by random and systematic errors
. Random errors
 affect measurement precision
, but do not bias measurements. Psychometrics distinguished two types of measurement precision
 (see Chaps. 7 and 15). The within-person precision is the precision of the measurement of a single person’s construct (e.g., John’s intelligence). Reliability
 is the precision to distinguish the construct values of different persons (e.g., differences in intelligence between John, Mary, and other test takers). These two types of precision are often confused. For example, it is believed that an unreliable test is not suitable to measure a single person’s construct, but this belief is false. Less reliability
 of a test not necessarily implies less precision of the measurement of a single person, and the within-person precision of an unreliable test may be sufficient.
Tests and questionnaires
 are scored, and participants’ scores are applied in research studies. An ambiguity in the interpretation of scores arises if a substantial part of the test or questionnaire items measures more than one construct (see Chap. 10). For example, story problem items frame arithmetic problems into a verbal context. Therefore, story problem tests measure both a numerical and a verbal skill. The interpretation of the difference between mean story problem test scores of, for example, boys and girls is ambiguous because the difference can be caused by a difference in numerical skill, a difference in verbal skill, or a difference in both skills. The interpretation is unambiguous if the items of a test or questionnaire predominantly measure one construct. Psychometrics developed methods to assess the number of constructs that is measured by the test or questionnaire. The interpretation of scores is unambiguous if the test or questionnaire is unidimensional (i.e., measures a single construct). It is often thought that a reliable test or questionnaire is unidimensional, but it may measure more than one construct. Reliability
 not necessarily implies unidimensionality.
Usually, participants know that they are being measured, for example, participants know that they answer test items, react to stimuli, or their brains are scanned. These measures are obtrusive, and participants may react to obtrusive measurements (see Chap. 8). Examples of reactions are cheating
 at educational tests, yea-saying to attitude items, and arousal reactions to scanners. These systematic errors
 can bias measurements. Methods were developed to prevent and detect systematic measurement errors.
Reactions to measurements are impossible if measurements are unobtrusive. Unobtrusive measures are measurements where participants are unaware of being measured (see Chap. 9). For example, a student who does not know that his or her teacher rates his (her) school attitude. Participants cannot react to unobtrusive measurements
, but these measurements are threatened by errors as well. For example, a student who academically performs well is, incorrectly, positively rated at his or her school attitude by his (her) teacher. Therefore, unobtrusive measures cannot replace obtrusive measures, but they can complement these measures.
Instruments that are suited to answer the research questions may be lacking, outdated, or inadequate. Then, separate instrument construction studies are needed, for example, a study to construct and assess the psychometric properties of a new attitude questionnaire.
1.3.5 Designs
The design is the framework that specifies the structure of a study. The design has to comply with the constraints and to satisfy the objectives of the study. Independent and dependent variables are distinguished. Generally, it is assumed that an independent variable (IV)
 influences a dependent variable (DV)
. In the context of prediction studies, IVs are called “predictors” and the DV
 “criterion”.
Three general types of designs are frequently applied in behavioral studies: (1) the randomized experimental, (2) the quasi-experimental, and (3) the correlational or observational design (Shadish, Cook, & Campbell, 2002, Chap. 1). The IV
 of both the randomized experiment and quasi-experiment is manipulable, for example a treatment variable with experimental (E-
) and control (C-
)conditions. The difference is that in a randomized experiment participants are randomly assigned to the conditions, whereas in a quasi-experiment participants are not randomly assigned to the conditions (see Example 1.2).
Example 1.2 Randomized experimental and quasi-experimental designs
A study is planned to compare the effects of a new psychological treatment of depression patients and the standard treatment. Researchers want to conduct a randomized experiment, where patients are randomly assigned to the new or standard treatment. However, the therapists object to this design because they fear that the new treatment will have adverse effects on some of their patients. Therefore, researchers plan a quasi-experiment, where the therapists assign patients to the new or standard treatment.


The IV
 of a correlational or observational design cannot be manipulated, and, therefore, participants cannot be assigned to the conditions of the IV
. For example, participants trait anxiety is a nonmanipulable variable, and participants cannot be assigned to or choose high, medium, or low levels of trait anxiety.
A randomized experiment randomly assigns participants to different (e.g., E-
 and C-
) conditions (see Chap. 4). Random assignment causes random errors
, but it does not bias parameter estimates, such as, the difference of mean test scores of E-
 and C-condition participants. The precision of parameter estimates increases with sample size
, and application of specific design and data analysis methods.
Randomness of the assignment is easily spoiled in practice. Refusal or drop out of persons who are randomly assigned to a condition may damage the random assignment. For example, if a substantial part of the patients who are assigned to the standard condition
 refuse to participate or drop out because they do not like the standard treatment, the randomness of the assignment is violated. Researchers planned a randomized experiment, but end up with a quasi-experiment.

Randomized experiments
 are often conducted in laboratory settings. Random assignment of participants to conditions is the preferred method of assignment, but is often impossible in field settings, such as, schools and companies. In these cases, researchers have to revert to quasi-experiments
. If the variables of interest are nonmanipulable (e.g., personality traits and attitudes) researchers are forced to conduct correlational studies.
The IVs of quasi-experiments
 are manipulable, but participants are not randomly assigned to the conditions. The participants themselves choose their conditions or others (e.g., teachers, therapists) nonrandomly assign participants to conditions. Quasi-experiments
 are prone to selection bias
, which means that participants of different conditions systematically differ in their characteristics. For example, patients who choose an experimental treatment may be more motivated for psychotherapy than patients who choose the standard treatment. Methods were developed to correct for selection bias
 (see Chap. 5). These methods cannot guarantee that selection bias
 is completely counterbalanced. Only random assignment to conditions guarantees the absence of selection bias
.
Note that random assignment and random sampling are different methods. Both methods have in common that they apply random procedures, but differ in their aims. Random assignment facilitates causal interpretations because of the absence of selection bias
, whereas random sampling justifies the generalization of sample results to the population. The optimal strategy is the combination of both methods in the same design. A random sample of persons is selected from the population and the selected persons are randomly assigned to the conditions. This strategy prevents selection bias
 and justifies generalization of sample results to the population.
1.3.6 Implementation
A protocol
 is drawn up for the implementation of the study. It is recommended to conduct a small-scale pilot study
 to get acquainted with the limitations and weaknesses of the study. If needed, the protocol
 is revised, and the study is implemented according to the protocol
. The study is conducted in a laboratory or field setting (e.g., health care institutes, schools, companies, etc.). The study may meet unexpected problems, for example, drop out of participants or defects of equipment. Some of these problems can be solved on the spot, but other problems have to be handled in the analysis of the data. Anyhow, problems and the handling of problems have to be carefully documented in a log book
 of the study.
The research situation is another source of errors. Situational bias is systematic error that comes from the research situation and the interaction of participants with this situation (see Chap. 6). For example, participants may, incorrectly, think that they are evaluated by the researchers, and experimenters may, unintentionally, differentially behave in the E-
 and C-conditions. Strategies were developed to prevent or reduce situational bias. For example, blinding
 experimenters to conditions, which means that they do not know whether a participant is member of the E-
 or C-condition. This blinding
 prevents that experimenters differentially behave in the E-
 and C-condition. The protocol
 describes these strategies, and standardizes the situation and the behavior of researchers and their co-workers (e.g., experimenters, observers, interviewers, etc.).
1.3.7 Data Analysis
Statistical methods assume that random errors
 affect the results of the analysis of the data. For example, a linear regression model assumes both terms of substantive interest (i.e., the regression coefficients) and a random term (i.e., the residual). Random errors
 affect the precision of the analysis results, but do not bias these results. Statistical theory yields methods to control the influence of random errors
. For example, a 5% significance level of a statistical test sets the probability of incorrectly rejecting a true null hypothesis (i.e., a Type I error) at 0.05. However, the statistical analysis of behavioral science data has many pitfalls.
Data analysts may, unintentionally, apply analysis strategies that favour the substantive hypothesis of the study. Blinding
 of the analysts to the conditions of the study counteracts this type of bias (see Chap. 6), but analysts may discover which data are from, for example, the E-condition.
Adèr (2008) described different phases of the data analysis process. Initially, the analysts focus on the cleaning of the data and the quality of the data, but abstain from analyses to answer the substantive research questions. They apply, for example, methods to detect and handle missing data (see Chap. 16) and outliers (see Chap. 17). This initial phase is followed by the main analysis phase, where the focus is on the research questions.
The most popular method of the main analysis phase is classical null hypothesis testing, but many misconceptions exist on this method (see Chap. 12). Null hypothesis testing applies to confirmatory studies, but is omnipresent in research. A classical null hypothesis test does or does not reject the null hypothesis, but it gives no information on the precision of a parameter estimate. Therefore, the confidence interval (CI) approach is preferred. A CI
 gives information on the precision of a parameter estimate, and can be used to test a null hypothesis. For example a null hypothesis test of a correlation coefficient tests the null hypothesis that the population correlation is zero, but gives no information on the precision of the sample estimate of the correlation. However, a CI
 of the sample estimate gives information on the precision of the estimate, and can also be used to test the null hypothesis. Other examples of misconceptions are multiple null hypothesis tests without correction for chance capitalization
, conventional null hypothesis testing when equivalence testing
 is more appropriate, dichotomization
 of (approximately) continuous variables, and naive methods to handle missing data and outliers.
If the number of conditions of a study is more than two, classical null hypothesis tests, such as, Analysis of Variance (ANOVA), simultaneously test more than one effect. Usually, it is more appropriate to restrict the number of tests, and only to test prespecified effects that are of interest (e.g., an interaction effect
) (see Chap. 18). Moreover, it is rather common to apply tests for continuous DVs (e.g., ANOVA) to categorical data (e.g., 5-point Likert scales), but other tests are needed for categorical DVs (see Chap. 18).
The degree of an effect is expressed by an effect size measure
. Frequently, these measures are standardized (see Chap. 12). Standardized effect sizes of different studies are comparable, which is needed, for example, to integrate effect sizes in a meta-analysis. However, standardized effect sizes are often hard to interpret. Unstandardized effect sizes are usually easier to understand (see Chap. 13).
A common fallacy of the measurement of change is to apply change at the level of a group of participants to each of the individual members of the group. Generally, change at the group level differs from change at the individual level. Therefore, separate analyses have to be applied to study, for example, pretest
-posttest change at the group and single-participant levels (see Chap. 14).
More or less automatically, researchers compute the product moment correlation to assess the relation between two variables. However, other coefficients might be more appropriate, but it is hard to choose a coefficient because the number of existing coefficients is large. Therefore, guidelines are given to facilitate the choice of a coefficient for bivariate relations between two variables of similar type (see Chap. 11).
Data analysts make many decisions. They have to document their decisions and the arguments for their decisions in a log book
. Additionally, they have to file the data and the log book
 orderly. In general, this information should be public such that others can check the results and re-analyze the data.
1.3.8 Reporting
The final part is the reporting of the study. The report can aim at different audiences, for example, fellow researchers, students, or teachers, and authors have to specify their readership in advance. Authors have to keep their readers in mind, and adapt their texts to the preknowledge and interests of their readers.
A questionable practice is to bias the report of the study (see Chap. 20). For example, researchers apply many statistical tests, but only report significant results and withhold the nonsignificant results. Another example is the presentation of an exploratory study as if it is a confirmatory study. The data were explored and hypotheses were derived from the explorations, but the report pretends that these hypotheses were specified before the data were collected.
Research is published in journals and other media. It is hard to get a manuscript published in a high-status journal. For example, the Editor of Psychological Methods reported a rejection rate of about 80–85% of the manuscripts that were submitted to the journal (Harlow, 2017). Also, errors occur in the decision to accept or reject a manuscript for publication. As mentioned above, publication bias
 and replication aversion (see Chap. 19) are, among other things, factors that systematically affect this decision. Recently, proposals were made to improve the publication process (see, among others, Munafò et al., 2017).
1.4 Recommendations
This section gives some general recommendations to counteract errors, while the chapters below give more specific guidelines. The following recommendations are given:	(1)To assess the adequacy of research questions and the feasibility of a study by consulting experts and reviewing the literature.

 

	(2)To plan the study in advance. The plan describes the research questions, sampling of units, operationalizations of IVs and DVs, and outlines the implementation of the study and the analysis of the data. The plan is obligatory if a grant is asked for the study, but is always of use because it supports researchers to conduct the study.

 

	(3)To preregister the plan of the study at science and journal web sites. Preregistration
 commissions researchers to conduct the study according to the plan and compels them to justify possible deviations from the plan.

 

	(4)To protocol
 the implementation of the study. The protocol
 counteracts situational bias by standardizing the research situation and the behavior of researchers and their co-workers.

 

	(5)To keep log books of the implementation of the study and the analysis of the data. A log book
 of the implementation documents unexpected events and how these were handled. A log book
 of the data analysis documents the decisions of the analysts and the arguments for their decisions.

 

	(6)To conduct a pilot study
 to discover the limitations and weaknesses of the study, and, if needed, to revise the study.

 

	(7)To specify the audience of the report of the study in advance. The text should be adapted to the readers the author wants to reach (e.g., fellow researchers, students, or laymen).

 

	(8)To administer and file the data and materials (e.g., software, protocol
, log books, etc.). The data need to be easily accessible to researchers who want to re-analyze the data, and the materials to researchers who want to check or replicate the study.
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Abstract
A sampling method has four main elements. First, defining the population of interest (the target population
). Second, constructing a list of the units of the target population
 (the sampling frame
). Usually, the units of behavioral studies are humans. Third, sampling of units. A distinction is made between probability and nonprobability sampling
. Fourth, obtaining participation of selected units. Incorrect definitions of the target population
, incorrect lists of units, and nonparticipation of selected units are systematic errors
 that bias the study results. Procedures are described to increase the participation rate of selected persons. Probability sampling
 methods select units from the target population
 by a random procedure. Sample statistics
 (e.g., means, variances, and correlations) are computed to estimate corresponding population parameters
. The estimation is affected by random errors
, but is based on sound statistical theory. The precision of the estimates depends on the sample size
 and the sampling method. Methods to determine the sample size
 that is needed for a prespecified precision are discussed. A simple random sample is obtained by randomly selecting units without replacement from the target population
. A stratified random sample
 is obtained by dividing the target population
 into subpopulations and randomly selecting units without replacement from each of the subpopulations. In practice, it is often more convenient and less expensive to select groups of units (clusters) instead of individual units. A cluster sample
 is obtained by randomly selecting clusters without replacement. A stratified random sample
 often increases the estimation precision
 compared to a simple random sample of the same size, whereas a cluster sample
 decreases the precision.
Keywords
Cluster sampleIntraclass correlationMissingnessPost hoc stratificationProportional allocationSimple random sampleStratified random sample
A population is an entire collection of units. The usual units that are studied in the behavioral sciences are persons, for example, all adult inhabitants of a country. However, a population can also consist of other units, for example, groups of persons (e.g., school classes, families), animals, advertisements, and so on. The population that is of interest for the study is called the 
            target population
            
          .
Usually, the target population
 is so large that it is impossible or too expensive to study all units of the population, and studies can only be applied to samples from the population, for example, a sample of thousand adults from a target population
 of ten million of adults.
Two main types of sampling methods are distinguished. First, 
            probability sampling
            
          , where the sample units are selected from the population by a random procedure. Second, 
            nonprobability sampling
            
          , where the sample units are selected from the population by a nonrandom procedure.
The strength of probability sampling
 is that generalization from the sample to the population is based on sound statistical theory, whereas generalization from a nonprobability sample to the population has to be based on other arguments.
The topic of this chapter is the counteracting of random and systematic errors
 in probability sampling
. Counteracting errors in nonprobability sampling
 is discussed in the next chapter.
2.1 The Main Elements of Probability Sampling
Four main elements of a probability sampling
 procedure are distinguished (see Fig. 2.1).[image: ../images/459008_1_En_2_Chapter/459008_1_En_2_Fig1_HTML.png]
Fig. 2.1Main elements of a probability sampling
 procedure



First, the population is defined that is the target for the study, for example, the definition of the population of clinical psychologists to get information on their treatments of patients. Second, the construction of the sampling frame
. The 
              sampling frame
              
             lists the units of the target population
, for example, making or obtaining a list of all clinical psychologists of the target population
. Third, sampling of units from the sample frame, for example, random sampling of 100 clinical psychologists from the list. Fourth, obtaining cooperation of the sampled units to participate in the study, for example, receiving consent of the 100 clinical psychologists to answer questions about their treatments.
2.2 Defining the Target Population
The target population
 has to be well defined. For example, the definition ‘clinical psychologists’ is too vague. Are retired clinical psychologists included or excluded? Are researchers of clinical psychology included or excluded? Are postdoctoral trainees of clinical psychology included or excluded?
An incorrect or incomplete definition of the target population
 can bias the results of a study. For example, if, erroneously, the population definition does not exclude retired clinical psychologists, the sample can contain retired clinical psychologists. The results of the study of treatments will be biased if the pensioners report that they do not apply treatments.
2.3 Constructing the Sampling Frame
The sampling frame
 lists the units of the target population
. Different types of errors can occur in the listing of units. First, units that belong to the target population
 but cannot be listed. For example, clinical psychologists who are not registered cannot be listed. Second, units that do not belong to the target population
 but are listed, for example, erroneously, some psychiatrists are registered. Third, units of the target population
 are listed multiple times, for example, clinical psychologists who have a private practice and also work at a psychotherapy institute occur on the list twice.
Discrepancies between the target population
 and the sampling frame
 can bias the study results. Systematic errors
 have to be prevented by carefully constructing and checking the list.
2.4 Probability Sampling

The
 target population
 of a behavioral science study consists of a finite number of N units. Using probability sampling
 a sample of n units is selected from the population by a random procedure. Usually, the 
              sample size
              
             (n) is considerably smaller than the number of population units (N).
A number of probability sampling
 methods exists (see, for example, Barnett, 1974; Bethlehem, 1999, 2009). Some of these methods are described in the following subsections.
2.4.1 Simple Random Sampling

From
 N units T distinct samples of n units can be obtained. For example, from N = 4 units (A, B, C, and D), T = 6 distinct samples of n = 2 units can be obtained: (1) A and B, (2) A and C, (3) A and D, (4) B and C, (5) B and D, and (6) C and D. 
                Simple random sampling
                
               selects one of these T distinct samples, where each of the distinct samples has equal probability (1/T) of being selected. For example, a simple random sample of size n = 2 is obtained from N = 4 units by selecting a distinct sample of two units from the six distinct samples with probability 1/6 (for example, by throwing an unbiased die).
In practice, it is inconvenient to enumerate all possible distinct samples of size n from a population of N units, especially if N is large. A practical method is to apply a sequential selection procedure that guarantees that each of the distinct samples has equal probability of being selected.
The sequential procedure has the following steps:	(1)The units of the sampling frame
 are numbered from 1 through N (1, 2, …, N).

 

	(2)One number is selected from the N numbers using a random device, for example, a computer algorithm that generates one random number from the numbers 1, 2, …, N.

 

	(3)The unit corresponding to the selected number is removed from the sampling frame
 and is included into the sample.

 

	(4)One number is selected from the remaining N-1 numbers of the sampling frame
 using the random device.

 

	(5)The unit corresponding to the selected number is removed from the sampling frame
 and is included into the sample.

 

	(6)The procedure is continued till the nth unit is included into the sample.

 





This sequential procedure is called 
                sampling without replacement
                
               because each unit that is selected is removed from the sampling frame
 and cannot be selected again.
The sequential procedure guarantees that the probability of selecting a sample is equal for each of the distinct samples. Example 2.1 demonstrates this equality for the case of N = 4 and n = 2.
Example 2.1 Simple random sampling (N = 4, n = 2)

A population
 of N = 4 students consists of two boys (B1 and B2) and two girls (G1 and G2). Six distinct samples of size 2 can be obtained from this population: (1) B1 and B2, (2) B1 and G1, (3) B1 and G2, (4) B2 and G1, (5) B2 and G2, and (6) G1 and G2. According to simple random sampling
 the probability of selecting each of these six samples has to be 1/6. The sequential procedure is applied to select a sample of 2 students:

                	(1)The students are numbered 1 (B1), 2 (B2), 3 (G1), and 4 (G2).

 

	(2)One number is randomly selected from these four numbers. Suppose number 3 is selected.

 

	(3)Student G1 is removed from the four students and is included into the sample.

 

	(4)One number is randomly selected from the remaining numbers 1, 2, and 4. Suppose number 1 is selected.

 

	(5)B1 is included into the sample.

 




              
The result is a sample consisting of G1 and B1. The probability of selecting a sample consisting of G1 and B1 can be computed. In Step (2) the probability of selecting G1 is 1/4 (randomly selecting one number out of four numbers), and in Step (4) the probability of selecting B1 is 1/3 (randomly selecting one number out of three numbers). Therefore, the probability of first selecting G1 and then B1 is 1/4 × 1/3 = 1/12. The sample consisting of B1 and G1 can also be obtained by first selecting B1 and then G1; the probability of first selecting B1 and then G1 is also 1/12. Therefore the probability of selecting the sample consisting of B1 and G1 is equal to the probability of first selecting G1 and then B1 plus the probability of first selecting B1 and then G1, that is 1/12 + 1/12 = 1/6. In the same way it can be shown that each of the other distinct samples of size 2 (i.e., (1) B1 and B2, (3) B1 and G2, (4) B2 and G1, (5) B2 and G2, and (6) G1 and G2) has probability 1/6 of being selected. Therefore, the sequential procedure yields the same probability of being selected (1/6) for each of the six distinct samples as should be according to simple random sampling
.


Simple random sampling
 is used to get information on the population. One or more variables of interest are measured in the sample, and the sample values are summarized in characteristics that are called 
                statistics
                
              , for example, the mean arithmetic test score of a sample of students, the proportion of depressed patients in a sample of adults, the difference between the mean anxiety score of samples of treated and untreated anxiety disorder patients, the correlation between intelligence and Grade Point Average (GPA) in a sample of high school students, and so on. These statistics
 are used to estimate population characteristics, which are called 
                parameters
                
              . For example, the mean arithmetic test score of a sample of students is used to estimate the mean arithmetic test score of the entire population of students, the sample proportion of depressed patients is used to estimate the population proportion of depressed patients, and so on. To distinguish parameters
 from statistics
, it is convention to indicate parameters
 by Greek letters (e.g., μ and σ2), and statistics
 by Roman letters (e.g., [image: $$ \bar{X} $$] and S2).
Usually, the sample statistic will not be equal to the population parameter that is estimated by the statistic. For example, the mean arithmetic test score in a sample of students will not be equal to the mean score of the entire population of students. If the population is correctly defined and the sampling procedure is error free, probability sampling
 causes only random errors
. For example, the difference between the sample and population means of arithmetic test scores is a random error that is caused by random sampling of students (Example 2.2).
Example 2.2 Estimating the population mean using simple random sampling (N = 4, n = 2)
The verbal intelligence test scores of the four students of Example 2.1 are: 98 (B1), 103 (B2), 105 (G1), and 112 (G2). The population mean, indicated by μ (lower case Greek letter mu), is[image: $$ \upmu = \frac{98 + 103 + 105 + 112}{4} = 104.5. $$]





Suppose that the population mean is not known to an investigator, and a simple random sample of size 2 is used to estimate the population mean. The sample mean ([image: $$ \bar{X} $$]) estimates the population mean (μ). In general, the sample mean will not be equal to the population mean, and an error will occur because of random sampling. Table 2.1 reports the six distinct samples of size 2, their sampling means, and their sampling errors.Table 2.1Distinct samples, sample means, mean of the sample means and errors, and standard deviation of the errors (N = 4, n = 2, μ = 104.5)


	Sample
	Mean score ([image: $$ \bar{X} $$])
	Error ([image: $$ \bar{X} $$] − μ)

	(1) B1 and B2
	100.5
	−4.0

	(2) B1 and G1
	101.5
	−3.0

	(3) B1 and G2
	105.0
	0.5

	(4) B2 and G1
	104.0
	−0.5

	(5) B2 and G2
	107.5
	3.0

	(6) G1 and G2
	108.5
	4.0

	Sum:
	627.0
	0

	Mean:
	104.5
	0

	Standard deviation of the errors:
	2.90





If, for example, the investigator randomly selects the first sample (B1 and B2), the sample mean is [image: $$ \frac{98 + 103}{2} = 100.5 $$], and the error is 100.5 − 104.5 = −4.0.

Usually, the sample mean will differ from the population mean, for example, each of the six sample means of Example 2.2 differs from the population mean. Therefore, a random error is made if a simple random sample is selected and its mean is used to estimate the population mean. However, the mean of the distinct sample means is equal to the population mean, which implies that the mean of the errors is 0. Therefore, the sample mean is called an 
                unbiased estimator
                
               of the population mean. This property is demonstrated by Example 2.2 (the mean of the sample means is equal to μ = 104.5 and the mean of the errors is 0).
The standard deviation of the errors indicates the precision of the estimation of the population mean. A small standard deviation of the errors means that the errors are near to 0, whereas a large standard deviation means that the errors are widely dispersed around 0.
The precision of the estimation procedure is affected by the sample size
. In general, the precision increases when the sample size
 increases. Therefore, in the planning phase of a study, researchers can determine the estimation precision
 by choosing an appropriate sample size
. Moreover, estimation precision
 can be increased by using collateral information
 on the population units. This information can be used both in the planning phase of a study and in the data analysis phase. The following two subsections discuss these two strategies for the estimation of the population mean, but can also be applied to the estimation of other population parameters
.
2.4.2 Sample Size
Example 2.2 showed
 the properties of simple random sampling
. However, the population size (N = 4) was unrealistic. In practice, mostly large populations are of interest. In general, larger samples yield more precise parameter estimates than smaller samples. This section discusses the specification of the sample size
 that is considered to be sufficiently accurate for the estimation of the sample mean of a large population.
The standard deviation of the sample mean can be used to compute confidence intervals, for example, a 95 or 90% confidence interval
. A theorem of mathematical statistics
 is applied to compute these intervals. A simple random sample of size n is taken from a large population of units. The population mean of a variable X is μ and the population standard deviation is σ (lower case Greek letter sigma). The theorem states that the sample mean ([image: $$ \bar{X} $$]) is normally distributed with mean μ and standard deviation [image: $$ \frac{\sigma }{\sqrt n } $$] for sufficiently large sample sizes. This result is used to compute confidence intervals
, for example, the 95% confidence interval
 of a sample mean ranges from[image: $$ \bar{X} - 1.96\frac{\sigma }{\sqrt n } $$]



to[image: $$ \bar{X} + 1.96\frac{\sigma }{\sqrt n }. $$]





The width of the 95% confidence interval
 (w0.95) is the difference between the upper and lower bounds of the interval:[image: $$ w_{0.95} = \bar{X} + 1.96\frac{\sigma }{\sqrt n } - \left( {\bar{X} - 1.96\frac{\sigma }{\sqrt n }} \right) = 3.92\frac{\sigma }{\sqrt n }. $$]

 (2.1)




Squaring the left and right sides of Eq. 2.1 and solving for n yields[image: $$ n = 15.37\frac{{\sigma^{2} }}{{w_{0.95}^{2} }}. $$]

 (2.2)




Equation 2.2 gives the sample size
 (n) that is needed to obtain a 95% confidence interval
 of width w0.95. However, n cannot yet be computed because both σ and w0.95 are unknown. Different strategies can be applied to solve this problem.
The first strategy can be used if an estimate of the population standard deviation (σ) can be made from empirical data, for example, from previous studies or a pilot study
. This estimate has to be rather precise because estimates smaller than the population standard deviation (σ) underestimate the sample size
 that is needed (cf. Eq. 2.2). Additionally, researchers have to specify the width of the 95% confidence interval
 (w0.95) that they find an acceptable precision for their study. The empirical estimate of σ and the researchers’ specification of w0.95 are inserted into Eq. 2.2 to compute n.
The second strategy can be used if the researchers can specify an acceptable width of the 95% confidence interval
 (w0.95), but no empirical information on the population standard deviation (σ) is available. Most of the variables that are used in the behavioral sciences have an absolute minimum and an absolute maximum. For example, the number-correct score of a 30-item
 arithmetic test cannot be smaller than Xmin = 0 (none of the 30 items is correctly answered) and cannot be larger than Xmax = 30 (each of the 30 items is correctly answered). If a variable is bounded by Xmin and Xmax, its population variance is bounded by[image: $$ \sigma^{2} \le 1/4\left( {X_{max} - X_{min} } \right)^{2} $$]





(Seaman and Odell, 1988). Replacing σ2 of Eq. 2.2 by 1/4(Xmax - Xmin)2 yields a sample size

[image: $$ {\text{n}} = 15.37 \times 1/4\frac{{\left( {X_{max} - X_{min} } \right)^{2} }}{{w_{0.95}^{2} }} = 3.84\frac{{\left( {X_{max} - X_{min} } \right)^{2} }}{{w_{0.95}^{2} }} $$]

 (2.3)


that guarantees that the 95% confidence interval
 is equal to or smaller than w0.95. The researchers have to specify the width of the 95% confidence interval
 that they find acceptable for their study. The sample size
 (n) is computed by inserting the researchers’ specification of w0.95 (see Example 2.3).
Example 2.3 Computing the sample size (unknown σ, prespecified width of the 95% confidence interval)
A test to measure students’ motivation for school learning has 8 5-point Likert items. The items are scored 1 (strongly disagree), 2 (disagree), 3 (indifferent), 4 (agree), and 5 (strongly agree). The minimum value that can occur is Xmin = 8 × 1 = 8 (the student strongly disagrees with each of the 8 items) and the maximum value is Xmax = 8 × 5 = 40 (the student strongly agrees with each of the 8 items). The researchers want to estimate the mean test score of a large population of students. They specify that the width of the 95% confidence interval
 of the mean should not exceed 4 points (w0.95 = 4). Using Eq. 2.3 the sample size
 that is needed is[image: $$ n = 3.84\frac{{(40 - 8)^{2} }}{{4^{2} }} = 245.76. $$]





A simple random sample of 246 students will guarantee that the width of the 95% confidence interval
 of the mean is at most 4 points. For example, if the mean test score of a simple random sample of 246 students is 30.6, the lower bound of the 95% confidence interval
 is equal to or larger than 30.6 − 2 = 28.6 and the upper bound of this interval is equal to or smaller than 30.6 + 2 = 32.6 (the width of the 95% confidence interval is equal to or smaller than 32.6 − 28.6 = 4).

The third strategy can also be used when no empirical information on the population standard deviation (σ) is available. Rewriting Eq. 2.2 as[image: $$ n = 15.37\left( {\frac{\sigma }{{w_{0.95} }}} \right)^{2} $$]

 (2.4)




shows that it is not necessary to specify separately σ and w0.95, but that it is sufficient to specify their ratio. Therefore, researchers can confine to specify the ratio [image: $$ \frac{\sigma }{{w_{0.95} }} $$] (see Example 2.4).
Example 2.4 Computing the sample size (σ unknown, prespecified ratio [image: $$ \frac{{\varvec{\upsigma}}}{{\varvec{w}_{{{\mathbf{0}}{\mathbf{.95}}}} }} $$])
The situation of Example 2.3 is considered again. Instead of separately specifying σ and w0.95, the researchers specify that the width of the 95% confidence interval
 should be 20% of the population standard deviation, that is, w0.95 = 0.2σ. Using Eq. 2.4 the sample size
 that is needed is[image: $$ n = 15.37\left( {\frac{\sigma }{0.2\sigma }} \right)^{2} = 15.37(5)^{2} = 384.25. $$]





A simple random sample of 385 students is needed when the width of the 95% confidence interval
 has to be 20% of the population standard deviation.

Researchers might prefer other confidence intervals
 than the 95% interval, such as a 90% interval. Sample size
 equations for other confidence intervals
 are derived in the same way as Eqs. 2.2 and 2.3. For example, corresponding to Eq. 2.2, the sample size
 equation for the 90% confidence interval
 is[image: $$ n = 10.82\frac{{\sigma^{2} }}{{w_{0.90}^{2} }}, $$]

 (2.5)




and the equation corresponding to Eq. 2.3 is[image: $$ n = 2.71\frac{{\left( {X_{max} - X_{min} } \right)^{2} }}{{w_{0.90}^{2} }}, $$]

 (2.6)




where w0.90 is the width of the 90% confidence interval
.
2.4.3 Stratification
The estimation precision
 can be increased by using collateral information
 on the population units. 
                Collateral information
                
               is information on variables that are related to the variable that is studied. Using this information the population is divided into subpopulations that are called 
                strata
                
              . These strata
 can be used in the sampling phase before the data are collected. If it is impossible to use strata
 in the sampling phase, collateral information
 can be used after the data are collected.
A 
                stratified random sample
                
               is obtained by taking a simple random sample of predetermined size from each of the strata
. Example 2.2 illustrated simple random sampling
 of a sample of n = 2 students from a population of N = 4 students. The students’ gender is known, and the gender variable can be used for stratified random sampling (see Example 2.5).
Example 2.5 Estimating the population mean using stratified random sampling (N = 4, n = 2)
The four students of Example 2.2 are divided into a stratum of two girls and a stratum of two boys. A stratified random sample
 of size 2 is obtained by randomly selecting one of the two girls and by randomly selecting one of the two boys. Table 2.2 reports the four distinct stratified samples of size 2, their sampling means, and their sampling errors.Table 2.2Stratified random samples, mean of the sample means and errors, and standard deviation of the errors (N = 4, n = 2, two strata
)


	Sample
	Mean score ([image: $$ \bar{X} $$])
	Error ([image: $$ \bar{X} -\upmu $$])

	(1) B1 and G1
	101.5
	−3.0

	(2) B1 and G2
	105.0
	0.5

	(3) B2 and G1
	104.0
	−0.5

	(4) B2 and G2
	107.5
	3.0

	Sum:
	418.0
	0

	Mean:
	104.5
	0

	Standard deviation of the errors:
	2.15





Each of the four samples has one girl and one boy. Comparing the standard deviation of the errors of simple random sampling
 (Table 2.1) and stratified random sampling (Table 2.2) shows that stratification has increased estimation precision
: the standard deviation decreased from 2.90 (simple random sampling
) to 2.15 (stratified random sampling).

Stratified random sampling selects a sample from each of the strata
. The sample size
 per stratum is predetermined. A convenient way of specifying the stratum sample sizes is to choose these proportional to the stratum sizes, which is called 
                proportional allocation
                
               (see Example 2.6).
Example 2.6 Stratified random sampling and proportional allocation
A survey is planned on adults’ health behavior. It is known from previous research that health behavior is related to persons’ socio-economic status (SES). Moreover, official statistics
 have classified the entire population into three SES strata
: high (20% of the population), middle (50%), and low (30%) SES. A stratified random sample
 of 1,000 respondents is selected. Proportional allocation
 is applied, which implies that the stratum sample sizes are proportional to the stratum population sizes: 200 (20%) respondents are randomly selected from the high, 500 (50%) from the middle, and 300 (30%) from the low SES stratum.
An advantage of proportional allocation
 is that the (unweighted) sample mean of a variable can be used to estimate the population mean. As the simple random sample mean, the proportional allocation
 sample mean is an unbiased estimator
 of the population mean (i.e., the mean of the stratified sample means is equal to the population mean), which is illustrated by Example 2.5 (the mean of the stratified sample means of Table 2.2 is equal to the population mean μ = 104.5).
In practice, it is sometimes impossible to apply stratified random sampling because simple random samples cannot be selected per stratum. Instead, a simple random sample is selected from the entire population, and 
                  post hoc stratification
                  
                 is applied. The collateral information
 is obtained from the sample units, and the sample is stratified after the data are collected. The weighted sample mean is used to estimate the population mean, where the weights are set equal to the population stratum proportions (see Example 2.7).

Example 2.7 Estimating the population mean using post hoc stratification
As in Example 2.6, a survey is planned on respondents’ health behavior, and it is known that the population consists of high (20%), middle (50%), and low (30%) SES strata
. It is impossible to select respondents per stratum. Therefore, a simple random sample of 1,000 respondents is selected from the entire population. During data collection respondents are not only asked on their health behavior, but also on their education, profession, and income. Using these data the respondents are classified into high, middle, and low SES groups. In general, the sample proportions per SES group are not equal to the SES stratum proportions, for example, the sample proportion of high SES respondents is 0.181 (181 respondents), while the stratum proportion is 0.20. The means of the health behavior score are computed per SES group: [image: $$ \bar{X}_{H} , \bar{X}_{M} ,{\text{ and }} \bar{X}_{L} $$] are the sample means of the high, middle, and low SES groups, respectively. The population mean is estimated by the weighted mean[image: $$ \bar{X} = 0.2\bar{X}_{H} + 0.5\bar{X}_{M} + 0.3\bar{X}_{L} , $$]





where 0.2, 0.5, and 0.3 are the population stratum proportions of the high, middle, and low SES respondents, respectively.

Three estimators of the population mean were discussed, that is the simple sample mean, the stratified sample mean, and the post hoc stratified sample mean. Each of these estimators is unbiased (the mean of the sample means across distinct samples is equal to the population mean), but the standard deviation of the errors are different. The standard deviation of the stratified and post hoc stratified sample mean is smaller than the standard deviation of the simple sample mean if the variation of the variable of interest between strata
 is relatively large compared to the variation within strata
. This is illustrated by Examples 2.2 and 2.5. The verbal test scores of the two girls (105 and 112) are larger than the verbal test scores of the two boys (98 and 103), which means that the variation of the test scores between boys and girls is relatively large compared to the variation of the test scores within the two gender groups. Therefore, the gender stratification increases the estimation precision
: the standard deviation of the errors of stratified random sampling is 2.15 (see Table 2.2), while the standard deviation of simple random sampling
 is 2.90 (see Table 2.1). Post hoc stratification
 also increases estimation precision
 if the between-stratum variation of the variable of interest is relatively large compared to the within-stratum variation, but it is less efficient than stratification.
2.4.4 Cluster Sampling
The units of a population are sometimes clustered in groups of units, and random sampling of clusters can be more convenient or less expensive than random sampling of individual units. For example, students are clustered in schools, and random sampling of schools is more convenient than random sampling of individual students.
A 
                cluster sample
                
               is a simple random sample of clusters from a population of clusters. Cluster sampling can be done in stages. For example, random sampling of schools and testing all students of the sampled schools is an example of one-stage cluster sampling, and random sampling of schools and random sampling of classes from the sampled school and testing all students of the sampled classes is an example of two-stage cluster sampling.
Usually, cluster sampling is more convenient than simple random and stratified random sampling, but it introduces a new type of error. Often, the units of the same cluster are more similar than the units of different clusters. For example, the arithmetic test scores of students from the same class will be more similar than the scores of students from different classes because students from the same class share the same teacher, the same arithmetic program, and so on.
The within-cluster similarity of a variable is expressed by the intra-class correlation
. Nowadays, the intra-class correlation
 is discussed as a ratio of variance components (see, for example, Snijders & Bosker, 1999, Sect. 3.3). However, in the older literature, the intra-class correlation
 is described as a product moment correlation (pmc) of within-cluster units (see, for example, Snedecor & Cochran, 1967, p. 295), which explains why it is called a correlation. Because of the familiarity of the pmc, the intra-class correlation
 is described in terms of the pmc.
Each cluster of a cluster sample
 consists of a number of units. For example, the first cluster consists of three units, say A1, A2, and A3. The three distinct within-cluster pairs are A1 and A2, A1 and A3, and A2 and A3. The intra-class correlation
 is the pmc between the first and second members of these within-cluster pairs. To compute the pmc between two variables (X and Y) one member has to belong to the X-variable and the other to the Y-variable. However, a within-cluster pair does not specify which member of the pair belongs to the X-variable and which member belongs to the Y-variable. For example, in the pair (A1, A2), A1 can belong to the X-variable (and A2 to the Y-variable) or A2 can belong to the X-variable (and A1 to the Y-variable). This problem is solved by including both options in the computation of the pmc, that is, two pairs of A1 and A2 are included: (1) A1 belongs to the X-variable and A2 to the Y-variable, and (2) A2 belongs to the X-variable and A1 to the Y-variable. The intra-class correlation
 is the pmc between these X- and Y-variables (see Example 2.8).
Example 2.8 The intra-class correlation as pmc

A health
 survey is administered to the members of two families. The first family consists of a father (F1), mother (M1), and a child (C1), and the second family also consists of a father (F2), mother (M2), and a child (C2). Their health behavior scores are: 10 (F1), 12 (M1), 13 (C1), 15 (F2), 12 (M2), and 11 (C2). It is expected that the scores are more similar within the families than between the two families. The intra-class correlation
 is used to express the within-family similarity. The computation of the intra-class correlation
 is shown in Table 2.3.Table 2.3Computation of an intra-class correlation




	 	Health behavior score

	Within-family pair
	First member (X)
	Second member (Y)

	F1, M1
	10
	12

	M1, F1
	12
	10

	F1, C1
	10
	13

	C1, F1
	13
	10

	M1, C1
	12
	13

	C1, M1
	13
	12

	F2, M2
	15
	12

	M2, F2
	12
	15

	F2, C2
	15
	11

	C2, F2
	11
	15

	M2, C2
	12
	11

	C2, M2
	11
	12

	 	pmc

	
Intra-class correlation
:
	0.35





The table shows that each within-family pair is entered twice. For example, F1 and M2 are entered in the first two lines of the table. In the first line, the score of F1 (10) is entered as the X-variable and the score of M1 (12) is entered as the Y-variable, and in the second line, the score of M1 (12) is entered as the X-variable and the score of F1 (10) is entered as the Y-variable.

An intra-class correlation
 of 0 means that the similarity of units from the same cluster is the same as the similarity of units from different clusters. A positive intra-class correlation
 means that units from the same cluster are more similar than units from different clusters.
A positive intra-class correlation
 introduces error. The effect of a positive intra-class correlation
 is that the estimation precision
 is decreased. Example 2.9 demonstrates this for the estimation of a mean from a simple random sample and a cluster sample
 that have the same number of units.
Example 2.9 Estimation precision of a mean using a simple random sample and a cluster sample
Educational researchers plan to estimate the mean of the scores of an arithmetic test. They want to estimate this mean using a simple random sample of 210 students. However, it is more convenient and less expensive to use a cluster sample
, for example, ten school classes and 210 students. The relation between the variance of a mean estimated from a simple random sample and a cluster sample
 that have the same number of units is known for the special case where the number of units (i.e., the 
                  cluster size
                  
                ) is the same for each of the clusters. The variance of the mean estimated from the cluster sample
 is obtained by multiplying the variance of the mean estimated from the simple random sample by the factor
 (1 + (cluster size
 -1) x intra-class correlation
) (Snijders & Bosker, 1999, Sect. 3.4). If, for example, the intra-class correlation
 is 0.10 and the cluster size
 is 21 for each of the ten classes, the variance of the mean estimated from the cluster sample
 is (1 + (21-1) × 0.10) = 3 times the variance of the mean estimated from the simple random sample.
This example demonstrates that even a small intra-class correlation
 of 0.10 has a large effect on the estimation precision
 of a mean. In general, a cluster sample
 requires a larger sample size
 than a simple random sample to obtain the same estimation precision
 as the simple random sample.

2.5 Obtaining Participation of Sampled Persons
The result of a probability sampling
 procedure is a sample of units that should participate in the study. The units of behavioral science studies are usually humans, and they may not participate in the study. For example, some of the sampled persons cannot be contacted by the researcher (e.g., being abroad), are unable to participate (e.g., being ill or living in institutions), or are not willing to participate.
Missingness of sampled persons is a source of errors. The type of error depends on the type of missingness. Random missingness causes only random errors
, but nonrandom missingness causes both random and systematic errors
.
Missingness is completely at random if the missing persons are a random sample from the sampled persons. For a simple random sample, 
              missing completely at random (MCAR)
              
             means that the missing persons are a random sample from the simple random sample of persons. The sample of participants remains a simple random sample from the population because the missing persons are a random sample from a simple random sample of persons. Therefore, the sample mean of the participants remains an unbiased estimator
 of the population mean, but the estimation precision
 is reduced because the sample size
 of the participants is smaller than the sample size
 of the sampled persons. This reduction can be counteracted by replacing missing persons by newly randomly selected persons or can be prevented by oversampling
 (see Example 2.10).
Example 2.10 Counteracting the reduction of estimation precision caused by MCAR missingness
Example 2.3 described a situation where 246 students are needed to estimate the population mean of motivation test scores with a 95% confidence interval
 of 4 points width. Suppose that 12 of the sampled students did not participate in the study because they had the flu at the time of test administration. It is assumed that the missingness is completely at random because it was caused by the flu. The sample size
 is reduced from 246 to 246 − 12 = 234 participants. The researchers can compensate for this reduction by randomly selecting 12 new students from the population, and still testing them. The reduction of the planned sample size
 could have been prevented by oversampling
. For example, if it is expected that about 5% of the students will have the flu at the testing occasion, a sample of 260 students should randomly be selected.

For a stratified random sample
, MCAR
 means that the missing persons are a simple random sample from the sample. 
              Missing at random (MAR)
              
             is a weaker condition than MCAR
. MAR
 means that the missing persons are a random selection of persons per stratum. The missingness can differ between strata
, but it is random within each of the strata
. If MAR
 applies to a stratified sample, an unbiased estimate of the population mean can be derived from the sample data (see Example 2.11).
Example 2.11 Estimating the population mean from a stratified random sample, where missingness is MAR
Example 2.6 described the estimation of the population mean of health behavior scores from a stratified random sample
 of 1,000 respondents. The population is stratified with respect to SES: 20% high, 50% middle, and 30% low SES persons. Using stratified random sampling and proportional allocation
 yields the following frequencies of respondents per stratum: 200 (20%) high, 500 (50%) middle, and 300 (30%) low SES persons. Hundred persons do not participate in the study: 10 from the high, 20 from the middle, and 70 from the low SES group. The proportional allocation
 is spoiled in the remaining sample of 1,000 − 100 = 900 persons who participate in the study: 190 (21%) are from the high, 480 (53%) from the middle, and 230 (26%) from the low SES group. However, if the missingness is random per stratum (i.e., the missingness is MAR
), an unbiased estimate of the population mean can be made. The estimator is the weighted sum of the three sample means and is the same as used in post hoc stratification
 (see Example 2.7):[image: $$ \bar{X} = 0.2\bar{X}_{H} + 0.5\bar{X}_{M} + 0.3\bar{X}_{L} . $$]






If the missingness is missing not at random (MNAR)
, that is, the missingness is not MCAR
 or MAR
, it is systematic and can bias population parameter estimates. For example, if the 100 missing persons of Example 2.11 are behaving unhealthy, the error is systematic. The population mean of the behavior health score is overestimated by the sample mean because 100 sampled persons who behave unhealthy are lacking from the sample.
Missingness of sampled persons has to be prevented as much as possible. Methods to increase the participation of sampled persons in surveys are described by, among others, Dillman (1978), Dillman, Smyth, and Christian (2009), and Lynn (2008). From their work some general guidelines are derived to increase the participation of sampled persons in behavioral science studies.
Usually, researchers contact sampled persons by postal mail, e-mail, or telephone. If a person does not react to mail or e-mail, reminders have to be sent, and if a person does not answer the telephone, callbacks have to be made.
Mail and e-mail may enclose materials, such as forms and questions that are asked to be completed and returned to the sender. Reminders should enclose these materials again because persons may have thrown them away or cannot find them. The correspondence with sampled persons should be personalized but not overdone. Dillman et al. (2009, Chap. 7) give guidelines for the correspondence with respondents.
Czaja and Blair (2005, p. 209) recommend to make at least four callbacks for sampled persons who do not answer the telephone. A call may not be answered because the person is working or shopping. Therefore, callbacks should be scheduled at days of the week and times of the day which differ from the days or times of unanswered calls, for example, call-backs at the evening when daytimes calls are not answered.
Correspondence and telephone calls should mention the topic of the study and the organization that is doing the study. Moreover, researchers have to express their appreciation for participation in their study.
Willingness to participate in a study can be increased by giving rewards. Monetary rewards are probably most effective, but other rewards, such as lottery tickets, may be effective as well.
2.6 Recommendations

Probability sampling
 is the preferred method of sampling because the generalization of sample results is based on statistical theory, but is not often applied in behavioral research. The following recommendations are given.

Probability sampling
 requires an adequate definition of the target population
, and the construction of a correct sampling frame
. The sampling frame
 is needed to select persons randomly from the population.
Researchers have to specify a sample size
 that yields sufficiently precise parameters
 estimates. The estimation precision
 can be increased by using collateral information
 of the persons.
It is sometimes necessary to select clusters of persons instead of individual persons. The intra-class correlation
 of cluster samples has to be computed, and the sample size
 has to be increased if the intra-class correlation
 is larger than zero.
The missingness of selected persons has to be reduced by applying tried and tested guidelines to increase the participation rate of selected persons.
If a part of the selected persons are missing completely at random (MCAR)
 or missing at random (MAR)
, missingness is compensated by randomly selecting new persons from the population. If it is expected that a given percentage of the selected persons will be MCAR
 or MAR
, missingness can be compensated by oversampling
 of persons. Otherwise, statistical methods to handle MCAR
 and MAR
 data have to be applied (see Chap. 16).
If a substantial part of the selected persons is missing not at random (MNAR)
, missing data methods for nonprobability samples are needed (see Chap. 3).
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Abstract

Nonprobability sampling
 selects units nonrandomly. It is very common in the behavioral science research, for example, psychology freshmen or Internet users are asked to participate in a study. Moreover, a probability sample becomes a nonprobability sample if some of the selected persons are nonrandomly missing or drop out of the study. Nonprobability sampling
 is threatened by systematic errors
 that bias the study results. Three procedures are described to control for bias. First, representative sampling: a sample is selected that is judged to be representative for the population. Second, applying weighting procedures in the analysis of the data. Third, comparing study results across different subpopulations (e.g., males and females, younger and older participants, and so on). If study results are approximately the same across different groups, generalization of the study results is supported. However, generalization from a nonprobability sample to a population cannot be based on statistical theory. Therefore, probability sampling
 has to be preferred above nonprobability sampling
.
Keywords
GeneralizationOther- and self-selectionReference sampleRepresentative sampleWeighting
Many behavioral science studies use nonprobability samples. In contrast to probability sampling
, nonprobability sampling
 applies nonrandom methods to select study participants. Examples of nonprobability samples are schools that are invited to participate in educational studies, and Internet users who volunteer in psychological experiments.
The selection procedure of nonprobability sampling
 is not random. It is known for a long time that persons who volunteer in behavioral studies differ in many respects from persons who do not volunteer (Rosenthal & Rosnow, 1975). Therefore, the selection can systematically affect study results. For example, study results found with psychology freshmen may not hold for a general population of adults. The main threat of nonprobability sampling
 is systematic bias of study results. Systematic errors
 of nonprobability sampling
 cannot be prevented, but strategies can be applied to reduce, control, and study systematic errors
.
3.1 The Main Elements of Nonprobability Sampling
Section 2.​1 described
 the four main elements of a sampling procedure: (1) defining the target population
, (2) constructing the sampling frame
, (3) sampling of units, and (4) obtaining participation of the sampled units. This section considers these elements in the context of nonprobability sampling
.
Usually the target population
 is not defined for nonprobability sampling
. However, the definition of the target population
 can be relevant for the use of strategies to reduce or control for bias that is induced by nonprobability sampling
. Therefore, it is recommended to define the target population
 also for nonprobability sampling
.
The sampling frame
 is the list of units of the target populations. Usually, it makes no sense to make a list of units for nonprobability sampling
 because units are not randomly selected from a list. For example, schools are invited by researchers and psychology students volunteer and are not selected from a list.
Two main types of nonprobability sampling
 are distinguished. First, other-selection
, where units are selected by others, such as, researchers and their co-workers. For example, an educational researcher who selects school classes for participation in an educational study. Second, self-selection
, where persons volunteer to participate in a study. For example, psychology freshmen who volunteer in psychological experiments.
Persons who are invited by others may not participate in a study because they cannot be contacted (e.g., being abroad), are not able to participate (e.g., being ill), or refuse to participate. Under the MCAR
 and MAR
 conditions (see Sect. 2.​4), sample statistics
 can be corrected as for probability samples. These corrections reduce error variance, but they do not reduce bias that is induced by nonprobability sampling
.
The participation rate of both persons who are invited by others and of persons who volunteer can be increased in the same ways as mentioned in Sect. 2.​4: sending reminders including all materials, making callbacks at days and times that differ from the days and times of unanswered calls, using personalized but not overdone correspondence, giving information on the study and the organization that is doing the study, expressing researchers’ appreciation for a person’s participation, and giving rewards.
3.2 Strategies to Control for Bias

Nonprobability sampling
 is prone to systematic errors
 that bias study results. Strategies were developed to control for bias, and are discussed in this section.
3.2.1 Representative Sampling
A 
                representative sample
                
               is a nonprobability sample that is selected by others (e.g., the researchers), and that according to their judgment adequately represents the population. Superficially, a representative sample
 looks like a stratified random sample
, but both procedures are very different. The units of a stratified random sample
 are randomly selected from the strata
 (subpopulations) of a population, whereas the members of different types of a representative sample
 are not randomly selected (see Example 3.1).
Example 3.1 Representative sampling
A study is planned on adults’ health behavior. It is known from previous research that health behavior is related to persons’ socio-economic status (SES). Moreover, it is known from official statistics
 that 20%, 50%, and 30% of the population belong to the high, middle, and low SES groups, respectively. For convenience, the researchers decide to use a sample of 100 persons of their university campus that is representative with respect to SES. They bring in for their study 20 participants from the high SES group (e.g., scientific staff members), 50 participants from the middle SES group (e.g., administrative staff members), and 30 participants from the low SES group (e.g., canteen and cleaning staff members).

Comparing Example 3.1 with Example 2.​6 of the previous chapter shows that representative sampling resembles stratified random sampling with proportional allocation
. Both procedures guarantee that the sample distribution of the SES variable is equal to its population distribution (both the sample and the population consist of 20% high, 50% middle, and 30% low SES persons). However, the two procedures differ in an important aspect: The participants of the study of Example 3.1 are not randomly selected, whereas the participants of Example 2.​6 are randomly selected from the strata
 of the population.
On first thoughts, representative sampling seems an adequate method to reduce bias of nonprobability sampling
. However, it does not guarantee bias reduction because the sample may not be representative in other aspects that are relevant for the study. Example 3.1 demonstrates this obviously. The sample is representative with respect to SES. However, it is not representative with respect to other variables that are relevant for the study of health behavior. For example, a university may attract more health-conscious employees, or stimulate better health behavior than other working environments.
3.2.2 Bias Reduction by Weighting
The bias of nonprobability sampling
 can be reduced by weighting procedures. Bethlehem (2010) described weighting procedures for nonprobability Internet samples for survey research. These procedures can be used when one or more auxiliary variables are available. An auxiliary variable can reduce bias when it is strongly associated with the outcome variable of the study that will be done. Two procedures are described. The first one applies when the population distribution of the auxiliary variable is known, while the second one applies when this distribution is not known.
The nonprobability sample is split into subsamples according to the levels of the auxiliary variable, and the mean of the outcome variable is computed per subsample. If the population proportions of the subsamples are known, the population mean is estimated by a weighted sample mean (see Example 3.2).
Example 3.2 Weighted mean of a nonprobability sample
A nonprobability sample is used to study respondents’ health behavior. The respondents’ SES is determined, and the sample is split into subsamples of high, medium, and low SES respondents. It is known from official statistics
 that 20% of the population belongs to the high SES category, 50% to the middle category, and 30% to the low category. The population mean of the health score is estimated by the weighted mean[image: $$ \overline{X} = 0.2\overline{X}_{H} (np) + 0.5\overline{X}_{M} (np) + 0.3\overline{X}_{L} (np), $$]



where [image: $$ \overline{X}_{H} (np) $$], [image: $$ \overline{X}_{M} (np) $$], and [image: $$ \overline{X}_{L} (np) $$] are the means of the nonprobability samples of high, medium, and low SES respondents, respectively, and np is added between parentheses to indicate that the sample is a nonprobability sample.

The method uses the same weights as is used in post-stratification (see Sect. 2.​4.​3). The difference is that post-stratification is applied to a simple random sample (see Example 2.​7), whereas the method of this section is applied to a nonprobability sample (Example 3.2).
If the population proportions of the auxiliary variable are not known, they can be estimated from a reference sample
 (Bethlehem, 2010). A 
                reference sample
                
               is a (small) simple random sample from the target population
. The proportions that are estimated from the reference sample
 are used to compute the weighted mean of the nonprobability sample (Example 3.3).
Example 3.3 Weighted mean of a nonprobability sample using weights from a reference sample

A
 nonprobability (internet) sample is used to study respondents’ health behavior. The population proportions of high, middle, and low SES persons are not known. Therefore, a reference sample
 of 100 respondents is randomly selected from the target population
. It appears that 17 out of these 100 respondents belong to the high, 55 to the middle, and 28 to the low SES category. The estimate of the population mean of the health behavior score is the weighted mean of the nonprobability subsamples[image: $$ \overline{X} = 0.17\overline{X}_{H} (np) + 0.55\overline{X}_{M} (np) + 0.28\overline{X}_{L} (np), $$]



where [image: $$ \overline{X}_{H} (np) $$], [image: $$ \overline{X}_{M} (np) $$], and [image: $$ \overline{X}_{L} (np) $$] are the subsample means of the high, middle, and low SES respondents of the nonprobability sample, and the weights 0.17, 0.55, and 0.28 are the proportions of high, middle, and low SES respondents, respectively, of the reference sample
.

Weighting procedures can reduce the bias that is induced by nonprobability sampling
, but it does not guarantee that the bias is reduced. The auxiliary variable has to be a relevant variable that is sufficiently associated with the outcome variable; otherwise the bias will hardly be reduced.
3.2.3 Generalization Across Participant Characteristics
The generalization of results from a probability sample to a target population
 is based on statistical theory. In contrast, the generalization from a nonprobability sample to a population has to be based on other grounds.
In some areas of the behavioral sciences it is claimed that study results are universal because they are based on general mechanisms that apply to everybody’s behavior. Therefore, generalization to a population can be done from any (probability or nonprobability) sample. For example, human perception is based on biological mechanisms. It is recognized that individual differences in perception occur, but it is assumed that results of perception studies are not systematically affected by individual differences. Therefore, it is assumed that results of a nonprobability sample can be generalized to a population of humans who are not perceptually handicapped.
Other arguments for generalization are derived from empirical research. Generalization is supported if study results are (approximately) the same for persons who widely differ in their characteristics. For example, if study results are approximately the same for both females and males of high, middle, and low SES groups, it is plausible that the results apply to a wide variety of persons. Empirical studies can be done to support generalization from nonprobability samples to a population. Three types of generalization studies are mentioned.
First, the study not only measures variables of substantive interest, but also variables that might be relevant for generalization, such as, Age, Sex, SES, and so on. The sample is split into subsamples, for example, subsamples of high, medium, and low SES males and females, and study results are compared across subsamples. If study results are approximately the same across subsamples, this supports generalization of study results from the nonprobability sample to the population.
Second, the study is replicated with other types of participants. For example, a study using psychology freshmen is replicated with samples of factory and office workers. The study results are compared among replications. If study results are approximately the same across replications, this support generalization of study results to the population. Replication studies are further discussed in Sect. 19.​3 of this book.
Finally, meta-analysis can support generalization. Meta-analysis is a method that quantitatively combines the results of different empirical studies on the same topic. An overview of meta-analysis methods is given by Field and Gillett (2010). A meta-analysis can include participant variables that are used for generalization. For example, a meta-analysis on health behavior includes a number of studies. For each of these studies not only health behavior results are recorded, but also the SES of the study participants. The health behavior results are compared among studies that used different SES participants. If health behavior results are approximately the same for studies that used different SES participants, this supports generalization to the population.
3.2.4 Comments
Generalization from nonprobability samples cannot be based on statistical theory. It is inferior to probability sampling
 because arguments that support generalization are usually not decisive and can mostly be questioned. However, in the practice of behavioral research, nonprobability sampling
 is the rule rather than the exception. Many researchers do not bother much about generalization from nonprobability samples, and implicitly they seem to assume that their results can be generalized from any sample. This practice can lead to erroneous conclusions that have to be counteracted by systematic study of generalization across participant characteristics.
In general, a probability sample has to be preferred above a nonprobability sample. However, a probability sample easily turns into a nonprobability sample during implementation of a study. Selected persons cannot participate in the study, and participants can drop out of the study. If missingness or drop out is completely at random (MCAR
) or at random (MAR
) it can be remedied by missing data methods (see Chap. 16). However, if missingness or dropout is not at random (MNAR
) it cannot be remedied. If a substantial part of a probability sample is missing or drops out of a study, the sample turns into a nonprobability sample, and generalization has to be supported by specific studies on generalization.
Studies on the generalization from nonprobability samples can apply null hypothesis tests. For example, the null hypothesis that the mean health behavior scores of males and females are equal can be tested by Student’s t-test. However, the intention of this type of null hypothesis testing differs from the intention of conventional null hypothesis testing. The intention of researchers who apply a conventional null hypothesis test is to reject the null hypothesis. For example, researchers state the null hypothesis that the mean depression test scores of treated and untreated patients are equal with the intention to reject this null hypothesis. The intention of researchers who apply a null hypothesis test to support generalization is not to reject the null hypothesis. For example, researchers test the null hypothesis of equal mean health behavior scores of males and females with the intention not to reject this null hypothesis because nonrejection gives support to generalization of study results across sexes. The procedure for testing of equivalence differs from the conventional null hypothesis testing procedure, and is discussed in Sect. 12.​10 of this book.
Generalization from a probability sample to a population is justified by statistical theory, but generalization from a nonprobability sample has to be justified on other grounds. However, both probability and nonprobability samples usually come from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies (Henrich, Heine, & Norenzayan, 2010). Henrich et al. (2010) reviewed studies that compared behavioral science results of WEIRD and other societies. They found that many results found in WEIRD societies cannot be generalized to other societies.
3.3 Recommendations

Probability sampling
 is the preferred method of sampling because the generalization of sample results to the population is based on statistical theory. However, probability sampling
 is often not possible in practice, and nonprobability sampling
 is applied. It is recommended:	(1)To define the target population
. This definition may be relevant for strategies to reduce or control for bias that is induced by nonprobability sampling
.

 

	(2)To select a sample as large as possible.

 

	(3)To collect collateral information
 of the participants. This information is used to split the sample into subsamples. The generalization of study results is supported if the results hold for different subsamples.

 

	(4)To apply weighting methods to reduce the bias of parameter estimates.

 

	(5)To reduce missingness of selected persons by applying tried and tested guidelines to increase the participation rate of selected persons.

 

	(6)To select new persons if selected persons are missing, or to oversample if it is expected that a given percentage of the selected persons will be missing.

 

	(7)To replicate the study with other types of persons. The generalization of study results is studied by comparing the results of the original and replication studies.
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Abstract
A substantial part of behavioral research is aimed at the testing of substantive hypotheses. In general, a hypothesis testing study investigates the causal influence of an independent variable (IV)
 on a dependent variable (DV)
. The discussion is restricted to IVs that can be manipulated by the researcher, such as, experimental (E-
) and control (C-
) conditions. Association between IV
 and DV
 does not imply that the IV
 has a causal influence on the DV
. The association can be spurious because it is caused by an other variable (OV). OVs that cause spurious associations come from the (1) participant, (2) research situation, and (3) reactions of the participants to the research situation. If participants select their own (E-
 or C-
) condition or others select a condition for them, the assignment to conditions is usually biased (e.g., males prefer the E-condition and females the C-condition), and participant variables (e.g., participants’ sex) may cause a spurious association between the IV
 and DV
. This selection bias
 is a systematic error of a design. It is counteracted by random assignment of participants to conditions. Random assignment guarantees that all participant variables are related to the IV
 by chance, and turns systematic error into random error. Random errors
 decrease the precision of parameter estimates. Random error variance is reduced by including auxiliary variables into the randomized design. A randomized block design
 includes an auxiliary variable to divide the participants into relatively homogeneous blocks, and randomly assigns participants to the conditions per block. A covariate is an auxiliary variable that is used in the statistical analysis of the data to reduce the error variance. Cluster randomization
 randomly assigns clusters (e.g., classes of students) to conditions, which yields specific problems. Random assignment should not be confused with random selection. Random assignment controls for selection bias
, whereas random selection makes possible to generalize study results of a sample to the population.
Keywords
Cluster randomizationCovariateCross-over designIndependent and dependent variablesRandom assignment and random selectionRandomized block design
A substantial part of behavioral research is aimed at the testing of substantive hypotheses. In general terms, a hypothesis testing study investigates the effects of an 
            independent variable (IV)
            
           on a 
            dependent variable (DV)
            
          . The key question is whether an effect is really caused by the IV
 or that the effect is spurious. Spurious effects can come from (1) the participants of the study, and (2) the research situation. Chapters 4 and 5 discuss the counteracting of errors that come from the participants, and Chap. 6 counteracting errors that come from the situation.
4.1 Independent and Dependent Variables

A DV
 is a variable that is of substantive interest. It can be any variable, and it can be of different types (see Sect. 11.​2 of this book).
A distinction is made between manipulable and nonmanipulable IVs. An example of a 
              manipulable IV
              
            

              
             is a variable consisting of a new depression therapy and the standard therapy, where the researcher can apply either the new or the standard therapy to the patients. An example of a 
              nonmanipulable IV
              
            

              
             is age, which cannot be manipulated by the researcher. The discussion of this chapter is restricted to manipulable IVs.

The IV
 is a variable that consists of two or more different categories. These categories can be unordered (e.g., a new and the standard psychotherapy), ordered (e.g., high, medium, and low stress conditions), or values of a metrical variable (e.g., doses of 0, 1, and 2 milligrams of an antidepressant).
A common situation is that the IV
 consists of one or more experimental (E-
) conditions and one or more control (C-) conditions
. Different types of C-conditions are distinguished, and combining each of these C-conditions with the same E-conditions yields different IVs.
Five types of C-conditions are distinguished in studies of psychological and educational treatments. First, the no-treatment condition
. The experimental condition participants are treated, but the control condition participants are not treated. Second, the 
              waiting list condition
              
            . The participants of this control condition are put on a waiting list and receive the treatment at a later point in time than the experimental condition participants. The waiting list participants are not treated as the participants of a no-treatment condition
. However, the waiting list and no-treatment control conditions differ because the waiting list participants know that they will be treated in the future. Third, the 
              standard condition
              
            . The control condition is the treatment (e.g., educational program, psychotherapy) that is usually applied in practice. Fourth, the 
              placebo condition
              
            . The placebo condition
 participants do not know that their treatment differs from the treatment of the experimental condition participants. For example, depression patients of a placebo condition
 get pills that look identical to the pills of the experimental condition patients, but the placebo condition
 pills do not contain the active chemicals of the experimental condition pills. Finally, the 
              reversed treatment condition
              
            . The control condition participants get a treatment that is assumed to have an effect in the opposite direction of the experimental condition, for example, in the experimental condition a positive attitude on a topic is induced and in the control condition a negative attitude on the same topic is induced. It is obvious that the reversed treatment condition
 can only be applied when the reversed treatment cannot harm the participants.
The combination of a given experimental condition with each of the different control conditions yields different IVs. For example, the combination of a new depression treatment with the standard treatment yields an IV
 that studies the effectiveness of the new treatment with respect to the standard treatment, whereas the combination of the same new treatment with a placebo condition
 yields an IV
 that studies the effectiveness of the new treatment with respect to the suggestion to be treated.

Different E-
 and C-conditions can be combined in one study. For example, a new psychotherapy, the standard psychotherapy, and a no-psychotherapy condition are combined in one study. For convenience, the discussion is restricted to one E-
 and one C-condition, but can easily be extended to more E-
 and C-conditions.
4.2 Association Does Not Mean Causation

A DV
 has many different parameters
, for example, a mean, median, variance, skewness
, correlation with other variables, and so on. An effect of an IV
 means that a change from C-
 to E-condition or from E-
 to C-condition leads to changes in one or more of these DV
 parameters
.
In an empirical study it is assessed whether the IV
 and DV
 are associated, for example, the mean depression test score is lower in the psychotherapy condition than in the no-treatment condition
. However, the change in DV
 mean can be caused by one or more other variables (OVs) than the IV
. An OV that is associated with both the IV
 and DV
 can ‘explain’ the association between IV
 and DV
. Figure 4.1 is a graphical representation of this situation.[image: ../images/459008_1_En_4_Chapter/459008_1_En_4_Fig1_HTML.png]
Fig. 4.1Graphical representation of a association between IV
 and DV
 that b is explained by an OV



The double-headed arrow between IV
 and DV
 in Fig. 4.1a indicates that the IV
 and DV
 are associated. This association is explained by an OV when the IV
 and DV
 are not associated anymore for given values of the OV. Figure 4.1b graphically represents this situation by deleting the double-headed arrow between the IV
 and DV
. Figure 4.1 is a graphical representation of the well-known statement that association does not mean causation. Example 4.1 illustrates this statement using a fictitious study and constructed data.
Example 4.1 An OV that nullifies the association between IV and DV
A psychology department has developed a new introductory statistics
 course. The administration wants to know whether the new course is more effective than the standard course that was taught the previous years. Therefore, the department decides to give the new and standard courses simultaneously, and to offer their 400 freshmen a free choice of one of the two courses; 200 students choose the new course and the other 200 students choose the standard course. At the end of the courses the same multiple-choice examination is administered to each of the students, and the same cutting score is used for passing the examination. The IV
 of this study is Instruction Type (new/standard course) and the DV
 is Examination Result (pass/fail). Table 4.1 is the 2 × 2 table that shows the association between IV
 and DV
.Table 4.1Association between Instruction Type (IV
) and Examination Result (DV
)


	 	
                          DV

                        
	 
	Pass
	Fail

	
                          IV

                        
	New course
	120
	80
	200

	Standard course
	80
	120
	200

	 	200
	200
	400






The chi-square statistic shows that the IV
 and DV
 are associated (X2 = 16, df = 1, p < .01) because the passing rate is much higher for the new course students than the standard course students (120 out of the 200 new course students (60%) pass, whereas 80 out of the 200 standard course students (40%) pass). However, the conclusion that the new course causes a higher passing rate than the standard course is premature. The department also offers a summer course on mathematics that prepares students for statistics
. The students are free to take this course. This OV Mathematics Course consists of two categories, that is, students who take the course (Math) and students who do not take the course (Nonmath). 200 students took the math course and the other 200 students did not take the math course. Table 4.2(a) and (b) are the 2 × 2 tables that show the association between Instruction Type (IV
) and Examination Result (DV
) for the math and nonmath (OV) students, respectively.Table 4.2Association between Instruction Type (IV
) and Examination Result (DV
) for (a) math and (b) nonmath students


	 	(a) Math DV


	(b) Nonmath DV



	Pass
	Fail
	Pass
	Fail

	
                        IV

                      
	New course
	105
	45
	15
	35

	Standard course
	35
	15
	45
	105





In each of these 2 × 2 tables the IV
 and DV
 are unrelated (X2 = 0, df = 1). Tables 4.1 and 4.2 were constructed such that they are completely compatible. The cell frequencies of Table 4.1 are equal to the sum of the corresponding cells of Table 4.2(a) and (b). For example, the frequency of the New Course/Pass cell of Table 4.1 (120) is equal to the sum of the New Course/Pass cells of Table 4.2(a) (105) and Table 4.2(b) (15). It can be derived from Table 4.2(a) and (b) that the OV (Mathematics Course) is associated with both the IV
 (Instruction Type) and the DV
 (Examination Result). It follows from Table 4.2(a) that out of the 200 students who took the math course 105 + 45 = 150 (75%) took the new statistics
 course, whereas it follows from Table 4.2(b) that out of the 200 students who did not take the math course 15 + 35 = 50 (25%) took the new statistics
 course. Therefore, the OV (Mathematics Course) is associated with the IV
 (Instruction Type). Moreover, it follows from Table 4.2(a) that out of the 200 students who took the math course 105 + 35 = 140 (70%) passed the statistics
 examination, whereas it follows from Table 4.2(b) that out of the 200 students who did not take the math course 15 + 45 = 60 (30%) passed the statistics
 examination. Therefore, the OV (Mathematics Course) is also associated with the DV
 (Examination Result). An explanation of this phenomenon is 
              selection bias
              
            . Students who chose the math course have a preference for (are biased to select) the new statistics
 course and also have a higher probability of passing the statistics
 examination.
The example shows that the relation between an IV
 and a DV
 can be affected by another variable when the OV is associated with both the IV
 and the DV
. This cannot happen when the OV is unrelated to the IV
 (see Fig. 4.2).[image: ../images/459008_1_En_4_Chapter/459008_1_En_4_Fig2_HTML.png]
Fig. 4.2Association between an IV
 and a DV
 that is not affected by an OV



4.3 Other Variable Types
Three main types of OVs are distinguished.
First, OVs that come from the participants of the study, for example, participants’ age, socio-economic status (SES), attitudes, intelligence, and so on. The math/nonmath OV of Example 4.1 is an example. In the total group of 400 students the IV
 and DV
 are related, but for the separate math and nonmath groups the IV
 and DV
 are unrelated. The effect of an OV can also be less pronounced, for example, when the IV
 and DV
 are related in the math and nonmath groups, but their relation is smaller in the separate groups than in the combined group.
Second, OVs that come from the research situation. An example is a study on a new psychotherapy on anxiety compared to the standard therapy, where the therapists of the new therapy are more experienced than the therapists of the standard therapy. Therapists’ Experience is an OV that comes from the research situation, which can affect the relation between the IV
 (new/standard therapy) and the DV
 (anxiety test scores).
Finally, OVs that come from the way the participants react to the research situation. For example, participants of a control condition who feel annoyed because they are abstained from an attractive (experimental) treatment.
For each of these OV types methods exist to counteract their influence on the relation between independent and dependent variables. The remainder of this chapter describes the best methods to control for selection bias
 because of participant OVs, the next chapter discusses methods to correct for selection bias
, and Chap. 6 discusses methods to counteract bias that comes from the research situation and the way the participant reacts to this situation.
4.4 Random Assignment to Control for Selection Bias

Selection comes
 from the participants themselves (self-selection
) or from others (other-selection
). Self-selection
 means that participants themselves select their condition, for example, the students of Example 4.1 were free to choose the new or standard statistics
 course. Other-selection
 means that other persons or institutes deliberately assign participants to conditions, for example, teachers who assign their students to either the standard or a new arithmetic program, or a psychotherapy institute that assigns its patients to either a new or the standard treatment. In both self- and other-selection
, bias occurs when the participants of different conditions differ in their characteristics.
The best method to control for selection bias
 is random assignment of participants to conditions. A sample of n participants is selected from the target population
. This sample is preferably a probability sample from the population (see Sect. 2.​4), but is often a nonprobabilty sample (see Sect. 3.​1). This sample of n participants is randomly split into subsamples that are assigned to the different conditions.
The random assignment of participants to, for example, an E-
 and a C-condition can be done by randomly selecting a prespecified number of nE participants from the sample of n participants and assigning them to the E-conditions, and assigning the remaining n - nE = nC participants to the C-condition (Cox, 2006, Sect. 9.3.1). The sequential procedure of simple random sampling
 (Sect. 2.​4.​1) is applied to the sample of n participants to assign nE participants to the E-condition:	1.The participants of the sample are numbered from 1 to n (1, 2, …, n).

 

	2.One number is selected from the n numbers using a random device, for example, a computer algorithm that generates one random number from the numbers 1, 2, …, n.

 

	3.The participant corresponding to the selected number is removed from the sample and is assigned to the E-condition.

 

	4.One number is selected from the remaining n-1 numbers of the sample using the random device.

 

	5.The participant corresponding to the selected number is removed from the sample and is assigned to the E-condition.

 

	6.The procedure is continued till the nEth participant is assigned to the E-condition, where nE is a number that is prespecified by the researcher.

 





The remaining n−nE = nC participants are assigned to the C-condition.
Random assignment of participants to the conditions of the IV
 guarantees that all participants’ characteristics are related to the IV
 by chance. Therefore, random assignment turns the systematic selection bias
 into random error (van Belle, 2002, Sect. 6.1), which can be controlled by statistical methods (significance level, confidence intervals
, power, etc.). Example 4.2 illustrates random assignment using an unrealistic small sample size
.
Example 4.2 Random assignment of four participants to E- and C-conditions
A sample of n = 4 students is used to study the effectiveness of the new statistics
 course of Example 4.1. Two of these students (M1 and M2) took the math course and two of them (NM1 and NM2) did not take this course. Using the sequential procedure two students are randomly assigned to the new statistics
 course (E-condition) and the remaining two students are assigned to the standard course (C-condition). Six different assignments of the students to the new and standard statistics
 course are possible (see Table 4.3). The probability of each of these assignments can be computed. For example, the first assignment of Table 4.3 (M1 and M2 randomly assigned to the new course and NM1 and NM2 to the standard course) is computed as follows. In the first step of the sequential procedure, one student is randomly selected from n = 4 students. The probability of selecting each of the students is 1/4. Suppose M1 is selected and is assigned to the new statistics
 course. In the second step, a student is randomly selected from the remaining 4−1 = 3 students. The probability of selecting each of these students is 1/3. Suppose M2 is selected and is assigned to the new statistics
 course. Therefore, the probability of first selecting M1 and then selecting M2 is 1/4 × 1/3 = 1/12. In the same way, the probability of first selecting M2 and then M1 is also 1/4 × 1/3 = 1/12. Summing both probabilities yields the probability of selecting both M1 and M2 and assigning them to the new statistics
 course (i.e., 1/12 + 1/12 = 1/6).Table 4.3The six different assignments of 2 out of 4 students to a new statistics
 course and the other 2 to the standard course, and the probability of these assignments


	Assignment no.
	Assignment composition
	Probability

	New course
	Standard course

	1
	M1 & M2
	NM1 & NM2
	1/6

	2
	M1 & NM1
	M2 & NM2
	1/6

	3
	M1 & NM2
	M2 & NM1
	1/6

	4
	M2 & NM1
	M1 & NM2
	1/6

	5
	M2 & NM2
	M1 & NM1
	1/6

	6
	NM1 & NM2
	M1 & M2
	1/6






Table 4.3 demonstrates that an assignment can be ‘unlucky’. For example, Assignment no. 1 assigns both M1 and M2 to the new statistics
 course. Therefore, a difference in examination results between students who are assigned to the new statistics
 course and students who are assigned to the standard course can also be caused by a difference in mathematical background of the new and standard statistics
 course students (M1 and M2 took the math course, whereas NM1 and NM2 did not take this course) instead of difference in effectiveness between the new and standard statistics
 courses. However, Assignment no. 1 comes into being completely by chance, without any self- or other-selection
, and the probability of this assignment can be computed.
The first and last assignments of Table 4.3 are undesirable from a researcher’s point of view because the OV (Mathematics Course) is related to both the IV
 (Instruction Type) and DV
 (Examination Result). However, the relation between OV and IV
 stems from chance, and is random error coming from the assignment procedure.
The probability of undesirable assignments is large for Example 4.2 because the sample size
 (n = 4) is unrealistic small. The probability of undesirable assignments decreases as the sample size
 increases. However, undesirable assignments can easily occur when the sample size
 is small. For example, suppose that in Example 4.2 the sample size
 is n = 20, and 10 students are randomly assigned to the new statistics
 course and the other 10 to the standard course. A researcher will find assignments undesirable when most of the students who are assigned to the new statistics
 course took the math course, and most of the students who were assigned to the standard course did not take the math course.
A naive strategy to handle undesirable assignments is to change an undesirable assignment to a desirable one. For example, transferring some of the math students from the new statistics
 course condition to the standard course condition and transferring some of the nonmath students from the standard statistics
 course condition to the new statistics
 course condition. This strategy leads to a desirable assignment, but it introduces other-selection
, spoils the random assignment procedure, and makes statistical analysis invalid. This strategy should not be applied in research.
4.5 Reducing Random Error Variance
Random assignment turns systematic selection bias
 into random error, but the variance of the random error can be large. Two strategies are available to reduce the random error variance caused by random assignment. Each of these strategies uses one or more concomitant variables. A blocking variable
 is used to reduce random error variance by preventing the occurrence of undesirable assignments. A covariate is used to reduce random error variance in the statistical analysis of the data. Section 4.5.1 discusses the use of blocking variables and Sect. 4.5.2 the use of covariates
.
4.5.1 Blocking
Analogously to stratification in probability sampling
 (see Sect. 2.​4.​3), a variable is used to divide the sample of participants into nonoverlapping subsamples (blocks) of participants. This 
                blocking variable
                
               reduces the random error variance if three conditions are fulfilled (van Belle, 2002, Sect. 6.2). First, the blocking variable
 has to be associated with the DV
. Second, the IV
 cannot affect the blocking variable
. A variable that is influenced by the IV
 is a dependent variable and cannot be used for blocking participants. Finally, the variability of the DV
 within the blocks must be less than the variability between the blocks.
Random assignment of the participants to the conditions is done per block of participants. This design is called a 
                randomized block design
                
               and is illustrated by Example 4.3.
Example 4.3 A randomized block design
A sample of n = 20 (8 math and 12 nonmath) students and the randomized block design
 are used to study the effectiveness of the new statistics
 course of Example 4.1. Mathematics Course is used as a blocking variable
. This variable qualifies for blocking. First, Mathematics Course is associated with the DV
 (Examination Result) because the passing rate of math students is higher than the passing rate of nonmath students. Second, the IV
 (Instruction Type) cannot influence Mathematics Course because Mathematics Course precedes Instruction Type in time. Finally, it is likely that the examination results are more similar within the group of math students and within the group of nonmath students than between the groups of math and nonmath students. The students are divided into a block of 8 math students and a block of 12 nonmath students and the sequential procedure is applied to each of the two blocks:

Block 1 (8 math students): Four students are randomly assigned to the new statistics
 course and the other four students to the standard course;
Block 2 (12 nonmath students): Six students are randomly assigned to the new statistics
 course and the other six to the standard course.
Using this design the math and nonmath students are equally spread across the new and standard statistics
 courses: Four math and six nonmath students are assigned to the new statistics
 course and four math and six nonmath students are assigned to the standard course.
A randomized block design
 reduces the error variance by preventing the occurrence of undesirable assignments. For example, the randomized block design
 of Example 4.3 prevents assignments where more math students are assigned to the new statistics
 course than to the standard course.
Example 4.3 used a rather course blocking variable
 (math and nonmath students). In research studies also finer blocking variables are used, for example, age as a blocking variable
 where participants are randomly assigned to an E-
 and a C-condition. The participants are ranked with respect to age, pairs of participants of about equal age are formed, and one member of each pair is randomly assigned to the E-condition and the other member to the C-condition:	Participants’ age
	Block no.
	 
	18
19
	1
	One member of the pair is randomly assigned to the E-condition and the other member to the C-condition

	20
22
	2
	One member of the pair is randomly assigned to the E-condition and the other member to the C-condition

	Etc.





The ultimate type of blocking is the use of the participant him or herself as a block. Each of the study conditions is applied to each of the participants. Usually, the sequence of the conditions varies randomly between the participants to control for a participant’s change over time. The design is called the cross-over design
, and is illustrated by Example 4.4.
Example 4.4 A cross-over design
Ten persons participate in a study where an E-
 and a C-condition are compared. Five participants are randomly selected and first the E-condition and subsequently the C-condition are applied to them, while first the C-condition and subsequently the E-condition are applied to the other five participants:

E-
 and then C-condition: Five randomly selected participants,

C-
 and then E-condition: The other five participants.

The cross-over design
 uses each participant as a block, which means that all participants’ variables (demographic variables, personality characteristics, attitudes, cognitive abilities, interests, etc.) are equally distributed across the study conditions. Therefore, it seems the ideal design, but it has a serious limitation. Effects of a previous condition may carry over to subsequent conditions. For example, applying both the standard and the new statistics
 course to the same students does not make sense because the statistics
 knowledge acquired in one course carries over to the second course. Therefore, carry-over effects
 limit the use of the cross-over design
. The cross-over design
 can only be used in studies where the effects of a condition do not carry over to the other conditions that are applied to the same participants. If the effects of the conditions wash out in time, a sufficient wash-out period has to be planned between the application of the conditions.
4.5.2 Covariates
A variable
 can only be used to divide participants into blocks when the values of the variable are known before the participants are assigned to the study conditions. For example, for the students of Example 4.3 it was known whether they did or did not take the math course before they were assigned to the new and standard courses. In practice, the blocking variable
 is often not known in advance. For example, the mathematical background of psychology freshmen is usually not known, and this information cannot be used for blocking in a study on the effects of a new introductory statistics
 course.
Variables that come available too late for blocking can be used to reduce random error variance in the statistical analysis of the data. Most of the statistical models that are used in the analysis of behavioral science data admit the use of 
                covariates
                
              . For example, an analysis of variance (ANOVA) model can be extended to an analysis of covariance (ANCOVA) model by adding one or more covariates
 to the ANOVA model to reduce random error variance. Example 4.5 illustrates the ANOVA and ANCOVA models for the simplest case of one covariate and two (E-
 and C-
) conditions.
Example 4.5 ANOVA and ANCOVA models (one covariate and two (E- and C-) conditions)
Study participants are randomly assigned to an E-
 and a C-condition. The ANOVA model for the ith participant is:[image: $$ DV_{i} =\upmu +\upbeta_{1} IV_{i} + E_{i} , $$]

 (4.1)


where DVi is the ith participant’s dependent variable value, μ (lower case Greek letter mu) is the intercept and β1 (lower case Greek letter beta) is the slope of Eq. 4.1, IVi = 1 if the ith participant is assigned to the E-condition and IVi = 0 if the ith participant is assigned to the C-condition, and Ei is participant ith random error. The corresponding ANCOVA model is:[image: $$ DV_{i} =\upmu +\upbeta_{1} IV_{i} +\upbeta_{2} CO_{i} + E_{i}^{{\prime }} , $$]

 (4.2)





where COi is the ith participant’s covariate value (e.g., his or her age), and the accent is added to the random error to indicate that the random error of Eq. 4.2 differs from the random error of Eq. 4.1. The ANOVA model is a special case of the ANCOVA model: if β2 = 0, Eq. 4.2 becomes Eq. 4.1. Both models are regression-types of models. Equation 4.1 is the regression of the dependent variable on the independent variable, while Eq. 4.2 is the regression of the dependent variable on both the independent variable and the covariate. The relation between the random error variance of the ANCOVA-model (Var(E’)) and the random error variance of the ANOVA-model (Var(E)) is (Lai & Kelley, 2012):[image: $$ Var\left( {E^{{\prime }} } \right) = Var\left( E \right)\,(1 - {\rho}^{2} ), $$]

 (4.3)


where ρ (lower case Greek letter rho) is the product moment correlation between the covariate and the DV
. Equation 4.3 shows that the random error variance of the ANCOVA-model is smaller than the random error variance of the ANOVA-model when the correlation between the covariate and DV
 is unequal to 0 (ρ ≠ 0). Moreover, Eq. 4.3 shows that the reduction of the random error variance by adding the covariate increases when the squared correlation between the covariate and DV
 increases. In both ANOVA and ANCOVA, the null hypothesis β1 = 0 is tested. If this null hypothesis is rejected, the DV
 means of the E-
 and C-conditions differ from each other. In general, if β2 substantially differs from 0, the test of the null hypothesis β1 = 0 has more power in an ANCOVA than in an ANOVA. Incidentally, it is noted that for two conditions the ANOVA-test of the null hypothesis β1 = 0 is equivalent to Student’s t-test of the null hypothesis that the DV
-means of the E-
 and C-condition are equal because the t-statistic is a function of the ANOVA F-statistic (i.e., t2 = F).
A covariate can be a dichotomous, nominal, ordinal, and continuous variable
. An example of a dichotomous covariate is gender, an example of a nominal covariate is religion, an example of an ordinal covariate is math grade (A. B. C, D, and E), and an example of a continuous covariate is age.
The same conditions apply to covariates
 as to blocking variables (see Sect. 4.5.1). First, the covariate has to be correlated with the DV
 to reduce the random error variance (cf. Eq. 4.3). Second, the IV
 cannot influence the covariate. A variable that is influenced by the IV
 is a dependent variable and cannot be used as a covariate in the statistical analysis of the data.
The handling of covariates
 depends on the statistical method that is used to analyze the data. In general, however, a covariate that is sufficiently associated with the DV
 is useful because it reduces the random error variance.
4.6 Cluster Randomization
Sections 4.4 and 4.5 discussed
 random assignment of individuals to conditions. The individuals cannot influence each other, or it is unlikely that they influence each other. The statistical analysis is applied to the DV
-scores of the individual participants. For example, a sample of depression patients is randomly assigned to a new and the standard treatment, the therapies are individually applied to the patients, and the effects are assessed by a depression test that is administered to the patients. The sample size
 is the total number of patients, and the null hypothesis of equal mean depression test scores of the new and standard therapy patients is tested by applying ANOVA or ANCOVA to the patients’ depression test scores. However, many research studies use groups of individuals (clusters), for example, educational research studies use school classes, and family therapy studies use couples. 
              Cluster randomization
              
             means that clusters are randomly assigned to the study conditions. Two types of cluster randomization
 are distinguished.
First, the DV
 is a group characteristic (e.g., cohesiveness of a class of students or quality of the interaction of partners). The unit for the analysis is the cluster, and the sample size
 is the number of clusters. If the clusters cannot influence each other, standard statistical methods (e.g., ANOVA or ANCOVA) can be used to analyze the cluster DV
-scores.
Second, cluster randomization
 is applied to the clusters, but the DV
-scores of individual participants are used in the statistical analysis. For example, school classes are randomly assigned to a new and the standard arithmetic program. The arithmetic teaching is done at the class level, and the effects of the new program are evaluated by an arithmetic test that is administered to each of the students. The statistical analysis is applied to the arithmetic test scores of the students. The unit for the analysis is the individual student, but students are clustered in classes.
Murray, Varnell, and Blitstein (2004) mention several problems of cluster randomization
. Two problems come from the limited number of clusters that is usually used in cluster randomization
. These two problems apply to both types of cluster randomization
.
The consequence of a rather limited number of clusters is that the OVs of individual participants can easily differ between conditions. For example, four classes are used in an educational study. Two classes have mainly female students and the other two classes have mainly male students. Cluster randomization
 can easily result in an assignment of the two female-classes tot he E-condition and the two male-classes to the C-condition. This type of assignment can be prevented by dividing the classes into two blocks, that is, one block of two female-classes and another block of two male-classes, and applying cluster randomization
 to each of the two blocks (i.e., one female- and one male-class are randomly assigned to the E-condition and one female- and one male-class are assigned to the C-condition). If blocking is impossible a covariate (e.g., proportion of females per class) can be used in the statistical analysis.
Another consequence of a limited number of clusters is that power and estimation precision
 are small. In the first type of cluster randomization
 the DV
 is a characteristic of the cluster (e.g., cohesiveness of classes, interaction between partners). Therefore, the sample size
 is equal to the number of clusters. If the number of clusters is small, the power of statistical tests and the precision of parameter estimates is low. For the second type of cluster randomization
, where the DV
-scores of individual participants are analyzed, power and precision depend on both the number of clusters and the number of participants per cluster. In general, more clusters with fewer participants per cluster are preferred above fewer clusters with more participants per cluster (Murray, et al., 2004). For example, for an educational study that uses 200 students, 40 classes with 5 randomly selected students per class is preferred above 20 classes with 10 randomly selected students per class.
A third problem comes from the similarity of DV
-scores of participants within the same cluster, and applies only to the second type of cluster randomization
, where groups are randomly assigned to the conditions, participants are treated in groups, and the DV
-scores of individual participants are used in the statistical analysis. Frequently, the DV
-scores of participants of the same group are more similar to each other than to the DV
-scores of participants of other groups. For example, if classes are randomly assigned to a new and the standard arithmetic program and arithmetic teaching is done at the class level, the arithmetic test scores of students within the same class may be more similar to each other than to the scores of students of other classes because students of the same class share the same teacher. Therefore, the intra-class correlation
 (see Sect. 2.​4.​4) can be substantial, and the analysis of the data has to account for this intra-class correlation
 by using multilevel analysis (Hox, 2002; Snijders & Bosker, 1999), or alternative analysis methods (McNeish, Stapleton, & Silverman, 2017).
It also happens in study designs that participants are individually assigned to conditions, but that they are treated in groups. For example, depression patients are randomly assigned to a new and standard therapy, but they are treated in small groups. Note that this is not a type of cluster randomization
 because the patients are individually assigned to the conditions. However, the intra-class correlation
 of the patients’ DV
 (e.g., depression test) scores can be substantial because patients within a treatment group share the same therapist. Therefore, the statistical analysis of the patients’ DV
-scores has to account for the intra-class correlation
.
4.7 Missing Participants (Clusters)
A part of the sample of participants or clusters of participants can be missing. Examples of missing participants are persons who agreed to participate but do not show up, persons who drop out of a study after a while, persons who change from their assigned condition to another condition, and so on. An example of missing clusters are teachers who do not implement their assigned program to their classes.
As for sampling, three types of missingness are distinguished (see Sect. 2.​5). Missing completely at random (MCAR)
 means that the missing persons are a simple random sample from the sample of n persons of the study (or a simple random sample of clusters from the total sample of clusters). Missing at random (MAR)
 is a weaker condition than MCAR
. For a study where participants or clusters are randomly assigned to an E-
 and a C-condition, MAR
 means that the missing E-participants (clusters) are a simple random sample of all participants (clusters) who were assigned to the E-condition, and that the missing C-participants (clusters) are a simple random sample of the participants (clusters) who were assigned to the C-condition. For randomized block designs and designs that use covariates
, the MAR
 condition can be further specified, but this will not be done in this section. Missing not at random (MNAR)
 means that the missingness is not MAR or MCAR
.

MCAR
 and MAR
 are types of missingness that do not systematically affect the study results. They reduce the sample size
, and, therefore, decrease the power of statistical tests and the precision of parameter estimates. This effect can be counteracted in two ways. First, by sampling more participants or clusters than needed. For example, if a study is planned with 90 participants, and it is expected that about 10% of the sampled participants will be missing completely at random, a sample of n = 100 participants is selected. Second, by applying modern missing data methods in the statistical analysis of the data (see Chap. 16).

In contrast to MCAR
 and MAR
, MNAR
 can cause systematic error. For example, if very depressed patients who are highly motivated for psychotherapy are assigned to a waiting control condition, they can drop out of the study to seek help from other psychotherapy institutes. These missing not at random patients may bias the estimate of the mean depression test score of the waiting list patients. MNAR
 spoils the random assignment procedure. It is a kind of selection bias
 that occurs after instead of before the participants are assigned to the conditions. In other words, MNAR
 turns a randomized study into a nonrandomized one that is prone to selection bias
. The next chapter discusses methods to counteract selection bias
, whether it comes from self- or other-selection
 or from MNAR
.
4.8 Random Assignment and Random Selection
The concept of random assignment of this chapter might be confused with the concept of random selection of Chap. 2. Note that these are completely different concepts. Random selection applies to the selection of a sample from a population, and is used to generalize sample results to the population. Random assignment applies to the assignment of participants to conditions, and is used to control for selection bias
.
Random selection and random assignment can separately be applied. Participants of a random sample can randomly or nonrandomly be assigned to conditions, and participants of a nonrandom sample can randomly or nonrandomly be assigned to conditions. The optimal procedure is to select participants randomly from a population, and to assign them randomly to conditions. The random selection admits generalization from sample to population, and the random assignment controls for selection bias
.
4.9 Recommendations
It is recommended:	(1)To apply random assignment of participants to conditions as much as possible because it counteracts selection bias
.

 

	(2)To measure participant variables that are associated with the DV
. These variables are used in the design of the study (blocking variable
) or the analysis of the data (covariate) to increase the precision of parameter estimates.

 

	(3)To use relatively many clusters and few participants per cluster in cluster randomization
, and to apply data analysis methods that take the intra-class correlation
 into account.

 

	(4)To oversample persons if it is expected that persons will be missing completely at random (MCAR)
 or missing at random (MAR)
, or to apply statistical missing data methods to analyze the data of persons that are MCAR
 or MAR
.

 

	(5)To apply the propensity score method if a substantial part of the persons is missing not at random (MNAR)
 and the assumptions of this method are met (see Chap. 5).
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Abstract
A quasi-experiment is a study, where the researcher manipulates the IV
, but participants are not randomly assigned to conditions. Therefore, it is prone to selection bias
. The propensity score method reduces the systematic error of selection bias
 if some conditions are fulfilled. A participant’s propensity score is his or her probability of belonging to the E-condition. The propensity score method consists of two phases. First, the propensity scores are estimated from sample data. A set of auxiliary variables of the participants is measured. These variables are used to estimate participants’ propensity scores. For example, if the IV
 has two (E-
 and C-
) conditions, the auxiliary variables and logistic regression are applied to estimate a participant’s probability of belonging to the E-condition. Second, effects of the IV
 on the DV
 are estimated using the propensity scores to reduce selection bias
. For example, groups of participants are matched on their propensity scores, and condition effects are estimated per matched group. The propensity score method corrects for selection bias
 of the auxiliary variables, but not for bias of variables that are not measured.
Keywords
Hidden and overt selection biasLogistic regression modelQuasi-experimental studySubclassification propensity score method
Shadish, Cook, and Campbell (2002, Chap. 1) distinguish three main types of studies. First, 
            randomized experiments
            
          , where the independent variable (IV)
 is manipulable, and participants are randomly assigned to the conditions. Second, quasi-experiments
, where the IV
 is manipulable, but the participants are not randomly assigned to the conditions. Randomized experiments
 and quasi-experiments
, where the IV
 consists of medical or psychological treatments of patients, are usually called randomized and nonrandomized clinical trials, respectively. Third, correlational or nonexperimental studies
, where the IV
 is nonmanipulable and participants are not randomly assigned to the conditions. Correlational (nonexperimental) studies that use a categorical IV
 are easily confused with quasi-experiments
. For example, a study on the health behavior in three (high, medium, and low) socio-economic status (SES) groups is not a quasi-experiment, but is a correlational study
 because SES is a nonmanipulable IV


            
          .
Random assignment of participants to conditions turns all systematic errors
 into random errors
 (van Belle, 2002, Sect. 6.1). Therefore, randomized experiments
 counteract selection bias
 by random assignment. However, quasi-experiments
 are prone to selection bias
 because participants select their conditions (self-selection
) or are assigned to the conditions by others (other-selection
). Moreover, studies that started as randomized experiments
 sometimes turn into quasi-experiments
 when a number of participants who were randomly assigned to the conditions are missing not at random (MNAR)
. For example, if psychology freshmen are randomly assigned to an E-
 and a C-condition, but some students refuse to participate in the C-condition, the missingness will not be at random, and the planned randomized experiment becomes a quasi-experiment. Selection bias
 of quasi-experiments
 cannot be prevented, but methods were developed to reduce selection bias
 in the statistical analysis of the data. This chapter focuses on the reduction of selection bias
 in quasi-experiments
.
Conventionally, quasi-experiments
 include some participant variables that are used to reduce selection bias
. These participant variables can be used in two different ways. First, experimental (E-) condition
 participants are matched to control (C-) condition
 participants who have approximately the same participant variable values, and the dependent variable (DV)
 values of E-participants and their matched controls are compared. Second, the participant variables are included into a statistical model, and the for covariates
 adjusted DV
-means of E-
 and C-participants are compared. Behavioral science studies often apply the analysis of covariance (ANCOVA) model to make these adjustments (see Sect. 4.​5.​2 of this book).
Both strategies may encounter difficulties when the number of participant variables is large. However, Rosenbaum and Rubin (1983) proved that participant variables can be summarized into one variable (the propensity score) if a number of conditions is fulfilled. The propensity score can be used to reduce the selection bias
 instead of the separate participant variables. The propensity score is derived from participant variables that are measured in a sample of participants. Therefore, the propensity score can reduce selection bias
 that is predicted by participant variables that are observed (i.e., 
            overt selection bias
            
          ). However, selection can also be influenced by variables that are not measured in the sample of participants (i.e., 
            hidden selection bias
            
          ). Therefore, the propensity score cannot reduce selection bias
 that comes from variables that are not measured in the sample of participants (i.e., hidden selection bias
). Random assignment of participants to conditions turns all selection factors into random errors
. However, the propensity score can only correct for selection factors by participant variables that are measured.
A wide variety of propensity score methods has been described in the literature. Overviews are given by, among others, Austin (2011a) and Stuart (2010), and tutorials by Austin (2011b) and D’Agostino Jr. (1998). Cham and West (2016) discuss propensity score methods for studies that have missing values of variables.
Each propensity score method has two phases. The first phase concerns the estimation of the participants’ propensity scores, and is discussed in Sect. 5.2. In the second phase, these propensity scores are applied in the study of the condition effects; this phase is discussed in Sect. 5.3.
5.1 The Propensity Score
A participant’s 
              propensity score (PS)
              
             is his or her probability of selecting (self-selection
) or being selected for (other-selection
) the E-condition. In randomized experiments
 participants’ propensity scores are determined by the randomization procedure. For example, if half of the sample is randomly assigned to the E-condition and the other half to the C-condition, the propensity score (i.e., probability of being assigned to the E-condition) of each of the participants is 0.5.
In quasi-experiments
, however, a participant’s propensity score is not known. Some participants have a large propensity score, for example, because they find the E-condition attractive, whereas other participants have a small propensity score, for example, because they dislike the E-condition. It is assumed that the propensity score cannot take the values 0 and 1, that is, 
              
            
[image: $$ 0 &lt; PS &lt; 1 $$]

 (5.1)


for each of the participants. This assumption excludes the possibility that it is sure that a participant selects or is assigned to the E-condition (PS
 = 1) or to the C-condition (PS
 = 0). This assumption implies that each of the participants can belong to both (E-
 and C-
) conditions, but that the probabilities to belong to the E-condition vary between participants.
A condition that also has to be fulfilled for the application of a propensity score method is that the values of the dependent variable are not affected by other participants of the study. This excludes, among other things, quasi-experiments
 where the participants choose their own condition (e.g., patients who choose one of two psychotherapies), but are treated in groups (e.g., both therapies are group therapies).
5.2 Estimating the Propensity Scores
The first phase of each propensity score method is the estimation of participants’ propensity scores. This phase has three elements. First, a number of participant variables is selected. Second, these variables are measured in the sample of study participants. Third, the participants’ propensity scores are estimated from these variables.
The participant variables are used to predict participants’ membership of the E-condition. Therefore, the best guideline for the selection of participant variables seems to be the selection of variables that are substantially associated to the dichotomous (E-
/C-
) condition membership variable. However, also variables that are associated with the DV
 can be useful for the reduction of selection bias
 by propensity score methods (Austin, 2011a). The designs of many quasi-experiments
 include a pretest
 that is administered to the participants before the conditions are applied to them. A 
              pretest
              
             is a measurement that is identical to the posttest, which is a DV
 of the study. In general, the inclusion of a pretest
 improves the reduction of selection bias
 by propensity score methods (Cook & Steiner, 2010). However, a pretest
 may affect study results. For example, the administration of an arithmetic pretest
 may focus students’ attention on relevant aspects of a new arithmetic teaching program; a discussion of pretest
-effects is given in Sect. 6.​9 of this book. A 
              proxy pretest
              
             is a variable that differs from the pretest
, but is substantially associated with the pretest
. For example, a proxy of an arithmetic pretest
 is teachers’ assessment of their students’ arithmetic skill. It was shown that also the inclusion of a proxy pretest
 among the participant variables can reduce selection bias
 (Cook & Steiner, 2010). Finally, the reliability
 of the participant variables can affect the reduction of selection bias
 by propensity score methods. An increase of the reliability
 of participant variables leads to more selection bias
 reduction. However, this occurs only for participant variables that are effective in selection bias
 reduction, and not for participant variables that are ineffective (Steiner, Cook, & Shadish, 2011).
The literature on the selection of participant variables to estimate propensity scores is not conclusive. The best strategy seems to be to include a rather large number of participant variables that are associated with the E-
/C-
 condition membership variable, the DV
, or both. If possible, a proxy pretest
 has to be included among the participant variables. Moreover, the reliability
 of variables that are expected to be efficient in selection bias
 reduction has to be sufficiently high.
The selected participant variables are measured in the sample of study participants. An assumption of propensity score methods is that the E-
/C-
 condition membership variable cannot affect the participant variables. Therefore, a guideline is to measure the participant variables before or at the beginning of the study. However, this guideline does not guarantee that the E-
/C-variable does not affect the participant variables. For example, patients’ expectations of a depression treatment may affect their personality test scores, even before the treatment is applied to the patients.
The participants’ propensity scores are estimated from the variables that are measured. Different statistical methods have been applied to estimate the propensity scores. The method that is most frequently applied in the behavioral and social sciences is logistic regression (Thoemmes & Kim, 2011). Therefore, the discussion is restricted to this method; a discussion of other methods is given by, among others, Luellen, Shadish, and Clark (2005).
The 
              logistic regression model
              
             (Agresti, 2002, Chaps. 5 and 6; Agresti & Finlay, 2009, Chap. 15) specifies the propensity score as a logistic function of m predictor variables (P1, P2, …, Pm):[image: $$ PS = \frac{{e^{{\upbeta_{0} +\upbeta_{1} P_{1} +\upbeta_{2} P_{2} + \cdots +\upbeta_{m} P_{m} }} }}{{1 + e^{{\upbeta_{0} +\upbeta_{1} P_{1} +\upbeta_{2} P_{2} + \cdots +\upbeta_{m} P_{m} }} }}, $$]

 (5.2)


where e is Napier’s constant (e = 2.718…), and β0, β1, β2, …, βm (lower case Greek letters beta) are parameters
. It follows from Eq. 5.2 that PS
 is always between 0 and 1 because the denominator of the equation is 1 larger than the nominator.
The measured participant variables are included in the set of predictors. However, the number of predictors (m) can be larger than the number of participant variables that are measured because functions of the participant variables can be included in the set of predictors. For example, the third predictor is the square of the first participant variable (i.e., [image: $$ P_{3} = P_{1}^{2} $$]), or the fourth predictor is the product of the first two participant variables (i.e., P4 = P1 × P2).
The predictors can be any type of variable, such as, metrical (e.g., age), dichotomous (e.g., male/female), and categorical (e.g., high, medium, and low SES) variables. Dichotomous and categorical variables are dummy coded (e.g., 0 and 1), where the number of dummy variables is one less than the number of categories, that is, one dummy variable for a dichotomous variable
, two dummy variables for a 3-category variable, and so on.
It is possible that a predictor perfectly predicts the E-
/C-condition membership variable. For example, teachers’ grades of their students’ arithmetic skill are used to assign students to a remedial teaching program. If students who have grades lower than a cutting grade are assigned to the remedial teaching program and the other students to the regular program, teachers’ grades perfectly predict students’ membership of the remedial and regular teaching programs. These predictors are excluded from the participant variables because the propensity score has to be smaller than 1 and larger than 0 (cf. Eq. 5.1).
The values of the participant variables and the (E-
/C-
) condition membership are known for each of the participants of a quasi-experiment. Therefore, the logistic regression Eq. 5.2 can be fitted to the data of the sample of participants. Usually, model fitting starts with the inclusion of all participant variables as predictors of the condition membership. Subsequently, it is studied whether the addition of functions of participant variables (e.g., squares of variables, products of two variables) improves the prediction of the E-
/C-condition membership. If an appropriate model has been found, the parameters
 of the model are estimated from the sample data. These parameter estimates are used to estimate the propensity score of each of the participants:[image: $$ P\widehat{S}_{i} = \frac{{e^{{{\hat{\upbeta }}_{0} + {\hat{\upbeta }}_{1} P_{1i} + {\hat{\upbeta }}_{2} P_{2i} + \cdots + {\hat{\upbeta }}_{m} P_{mi} }} }}{{1 + e^{{{\hat{\upbeta }}_{0} + {\hat{\upbeta }}_{1} P_{1i} + {\hat{\upbeta }}_{2} P_{2i} + \cdots + {\hat{\upbeta }}_{m} P_{mi} }} }}, $$]

 (5.3)


where [image: $$ P\widehat{S}_{i} $$] is the estimate of the ith participant’s propensity score, [image: $$ {\hat{\upbeta }}_{0} ,{\hat{\upbeta }}_{1} ,{\hat{\upbeta }}_{2} , \ldots ,{\hat{\upbeta }}_{m} $$] are the estimates of the model parameters
, and P1i, P2i, …, Pmi are the ith participant’s values at the m predictors.
Rosenbaum and Rubin (1983) proved some useful properties of the propensity score. These properties imply that the propensity score can be used to reduce the effects of selection bias
 in quasi-experiments
. Suppose that a set of m predictors is found that eliminate selection bias
 in the sense that no bias exists in the DV
-values of E-
 and C-condition participants who have identical values at the m predictors. This means that these participants’ self- or other-selection
 of the E-
 or C-condition cannot be distinguished from random assignment of these participants to the E-
 and C-conditions. In this ideal situation, the m predictors can be replaced by the propensity score. The propensity score summarizes the m predictors into one propensity score such that no selection bias
 exists in the DV
-values of E-
 and C-condition participants who have identical propensity scores. Therefore, an unbiased estimate of the condition effect can be made by comparing the DV
-values of E-
 and C-condition participants who have the same propensity scores.
In practice, this ideal situation will not occur. Mostly, it is impossible to find a set of predictors that completely eliminate selection bias
. The predictors are observed participant variables that can eliminate overt selection bias
, but they cannot eliminate hidden selection bias
 that comes from unobserved participant variables. Moreover, it is frequently impossible to find E-
 and C-condition participants who have identical propensity scores. However, in the ideal situation the predictor variables are balanced
, which means that the distribution of each of the predictors is the same for E-
 and C-condition participants who have the same propensity score. The balance of the predictors can empirically be checked by comparing the predictor distributions of E-
 and C-condition participants who have similar propensity scores. Example 5.1 of Sect. 5.4 illustrates the checking of the balance of a predictor.
5.3 Applying the Propensity Score
The second phase of a propensity score method is the application of the propensity score to estimate condition effects. Different types of methods were developed to estimate condition effects using propensity scores. Cook and Steiner (2010) compared the effectiveness of different methods to reduce selection bias
 in empirical studies. They found little difference in selection bias
 reduction between different methods. Therefore, the discussion is restricted to the subclassification method to demonstrate the application of a propensity score method. Other propensity score methods to estimate condition effects are discussed by, among others, Austin (2011a), Luellen et al. (2005), and Stuart (2010).
The subclassification propensity score method
 was described by Rosenbaum and Rubin (1984). This method can be used if the sample of participants is sufficiently large. They used the propensity score to divide the total sample of participants into subsamples of equal size. Using results of Cochran (1968), Rosenbaum and Rubin used five subsamples of equal size (quintiles). The first quintile encloses the 20% participants who have the smallest propensity scores, the second quintile encloses the 20% participants who have the next to smallest propensity scores, and so on. For large samples more than 5 subsamples can be used, but mostly not more than 10 subsamples are formed. The E-
 and C-condition participants within a given subsample are similar in their propensity scores. For example, both the E-
 and C-participants of the first subsample of a five-sample subclassification have propensity scores that belong to the smallest 20% propensity scores.
The study of condition effects can be done by computing effect size
 measures (see Sect. 12.5 and Chap. 13 of this book) within each subsample, and null hypotheses can also be tested within each subsample. If null hypotheses tests are applied, multiple null hypotheses are tested because each test is done for each of the subsamples. To protect against the ‘fishing of significant results’ specific methods have to be applied (see Sect. 12.​7 of this book). The study of condition effects per subsample is preferred above the study of condition effects that are collapsed across the subsamples because it can detect specific patterns of condition effects (e.g., positive E-condition effects in small propensity score subsamples and no E-condition effects in large propensity score subsamples).
5.4 An Example
Example 5.1 illustrates the subclassification propensity score method
 using constructed data.
Example 5.1 The subclassification propensity score method (constructed data)
The subclassification propensity score method
 is applied to the hypothetical study of Example 4.​1. A psychology department studies the effects of Instruction Type (a new and the standard introductory statistics
 course) on Examination Results (passing or failing a statistics
 examination). 200 psychology freshmen chose the new course and the 200 other freshmen chose the standard course. Ten student variables were assessed at the start of the study, among other things, high school Grade Point Average (GPA) and Math Course (i.e., taking or not taking a summer course mathematics that prepares students for statistics
). In the first phase of the subclassification propensity score method
 the dichotomous Instruction Type variable was dummy coded (1 for a student who chose the new course and 0 for a student who chose the standard course). The categorical variables among the ten student variables were also dummy coded. For example, the dichotomous Math Course variable was dummy coded by assigning a 1 to students who took the course and 0 to students who did not take the course. The ten student variables (GPA, Math Course, and eight other variables) were used to predict the dichotomous Instruction Type variable using logistic regression. The students’ propensity scores (i.e., predicted probabilities of choosing the new statistics
 course) were rank ordered from the smallest to the largest score, and were divided into five quintiles of 80 propensity scores each. For each of the ten student variables it was studied whether the variable was balanced. Table 5.1 shows the balance with respect to GPA.Table 5.1The study of the balance of GPA using the subclassification propensity score method
 (constructed data)


	Quintile
	Rank order propensity score
	New course (E)
	Standard course (C)

	
                          N
                          
                          E
                        
	
                          [image: $$ \overline{{GPA_{E} }} $$]
                        
	
                          s
                          
                          E
                        
	
                          N
                          
                          C
                        
	
                          [image: $$ \overline{{GPA_{C} }} $$]
                        
	
                          s
                          
                          C
                        

	1
	1 (smallest)

                          [image: $$ \vdots $$]
                        
80
	20
	3.11
	0.42
	60
	3.05
	0.46

	2
	81

                          [image: $$ \vdots $$]
                        
160
	30
	3.31
	0.56
	50
	3.33
	0.54

	3
	161

                          [image: $$ \vdots $$]
                        
240
	40
	3.42
	0.69
	40
	3.55
	0.71

	4
	241

                          [image: $$ \vdots $$]
                        
320
	50
	3.58
	0.68
	30
	3.57
	0.70

	5
	321

                          [image: $$ \vdots $$]
                        
400 (largest)
	60
	3.62
	0.61
	20
	3.71
	0.59


Note N is the number of students, [image: $$ \overline{GPA} $$] the mean GPA, and s the standard deviation of the GPA





The table is constructed such that GPA is well balanced between the new and standard courses with respect to its means and standard deviations. In each of the five subsamples of 80 students, the GPA mean and standard deviation of the new course is approximately equal to the mean and standard deviation of the standard course. The balance of the GPA means and standard deviations can be expressed in effect size
 measures (see Sect. 12.​5 and Chap. 13 of this book) per subsample. The balance is studied for each of the ten student variables that were used to estimate their propensity scores. If one or more of these variables are not balanced, the logistic regression model
 is extended with, for example, squares of variables or products of two variables. If an extended model is found that yields balance of all predictors, the students’ propensity scores are estimated again under this extended logistic regression model
. In the second phase of the subclassification propensity score method
, the difference in Examination Results (passing or failing the examination) between the new and standard course is studied per subsample (Note that if the original logistic regression model
 is extended with more predictors, such as, squares or products of variables, the propensity scores have to be recomputed and have to be divided again into subsamples of equal size). Table 5.2 illustrates this second phase.Table 5.2The study of the new and standard course effects using the subclassification propensity score method
 (constructed data)


	Quintile
	Condition
	X2 (df = 1)

	New course (E)
	Standard course (C)

	
                        N
                        
                        E
                      
	Pass
	
                        N
                        
                        C
                      
	Pass

	Frequency
	%
	 	Frequency
	%

	1
	20
	10
	50.0
	60
	14
	23.3
	5.08a

	2
	30
	16
	53.3
	50
	20
	40.0
	1.35

	3
	40
	24
	60.0
	40
	20
	50.0
	.81

	4
	50
	35
	70.0
	30
	16
	53.3
	2.25

	5
	60
	45
	75.0
	20
	12
	60.0
	1.65

	Mean
	 	 	61.6
	 	 	45.3
	 
	Sum (df = 5)
	11.14a


Note asignificant at the 5% level




Table 5.2 reports the frequency and percentage passed students per condition and quintile. The percentage of passed students is larger for the new course than for the standard course in each of the five quintiles. The mean percentage of passed students computed across five subsamples is larger for the new course (61.6%) than for the standard course (45.3%). The difference in the examination results can be tested using the chi-square statistic. For example, the 2 × 2 contingency table corresponding to the first quintile is:	 	Pass
	Fail
	 
	New course
	10
	10
	20

	Standard course
	14
	46
	60

	 	24
	56
	80





The chi-square value of this 2 × 2 table is X2 = 5.08 (df = 1), which is significant at the 5% level. The percentage students who passed the examination is larger for the new course than for the standard course in each of the five quintiles, that is, the effect is always positive in the direction of the new course. In the situation, where the condition effect is in the same direction in all quintiles, a simple overall test of the condition effect can be done (Everitt, 1977, Sect. 2.7). The sum of the X2-values of the separate 2 × 2 tables is approximately chi-square distributed with degrees of freedom equal to the number of separate 2 × 2 tables. Table 5.2 shows that the sum of the five X2-values is 11.14 (df = 5), which is significant at the 5% level. The conclusion of this second phase of the subclassification propensity score method
 is that the examination results of the new course are better than those of the standard course and this positive effect mainly occurs in the first quintile (i.e., smallest 20%) of the propensity scores.
5.5 Comments
Propensity score methods replace a number of participant variables by a single score. This propensity score can be used to reduce selection bias
 in quasi-experiments
 if a number of conditions is fulfilled. First, a set of relevant participant variables is measured to predict the IV
 (E-
/C-condition membership). Second, the IV
 does not affect these participant variables. Third, a participant’s DV
-value is not affected by other participants of the study. Fourth, the propensity score of each participant is larger than 0 and smaller than 1. Finally, the predictors of the IV
 are balanced between E-
 and C-conditions given the propensity score.
A large number of different propensity score methods has been described in the literature. This variety of methods should compel authors to give sufficient information on the propensity score methods that they applied in their studies. Thoemmes and Kim (2011) found some poor practices in the reporting of behavioral and social science studies that used propensity score methods. Moreover, Table 6 of their article gives the details that should be included in the reporting of studies that used propensity score methods.
Usually, subclassification of propensity scores yields unequal frequencies of E-
 and C-participants within some of the subsamples. For example, Table 5.1 shows that in the first quintile of the propensity scores the frequency of E-students (20) is much smaller than the frequency of C-students (60), whereas in the last quintile the frequency of E-students (60) is much larger than the frequency of C-students (20). In practice, it can happen that the frequency of E-
 or C-participants within a subsample is too small for making a meaningful comparison of the E-
 and C-conditions. Consequently, the analysis and the conclusions of the study have to be restricted to a smaller number of subsamples. Table 5.3 illustrates this situation.Table 5.3
Frequencies of E-
 and C-condition participants per quintile (constructed data)


	Quintile
	Frequency

	E-condition
	C-condition

	1
	1
	99

	2
	30
	70

	3
	60
	40

	4
	80
	20

	5
	100
	0





The first quintile cannot be used to compare the E-
 and C-conditions because the frequency of E-participants (1) is too small, and the fifth quintile cannot be used because the frequency of C-participants is 0. Therefore, the analysis has to be restricted to the second, third, and fourth quintiles, and the results of the study only apply to these three quintiles.
The discussion of this chapter was restricted to two (E-
 and C-
) conditions. Propensity score methods can also be applied when the number of conditions is more than 2. A possibility is to apply the propensity method to pairs of conditions. For example, a quasi-experiment has two experimental conditions (E1 and E2) and one control (C-) condition
. The propensity score method can be applied to compare separately the E1- and C-conditions and the E2- and C-conditions, where different propensity scores are estimated for comparing the E1- and C-conditions and for comparing the E2- and C-conditions. Another possibility is to compare all conditions simultaneously (e.g., the E1-, E2-, and C-conditions). Propensity score methods for simultaneous comparisons of more than two conditions are described by Imai and van Dijk (2004).
Propensity score methods correct selection bias
 by using participant variables that are measured. However, not all of the relevant participant variables might be included into the study, which means that some of the relevant participant variables are not observed. In such cases, selection bias
 can be reduced by applying propensity score methods, but it will not completely disappear.
5.6 Recommendations
It is recommended:	(1)To prefer random assignment above nonrandom assignment because nonrandom assignment is threatened by selection bias
.

 

	(2)To measure a large number of participant variables. These variables have to be reliable, and associated with the E-
/C-condition membership variable, the DV
, or both variables.

 

	(3)To prefer a proxy pretest
 above a pretest
 because a pretest
 may affect the study results.

 

	(4)To study whether the observed participant variables meet the assumptions of the propensity score method.

 

	(5)To apply the propensity score method if the participant variables meet the assumptions of this method.
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Abstract
Situational bias is a systematic error that is caused by the research situation and participants’ reactions to this situation. Situational factors that equally affect E-
 and C-participants do not cause spurious differences between conditions, but factors that differentially affect E-
 and C-participants cause bias. Standardization
 of the research situation equalizes the situation for all participants, and calibration
 equalizes the research situation across time. Participants may differentially react to conditions, and experimenters and data analysts may differentially affect conditions. Blinding
 of these persons prevents the differential influence. Random assignment of research persons (e.g., experimenters, interviewers, etc.) to conditions turns their systematic influence on participants into random error. Necessary conditions for a causal effect of an IV
 on a DV
 are that the conditions are correctly implemented, and conditions are not contaminated. A manipulation check
 is a procedure to check the implementation of conditions. Contamination
 of conditions is prevented by separating conditions in location or time. Random assignment of participants counteracts selection bias
, but it may induce randomization bias
, for example, if participants dislike their assigned condition. Usually it cannot be prevented in randomized experiments
, but it can be assessed by applying a double randomized preference design. Pretest
-posttest studies are threatened by pretest
 effects, which are the effects of a pretest
 on participants’ behavior. It can be prevented by, for example, replacing the pretest
 by an unobtrusive proxy pretest
, and it can be assessed by using Solomon’s four-group design. Additionally to pretest
 effects, studies that use a self-report pretest
 may show a response shift
, which is a change in meaning of a participant’s self-evaluating from pretest
 to posttest. It can be assessed by administering a retrospective pretest
.
Keywords
BlindingCalibrationManipulation checksPretest effectsProxy pretestRandomization biasResponse shiftRetrospective pretestStandardization
The previous two chapters discussed the counteracting of selection bias
, that is, the systematic error that comes from participants’ selection of the E-
 or C-condition. This chapter discusses the counteracting of systematic error that comes from the research situation.
Research situations differ widely among each other. On one side are experiments that are done in the artificial environment of a psychology laboratory, and on the other side field studies that are done in the natural environment of, for example, companies or schools. However, most studies have cues to which participants can react. Orne (1962) called these cues the 
            demand characteristics
            
           of a study.

Demand characteristics
 come from both the physical and the human aspects of the research situation. The physical aspect entails the whole physical environment of the study: the building (e.g., a laboratory, school), rooms (e.g., laboratory room, class room), equipment (e.g., a computer, scanner), and the materials (e.g., stimuli, tests). The human aspect entails the persons who are conducting the study. These research persons differ in their characteristics (e.g., age, sex, clothing, attitudes) and behavior. They fulfill different research tasks, such as, contacting participants, implementing conditions, administering tests, observing participants’ behavior, interviewing participants, and analyzing the data. In some studies, all of these tasks are fulfilled by the same person, for example, a researcher who contacts participants, presents stimuli, administers tests, and analyzes the data. In other studies, a large group of persons is involved, for example, administrators who contact schools, teachers who implement educational treatments to their students, assistants who observe teachers’ class room behavior, and statisticians who analyze the data. Except for the data-analysts these research persons interact with the study participants.
The physical and human aspects of the research situation can affect participants’ behavior. The data-analysts do not interact with the participants, but they can strongly affect the results of a study. The participants’ reactions to the physical and human aspects of the research situation and the data-analysts’ method to analyze the data can introduce systematic situational bias in the study results.
Two main types of situational factors are distinguished. First, factors that may affect participants of both the E-
 and C-conditions. For example, the setting of a psychology laboratory may give study participants the impression that they will be evaluated by the researchers. This so-called 
            evaluation apprehension
            
           (Rosenberg, 1965) may stimulate participants to show their good side in a study. Usually, evaluation apprehension
 will equally affect E-
 and C-condition participants. Figure 6.1 gives a graphical representation of a situational (S-) factor
 that equally affects E-
 and C-condition participants.[image: ../images/459008_1_En_6_Chapter/459008_1_En_6_Fig1_HTML.png]
Fig. 6.1Graphical representation of the association between IV
 and DV
, and a S-factor
 that equally affects E-
 and C-condition participants



The S-factor
 affects the dependent variable (DV)
. However, the S-factor
 is not associated with the independent variable (IV)
, and cannot change the association between IV
 and DV
.
Second, situational factors that differentially affect E-
 and C-condition participants. For example, students who are randomly assigned to the standard educational treatment may be demoralized because they prefer the new treatment. Therefore, the performance of the standard treatment (C-condition) students may be negatively affected by the random assignment procedure (S-factor
), whereas the performance of the new treatment (E-condition) students is positively affected by the random assignment procedure.
A large number of situational factors can bias the results of a study. A description of these factors and their counteractions are discussed by Shadish et al. (2002). This chapter discusses some strategies to counteract situational bias.
6.1 Standardization

If
 a S-factor
 is the same for all study participants, it cannot differentially affect E-
 and C-condition participants. Therefore, a general strategy is the 
              standardization
              
             of the research situation, which means that the research situation is approximately the same for all study participants. Standardization
 prevents that a S-factor
 differentially affects E-
 and C-condition participants, but it cannot prevent the general effect of the S-factor
 on both E-
 and C-condition participants. For example, evaluation apprehension
 induced by a standardized laboratory setting does not differentially affect E-
 and C-condition participants, but it can affect the behavior of all study participants.
Protocols and training
 are means to standardize the research situation. A 
              protocol
              
             prescribes both physical and human aspects of the research situation. Usually, the protocol
 lays down the equipment (e.g., computer, scanner) and materials (e.g., stimuli, tests) that have to be used. Moreover, the protocol
 can prescribe characteristics (e.g., age, education) of research persons. A protocol
 can also prescribe the behavior of research persons within the research situation, for example, the behavior of experimenters and interviewers. Usually, it is not sufficient to prescribe behavior, and 
              training
              
             is needed to practice the prescribed behavior.
Data-analysts who do not interact with study participants only see participants’ data, for example, test scores or registrations of brain activities. However, data analysts can strongly affect the results of a study. Extreme examples are the invention of data and the distortion of data. The counteracting of scientific misconduct
 and fraud are discussed in Chap. 20 of this book. Here, the more subtle influences of data-analysts on study results are meant. Data-analysts have to make many decisions, for example, on the handling of missing data, outliers, assumption violations, chance capitalization
, and so on. They can unintentionally bias the results of a study by making these decisions. Therefore, a detailed protocol
 for the analysis of the data has to be made in advance.
6.2 Calibration
Both human and physical factors can change during a study. These changes can also affect the results of a study. 
              Calibration
              
             across time is the standardization
 of situational factors across the duration of the entire study.
The behavior of research persons may change during a study. For example, experimenters become more experienced, raters become more strict, data-analysts detect newly developed statistical methods, and so on. Therefore, the behavior of research persons has to be carefully monitored during the course of a study. If behavior changes are detected in an early stage of the study, they can be redressed by, for example, going back to the protocol
 and retraining the prescribed behavior. If behavior changes are detected too late for correction during the study, the effects of the behavior changes can be studied. For example, it can be studied whether the results at the beginning of a study differ from those at the end of the study.
Sometimes equipment and materials have to be replaced during a study. Laboratory apparatus is written off, and it is replaced by new one. Tests and questionnaires
 become outdated, and are replaced by recent forms. Separate studies have to be done on the comparability of old and new equipment and materials. Old and new apparatus may differ in, for example, their operation and scales, and old and new apparatus has to be calibrated. Old and new test and questionnaire forms may differ in, for example, their means and variances. Separate studies are needed to link the scores of the new forms to those of the old forms. An overview of test linking methods is given by Holland and Dorans (2006).
6.3 Blinding
A human
 situational factor
 cannot differentially affect E-
 and C-conditions if participants and research persons do not know the (E-
 or C-
) condition of the participants. 
              Blinding
              
             is the masking of conditions to persons within a study. A triple-blinded study
 masks the conditions to participants, experimenters, and data-analysts, a double-blinded study
 masks the conditions to the participants and experimenters, and a single-blinded study
 masks the conditions to only the participants. Example 6.1 illustrates the blinding
 of participants, experimenters, and data-analysts.
Example 6.1 A (hypothetical) triple-blinded study
A study is done on the effectiveness of an antidepressant. The patients of the study are randomly assigned to an antidepressant and a placebo condition
. The patients of the antidepressant condition get pills that contain an active chemical, whereas the patients of the placebo condition
 get pills that look exactly the same as the pills of the antidepressant condition, but these pills do not contain the active chemical. The patients are blinded to the conditions: they are not informed on their study condition (antidepressant or placebo), and the pills of the two conditions look exactly the same. The psychiatrists are also blinded to their patients’ study conditions: they are not informed which pills contain the active chemical and which pills do not contain this chemical. The data are labeled Condition A and Condition B data, and the data-analysts only know that one set of data comes from Condition A and the other set of data comes from Condition B, but they are not informed whether Condition A is the antidepressant or placebo condition
. Therefore, the data-analysts are also blinded to the patients’ study conditions.
Participants who know their assigned study condition may react to this assignment. For example, patients who know that they are assigned to the control condition may leave the study and try to get treatment from others. The blinding
 of participants guarantees that participants cannot react to the assignment because they do not know the content of their assigned study condition. Experimenters who know the conditions to which the participants are assigned may also react to the participants’ assignment. For example, psychiatrists who know the assigned conditions of their patients may pay extra attention to placebo condition
 patients. The blinding
 of experimenters guarantees that they cannot react to the conditions of the participants. Data-analysts who know the study conditions of the data may unintentionally make choices that favor the hypothesis of the study. The blinding
 of data-analysts prevents these types of choices.
It is obvious that blinding
 can only be applied in a limited number of cases. For example, both patients and therapists are aware of the content of the treatment when a cognitive therapy is applied, and interviewers who ask students questions on their experience with a new educational program get to know the content of the program. However, the blinding
 of raters and data-analysts is relatively easy. Raters of, for example, students’ essays are blinded to the educational treatments by removing all identification signs (e.g., students’ names, schools, addresses, etc.), and assigning random numbers to the students’ essays. Data-analysts are blinded to the conditions by replacing the content labels (e.g., experimental and control group) by neutral labels (e.g., conditions A and B).

6.4 Random Assignment
Random assignment of research persons to study conditions is another strategy to counteract systematic error from situational factors. Research persons (e.g., experimenters, raters, observers, interviewers) can have systematic effects on the results of a study. As remarked in Sect. 4.​4 of this book random assignment of participants to E-
 and C-conditions turns systematic selection bias
 into random error (van Belle, 2002, Sect. 6.1). Analogously, random assignment of experimenters, observers, raters, and interviewers to conditions turns systematic experimenter-, observer-, rater-, and interviewer-effects into random error.
In Sect. 4.​5.​1 of this book it was remarked that random error variance from the random assignment of participants to E-
 and C-conditions can be reduced by using blocking variables. Blocking variables can also be used to reduce random error variance from the random assignment of research persons to E-
 and C-conditions (see Example 6.2).
Example 6.2 Random assignment of experimenters
A psychology institute studies the effects of a new treatment on its depression patients. The new treatment is compared with the standard treatment, and treatment effects are assessed with a depression test. The treatments are administered to the patients by a group of therapists. The therapists vary in their experience from little to very experienced therapists. The researchers conjecture that therapist-effects can occur, and that therapists’ experience can affect the results of the study. Therefore, the researchers randomly assign therapists to the treatments using therapists’ experience as a blocking variable
. Pairs of therapists of similar experience are formed (a pair of therapists who have one year experience, a pair of therapists who have two years experience, and so on), and one member of each pair is randomly assigned to the new treatment and the other member to the standard treatment. Consequently, the distribution of therapists’ experience is approximately the same in the new treatment condition as in the standard treatment condition.

6.5 Manipulation Checks and Treatment Separation

The IV
 of randomized and quasi-experiments
 is a manipulable variable, that is, researchers apply different conditions to the study participants. Usually, the research hypothesis states that the manipulated (E-
 and C-
) conditions have different effects on the dependent variable. The study of this hypothesis makes only sense if some conditions are fulfilled. First, the researchers’ manipulations have to get across the participants. For example, if the E-condition is an anxiety arousing manipulation, the E-condition participants have to feel anxious. Second, the manipulations of the different conditions have to be clearly separated from each other. For example, if some students of a class are taught arithmetic by a new program and other students of the same class by the standard program, the programs are not clearly separated from each other when standard program students come into contact (e.g., via their peers or teachers) with elements of the new program.
The getting across and separation of manipulations can be checked. A 
              manipulation check
              
             is a procedure to check the getting across or separation of manipulations. Manipulation checks depend on the type of manipulations and content of the study. In studies where somatic manipulations are applied (e.g., prescription of medication) biological (e.g., blood) tests can be applied to check whether the participants complied to the manipulations. In studies where overt behavior is manipulated it can be observed whether the manipulated behavior is shown. For example, if teachers of an E-condition are taught how to handle children’s aggression, teachers’ classroom behavior can be observed to check the evidence of the manipulated teachers’ behavior. If emotional states or attitudes are manipulated, the manipulations can be checked by tests (see Example 6.3).
Example 6.3 Checking manipulated mood states
Goeleven, de Raedt, and Koster (2007) report an experimental study of the influence of induced mood states on the inhibition of emotional information. They manipulated participants’ mood states by using self-referential statements. A mood state was induced by presenting the participants emotion-congruent statements by headphone. The participants were asked to feel the emotion of the statement. Three different mood states were manipulated: (1) a negative condition where negative thoughts and bodily sensations were presented (e.g., “I feel listless”), (2) a neutral condition where neutral statements were presented (e.g., “I am sitting at a table”), and (3) positive condition where positive thoughts and bodily sensations were presented (e.g., “I am in a cheerful mood”). The success of the mood manipulations was checked by administering the Profile of Mood States (POMS) to the participants. The POMS has five subtests: Depression, Vigour, Anger, Fatigue, and Tension. The mean subtest
 scores of the three conditions were compared among each other. The negative condition showed the highest mean scores on the Depression, Anger, Fatigue, and Tension subtests, while the positive condition showed the highest mean score on the Vigour subtest
. These results confirm that the manipulation of the mood states has been successful.

In some studies, manipulations can also be checked by interviewing participants and research persons. For example, if some students of a class are taught arithmetic by a new program and the other students of the class by the standard program, the students and their teachers can be interviewed at the end of the study to check whether the standard program students picked up some elements of the new program.
A strategy to prevent 
              contamination
              
             of manipulated conditions is the separation of conditions in location or time. Example 6.4 illustrates the separation of conditions in location.
Example 6.4 Preventing condition contamination by separation in location
A study is planned on the effectiveness of a new treatment of depression patients compared to the standard treatment. Ten institutes participate in the study. At first, the researchers considered a design where the institute is a blocking variable
. The patients are randomly assigned to the treatments within each of the institutes: 50% of the patients of the first institute are randomly assigned to the new treatment condition and the other 50% to the standard treatment condition, 50% of the patients of the second institute are randomly assigned to the new treatment and the other 50% to the standard treatment, and so on till the tenth institute. However, the researchers fear that the treatments will contaminate each other. Therapists may apply elements of the new treatment to patients of the standard therapy condition, standard treatment patients may leave the study because they prefer the new treatment, new treatment patients may transfer elements of their treatment to standard treatment patients, and so on. Therefore, the researchers decide to use a design where the treatments are separated in location. Five of the 10 institutes are randomly selected to apply the new treatment and the other 5 to apply the standard treatment.

The first design of Example 6.4 is a randomized block design
 (see Sect. 4.​5.​1 of this book) because patients are randomly assigned to the treatments per institute (i.e., block). The second design is a randomized cluster design (see Sect. 4.​6 of this book) because clusters of patients (i.e., institutes) are randomly assigned to the treatments. The designs are comparable in the sense that the total sample size (total number of participants) is the same, but they will differ in the power of statistical tests and precision of parameter estimates. If the number of clusters (e.g., institutes) is relatively small, the power and estimation precision
 of a randomized cluster design is smaller than the power and precision of a randomized block design
 that has the same total sample size
 (Rhoads, 2011). Therefore, the prevention of treatment contamination
 by cluster randomization
 will often be at the expensive of the power of statistical tests and the precision of parameter estimates. However, cluster randomization
 is preferable if the contamination
 is substantial because condition contamination
 can severely bias parameter estimates of randomized block designs (Moerbeek, 2005).
6.6 Pilot Studies
The previous sections described some strategies to counteract systematic bias from the research situation. However, unexpected factors can always crop up during a study. A 
              pilot study
              
             is useful to anticipate unexpected events. The pilot study
 is similar to the main study, but uses a small number of participants. If the pilot study
 shows unexpected factors that may affect the study results, the design and protocol
 of the main study can be adjusted in time.
6.7 Replications
It is always possible that the results of a study are influenced by systematic errors
 that were not noticed by the researchers. These errors can only be detected if sufficient information on the study is disclosed. First, the whole course of the study has to be registered in a 
              log book
              
            . This log has to be so specific that the study can be replicated. Second, the analysis of the data also has to be laid done in a log book
. This log has to be so detailed that, if the data analysis is done again with the same methods, exactly the same results are obtained (Adèr, 2008a). Finally, the logs and the raw data have to be available to other researchers, such that they can check all procedures and methods that are used in the study.
It is also always possible that the results of a study are by chance, which means that the results are not caused by the independent variable or any other factor
 of the study. 
              Chance capitalization
              
             from random errors
 is counteracted by replicating the study. Replication studies are discussed in Sect. 19.​3 of this book. A replication study
 that yields similar results as the original study strongly supports the study results. However, a replication study
 that yields different results casts doubts on the results of the original study.
6.8 Randomization Bias

A randomized
 experiment assigns participants randomly to conditions. However, random assignment is not very realistic because in real life persons have preferences for treatments. Therefore, random assignment can be a systematic error that affects the results of a study. For example, participants who are randomly assigned to a control condition may be frustrated because they prefer the experimental condition, and participants who are randomly assigned to the experimental condition may dislike this condition. 
              Randomization bias
              
             is the systematic error that comes from the random assignment instead of the self selection of conditions.
The randomization bias
 cannot be prevented in a randomized experiment, but the effect of randomization can be assessed by Rücker’s (1989) hybrid randomized and nonrandomized design, which is called the 
              doubly randomized preference design
              
            . Shadish, Clark, and Steiner (2008) applied this design in an empirical study on the reduction of selection bias
 in a quasi-experiment by, among other things, propensity score adjustments. Marcus, Stuart, Wang, Shadish, and Steiner (2012) used Shadish et al.’s (2008) data to assess randomization bias
. The remainder of this section describes the doubly randomized preference design
 and the Marcus et al. (2012) procedure to assess randomization bias
.
A sample of participants is selected from a population by probability (see Chap. 2 of this book) or nonprobability (see Chap. 3 of this book) sampling. A two-stage procedure is applied to assess randomization bias
. In the first stage, the sample is split into two subsamples. In the second stage, the participants of each of the subsamples are assigned to two conditions, for example, an E-
 and a C-condition or two E-conditions. In one subsample (‘the experimental subsample’) a randomized experiment is applied: the participants are randomly assigned to the two conditions. In the other subsample (‘the quasi-experimental subsample’) a quasi-experiment is applied: the participants choose one of the two conditions. The procedure yields four groups:	(1)Randomly assigned to the E-condition (RE);

 

	(2)randomly assigned to the C-condition (RC);

 

	(3)nonrandomly assigned to the E-condition (NRE);

 

	(4)nonrandomly assigned to the C-condition (NRC).

 





Figure 6.2 gives the schematic representation of this doubly randomized preference design
.[image: ../images/459008_1_En_6_Chapter/459008_1_En_6_Fig2_HTML.png]
Fig. 6.2Schematic representation of the doubly randomized preference design
 to assess randomization bias
. R: random assignment; NR: nonrandom assignment; PSA: propensity score adjustment



At or before the start of the study a number of participant variables is measured, and at the end of the study the DV
 is measured.
The randomization bias
 is assessed separately for the two conditions. The randomization bias
 for the E-condition is derived from the DV
-values of the RE and NRE groups, while the randomization bias
 for the C-
 condition is derived from the DV
-values of the RC and NRC groups.
A direct comparison of the DV
-values of the RE and NRE groups makes no sense because NRE participants selected the E-condition themselves, which implies that selection bias
 can occur. A propensity score method (see Chap. 5 of this book) is used to correct for selection bias
. The two groups are the RE and NRE groups of participants. In the first phase of the propensity score method, the propensity score (i.e., the probability of belonging to the RE-group) of each of the participants is estimated from their variables that were measured at or before the start of the study (see Sect. 5.​2 of this book). The propensity score is estimated for each of the RE- and NRE-participants. In the second phase of the propensity score method, the randomization bias
 is estimated for the E-
 condition participants (see Sect. 5.​3 of this book).
The randomization bias
 of the C-condition participants is estimated in the same way. The groups are the RC and NRC groups of participants. In the first phase of the propensity score method, the propensity score of each of the RC and NRC participants is estimated from their participant variables, and in the second phase the randomization bias
 is estimated for the C-condition participants. Note that the randomization bias
 may differ between E-
 and C-condition participants.
6.9 Pretest Effects
Many behavioral science studies apply a pretest
 and a posttest. The posttest is the DV
 of the study, and the pretest
 is the same measurement instrument as the posttest. Two types of pretest
-posttest designs are considered. First, the participants are randomly assigned to the (E-
 and C-
) conditions, and the same instrument is administered to the participants before (pretest
) and after (posttest) the application of the conditions. This design is a special case of a randomized experiment that will be called the randomized comparison group pretest-posttest design
. Second, the participants are not randomly assigned to the conditions, but they select their condition (self-selection
) or others assign them to the condition (other-selection
). The same measurement instrument is administered to the participants before (pretest
) and after (posttest) the application of the conditions. This design is a special case of a quasi-experiment that is called the nonequivalent comparison group pretest-posttest design
. Figure 6.3 gives schematic representations of both types of pretest
-posttest designs with one E-
 and one C-condition.[image: ../images/459008_1_En_6_Chapter/459008_1_En_6_Fig3_HTML.png]
Fig. 6.3Schematic representation of a the randomized comparison (E-
 and C-
) group pretest
-posttest design, ad b the nonequivalent comparison (E-
 and C-
) group pretest
-posttest design. R; random assignment; NR: nonrandom assignment



The randomized experiment of Fig. 6.3a is preferred above the quasi-experiment of Fig. 6.3b because the quasi-experiment is prone to selection bias
. However, both types of experiments apply a pretest
 that may affect participants’ behavior.
A 
              pretest effect
              
             is an influence that the administration of a pretest
 has on the behavior of study participants. The pretest
 can affect all (E-
 and C-group) participants, but it can also differentially affect E-
 and C-group participants. Hoogstraten (2004, Chap. 4) discusses pretest
 effects in studies on the effects of educational treatments and attitude change.
The pre- and posttest of educational studies are frequently cognitive tests, for example, mathematics and reading comprehension tests. The administration of the same test twice can affect students’ behavior in different ways. First, the pretest
 may train students in taking the test and facilitate their posttest performance. Second, the pretest
 may arouse students’ curiosity in the educational program that follows. Third, the pretest
 may stimulate students to search for topics of the educational program that were covered by the pretest
, and sensitize them to the relevant aspects of the program.
Usually, the pre- and posttest of studies on attitude change are attitude questionnaires
. The pretest
 can focus participants’ attention to the attitude that was measured by the pretest
. The pretest
 may also give participants the feeling that researchers are evaluating their attitude and are trying to influence their attitudes.
The literature on pretest
 effects (see, for example, Hoogstraten, 2004, Chap. 4) shows that pretest
 effects can occur in pretest
-posttest studies. However, it is often possible to design studies that prevent pretest
 effects. Moreover, it can be studied whether pretest
 effects do or do not occur.
The function of a pretest
 in a randomized comparison group pretest
-posttest study is to reduce the error variance of the DV
. The pretest
 is used as a blocking variable
 in the random assignment of participants to conditions (see Sect. 4.​5.​1) or as a covariate in the analysis of the data (see Sect. 4.​5.​2). A pretest
 is not needed if the sample size
 is sufficiently large because a large sample yields precise estimates of the parameters
 of interest (e.g., the E-
 and C-condition DV
 means and variances). If the sample size
 is small an unobtrusive proxy pretest
 can often be used instead of a pretest
. An 
              unobtrusive proxy pretest
              
             is a measurement instrument that is highly correlated with the posttest, while the participants do not know that this instrument is used in the study. For example, teachers’ ratings of their students’ arithmetic skill as an unobtrusive proxy pretest
 for an arithmetic test. The proxy pretest
 prevents pretest
 effects because participants are not pretested. Moreover, it can be used as a blocking variable
 or a covariate.
The function of a pretest
 in a nonequivalent comparison group pretest
-posttest study is reduction of selection bias
. For example, the pretest
 is used as one of the participant variables to estimate participants’ propensity scores (see Sect. 5.​2). Participant variables are needed to reduce selection bias
, but a proxy pretest
 has to be preferred above a pretest
 because the proxy pretest
 prevents pretest
 effects.
The use of a pretest
 cannot always be avoided. For example, if the interest of a study is in the change of a person’s behavior from one occasion to another occasion, usually the same test has to be administered at both occasions.

Pretest
 effects can be counteracted by disconnecting the pre- and posttests. Hoogstraten (2004, Chap. 11) discusses three ways to disconnect pre- and posttests. First, separating the administration of the pre- and posttest so far in time that pretest
 effects are washed out when the posttest is administered. Second, disguising the pretest
 by spreading the pre- and posttest items between items of other tests and questionnaires
. Finally, giving the participants the impression that the pretest
 is part of one study and the posttest is part of a completely different study.
The occurrence of pretest
 effects can be assessed by specific studies. Solomon (1949) proposed a 2 × 2 factorial design
 to study pretest
 effects. The Solomon four-group design
 has two factors and each of these factors has two levels. The levels of one factor
 (the Pretest
 Factor
) has levels Pretest
 and No Pretest
: the participants of the Pretest
 level are pretested and the participants of the No Pretest
 level are not pretested. The levels of the other factor
 (the Condition Factor
`) are the E-
 and C-conditions of the study. The two factors are completely crossed, and participants are randomly assigned to four groups:	(1)A pretest
 and the E-condition (PE-group);

 

	(2)a pretest
 and the C-condition (PC-group);

 

	(3)no pretest
 and the E-condition (NPE-group);

 

	(4)no pretest
 and the C-condition (NPC-group).

 





Figure 6.4 is a schematic representation of this design.[image: ../images/459008_1_En_6_Chapter/459008_1_En_6_Fig4_HTML.png]
Fig. 6.4Schematic representation of Solomon’s four-group design for the study of pretest
 effects. R: random assignment



The Solomon four-group design
 is a 2 × 2 factorial design
 (see Sect. 18.​1 of this book). The design can be extended by including more than two levels in the Condition Factor
. For example, two experimental and one control condition yields a Condition Factor
 with three levels (i.e., E1, E2, and C). The crossing of the Pretest
 and Condition Factors yields a 2 × 3 factorial design
.
Statistical tests can be applied to assess pretest
 effects. The presence of a Pretest
 x Condition interaction effect
 indicates that the pretest
 differentially affects E-
 and C-condition participants. The presence of a Pretest
 main effect
 in the absence of a Pretest
 x Condition interaction effect
 indicates that the effect of the pretest
 is about the same for E-
 and C-condition participants.
6.10 Response Shifts
The use of a pretest
 cannot always be prevented. For example, if the interest of a study is in participants’ change from before to after a treatment, a pretest
 has to be administered. Pretest
-posttest studies are prone to pretest
 effects. Additionally to pretest
 effects, studies that use self-reports (e.g., attitude questionnaires
) may show response shifts from pretest
 to posttest.
In general, a 
              response shift
              
             is defined as the change in meaning of a participant’s self-evaluation of a given construct (Sprangers & Schwartz, 2000). Sprangers (1989, p. 2) gives an example of a medical student who reports a response shift
 after completing an anamnestic interview training
: ‘Although at that time (Pre) I may have thought I can do some things quite nicely, I actually didn’t know what it was all about, nor what my own limitations were. I think that under those circumstances people evaluate themselves more positively. I think that I overestimated myself at that time, compared to what I think now that I should have been’. After completing the training
, the student thinks that he (she) overestimated his (her) interviewing skill before the training
.
Response shifts can bias posttest-pretest
 differences. For example, if the above mentioned medical student evaluated his (her) interviewing skill by a 4 at a 7-point Likert item
 at pretest
 and by a 5 at posttest, he (she) gained 5−4 = 1 point from pretest
 to posttest. However, the student reports at posttest that he (she) overestimated his (her) skill at pretest
. If, retrospectively, his (her) pretest
 score should have been a 2, his (her) gain would have been 5−2 = 3 points.
Response shifts cannot be prevented in self-report pretest
-posttest studies, but they can be assessed by using a 
              retrospective pretest
              
             (Howard, Ralph, Gulanick, Maxwell, Nance, & Gerber, 1979). The same self-report instrument is administered conventionally at pretest
 and posttest, and after completing the posttest participants are asked to answer the items of the pretest
 retrospectively. Hoogstraten (1985) recommends the following steps for test administration:	(1)The pretest
 is conventionally administered to the participants (pretest
);

 

	(2)the (E-
                      
                     and C-
) conditions are applied to the participants;

 

	(3)the posttest is conventionally administered to the participants (posttest);

 

	(4)the participants keep the posttest in front of them, and, subsequently, are asked to answer the same items in the way they now perceive themselves to have been before the conditions were applied (retrospective pretest
).

 





A response shift
 is assessed by the pretest
-retrospective pretest
 difference. A response shift
 is absent if this difference is about 0 for each of the participants. The response shift
 differs per condition if the pretest
-retrospective pretest
 difference differs between conditions (e.g., a positive difference in the E-condition and a zero difference in the C-condition). The response shift
 is constant if the pretest
-retrospective pretest
 difference differs from 0 and is about the same for each of the (E-
 and C-
) participants.
6.11 Recommendations
It is recommended:	(1)To standardize the research situation and to calibrate it across the duration of the study by a protocol
 and training
 of research persons (e.g., experimenters, raters, observers, interviewers, etc.).

 

	(2)To blind participants, research persons, and data analysts to the conditions of the study as far as possible.

 

	(3)To randomly assign research persons to conditions,

 

	(4)To prevent condition contamination
 by separating conditions in location or time.

 

	(5)To check the manipulations of the IV
.

 

	(6)To conduct a pilot study
 to anticipate unexpected events.

 

	(7)To apply the doubly randomized preference design
 if randomization bias
 may affect participants.

 

	(8)To prefer an unobtrusive proxy pretest
 above a pretest
 because a pretest
 may affect participants.

 

	(9)To disconnect the pretest
 and posttest in designs where a pretest
 is necessary.

 

	(10)To assess response shifts by a retrospective pretests in designs where a pretest
 is necessary.

 

	(11)To keep log books of the implementation of the study and the analysis of the data.
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Abstract
A psychological or educational test
 is an instrument for the measurement of a person’s maximum performance or typical response under standardized conditions, where the performance or response is assumed to reflect one or more latent variables. A test consists of a set of items. Conventional test scoring assigns a priori scores to test takers’ item
 responses, and a test taker’s observed test score is the sum of his (her) item
 scores. Test scores are affected by random and systematic errors
. Random errors
 decrease the measurement precision
 of tests, and systematic errors
 bias the measurements. A within-person and a between-persons aspect of measurement precision
 are distinguished. The within-person aspect is the variance of a given test taker’s observed score across hypothetical replications, which assesses the precision of the measurement of the test taker’s true score
. The between-persons aspect is the reliability
, which is the squared product moment correlation between observed and true test scores in a population of test takers. Measurement precision
 is increased by applying guidelines for test construction and administration. Classical and modern psychometric methods assess the quality of tests and items. Classical item
 analysis indices are the item p-value
 and item-rest correlation
, and modern indices are the item
 difficulty and discrimination parameters
 of item
 response models.
Keywords
Birnbaum’s two-parameter logistic item response modelClassical analysis of items and testsConstructed-response itemItem writing guidelinesLatent variableReliabilitySelected-response itemTestTestletWithin-person measurement precision
Scientific research uses theoretical constructs to describe and explain phenomena. Examples of theoretical constructs from the behavioral sciences are intelligence, reading comprehension, neuroticism, and life stress. Instruments are used to measure these constructs. Theoretical constructs and their measurements can be related in two different ways (Edwards & Bagozzi, 2000).
A 
            formative relation
            
           between a construct and its measures means that the measures cause the construct, that is, changes in the measures lead to changes in the construct. An example is a checklist of unpleasant events, such as, health problems, divorce, unemployment, and so on, to measure persons’ stress. The experience of these unpleasant events leads to stress. In other words, the unpleasant events are the independent variables that causally influence the dependent variable stress.
A 
            reflective relation
            
           between a construct and its measures means that the construct causally influences the measures, that is, changes in the construct lead to changes in the measures. An example is an arithmetic test, where it is assumed that the construct of arithmetic skill causally influences students’ answers to arithmetic problems. In other words, arithmetic skill is the independent variable that influences the dependent variable of solving arithmetic problems.
Figure 7.1a shows the formative relation
 and Fig. 7.1b shows the reflective relation
 between a construct and three measures (X1, X2, and X3). The construct is an unobserved variable, and is called a 
            latent variable (LV)
            
          .[image: ../images/459008_1_En_7_Chapter/459008_1_En_7_Fig1_HTML.png]
Fig. 7.1Graphical representation of a the formative and b reflective relation
 between a latent variable (LV)
 and three measured variables (X1, X2, and X3). A circle indicates an unobserved (latent) variable, a square an observed variable, and a one-headed arrow the direction of the influence of a variable on another variable



The one-headed arrows of Fig. 7.1a indicate that the three measured variables causally influence the latent variable, for example, three unpleasant life events (e.g., health, financial, and marriage problems) that cause stress. The one-headed arrows of Fig. 7.1b indicate that the latent variable causally influences three measured variables, for example, the latent variable arithmetic skill causally influences students’ answers to three arithmetic problems.
The behavioral sciences use different types of measurement instruments, for example, scanners to measure brain activities, galvanometers to measure skin responses, and tests to measure cognitive abilities, achievements, personality characteristics, and attitudes.
This chapter discusses random measurement errors, and methods to reduce random measurement error
 variance. The discussion is focused on reflective measurements. The terminology is mainly from psychological and educational testing, but most concepts and methods apply to all measurement procedures of the behavioral sciences.
7.1 Tests and Test Scores
Psychological and educational tests are reflective measurement instruments. In accordance with Mellenbergh’s (2011, Sect. 1.2) definition, a 
              psychological or educational test
              
             is an instrument for the measurement of a person’s maximum performance or typical response under standardized conditions, where the performance or response is assumed to reflect one or more latent variables. This definition has the following elements.
First, a test is a measurement instrument. A test can be used for other purposes than measurement, for example, the prediction of future success in a job or educational program. However, the definition emphasizes that a test is for the measurement in the first place and that other uses, such as, prediction are applications of the test.
Second, the definition includes Cronbach’s (1990, Chap. 2) distinction between maximum performance and typical response tests. A 
              maximum performance test
              
             asks test takers to make their best efforts to solve test problems. Examples are intelligence and reading comprehension tests, where the test takers are asked to give the correct or best answer to problems. A 
              typical response test
              
             asks test takers to answer questions that have no correct or best answer. The questions ask test takers to give answers that are typical for them. Examples are tests for the measurement of personality characteristics (e.g., neuroticism, dominance) and attitudes (e.g., liberalism). Typical response test
 are frequently called 
              questionnaires
              
             or 
              inventories
              
            .
Third, the definition states that tests are administered under standardized conditions. The test instructions, test materials, and administration procedures have to be the same for all test takers and at different test occasions. Standardization
 is needed to make test results comparable between different test takers and different test occasions. For example, the Scholastic Aptitude Test (SAT) has to be administered under standardized conditions to make a fair comparison of SAT performance of different students, and a depression test has to be administered under standardized conditions to make an adequate comparison of a patient’s depressive state before and after a psychological treatment.
Finally, test takers’ performance or responding is observed, but it is assumed that these observed behaviors are caused by one or more latent variables (constructs). For example, it is assumed that students’ answers to the items of an arithmetic test are causally influenced by an unobserved (latent) arithmetic skill.
A number of tests consist of subtests. A 
              subtest
              
             is an independent part of a test. Examples are the independent mathematics (SAT-M) and verbal (SAT-V) subtests of the SAT.
Usually, a test or a subtest
 consists of a number of items. An 
              item
              
             is the smallest possible subtest
 of a test (Mellenbergh, 2011, Sect. 1.2). The items are the building blocks of a test. The number of items is often prefixed to a test or subtest
, for example, a test consisting of 20 items is denoted as a 20-item
 test.
Maximum performance items present problems that have to be solved by the test takers, and typical response items present statements or questions that have to be answered. Two main modes of responding to items are distinguished. A constructed-response item
 asks test takers to formulate their own answer, and a selected-response item
 asks test takers to select an answer from a given number of options. An example of a constructed-response item
 is:

            
              Item
              
            
            7.1
            
              Constructed-response item
              
            
            [image: $$ 9 \times 11 = \ldots ? $$]




          
A selected-response version of this item
 is:

            
              Item
              
            
            7.2
            
              Selected-response item
              
            
          

            [image: $$ 9 \times 11 = \ldots ? $$]




            	(a)90

 

	(b)99

 

	(c)109

 




          
The evaluation of test takers’ responses to selected-response items is straightforward. For example, a student who selects option b of Item
 7.2 has given a correct answer, and a student who selects option a or c has given an incorrect answer. In contrast, the answers to constructed-response items have to be evaluated by raters. Raters can introduce random and systematic errors
 in the measurements of constructs. Therefore, special methods are needed to reduce the influence of raters on measurements. (Rating guidelines are given by Hogan and Murphy 2007 and Mellenbergh 2011, Sects. 2.9 and 3.9).
Test takers’ item
 responses are used to compute observed test scores. Psychometrics has developed different types of methods for the scoring of tests.
The conventional method assigns a priori scores to item
 responses. For example, a correct answer to an arithmetic item
 is scored 1 and an incorrect answer is scored 0. A Likert item
 is scored by assigning rank numbers to the response categories. For example, a 5-point Likert item
 is scored by assigning 1 to the strongly disagree category, 2 to disagree, 3 to neutral, 4 to agree, and 5 to strongly agree. The test is scored by computing the sum or mean of the item
 scores. Table 7.1 shows the conventional scoring of a student’s answer to the items of a 10-item
 arithmetic test.Table 7.1Conventional scoring of a student’s answers to 10 items of an arithmetic test


	
Item
 no.
	Student’s answer
	Student’s item
 score

	1
	Correct
	1

	2
	Correct
	1

	3
	Correct
	1

	4
	Correct
	1

	5
	Incorrect
	0

	6
	Correct
	1

	7
	Incorrect
	0

	8
	Correct
	1

	9
	Incorrect
	0

	10
	Incorrect
	0

	Student’s test score:
	6

	Student’s mean test score:
	6/10 = 0.6





Table 7.2 shows the conventional scoring of a test taker’s responses to the 5-point Likert items of a 6-item
 attitude test.Table 7.2Conventional scoring of a test taker’s answers to the 5-point Likert items of a 6-item
 attitude test


	
Item
 no.
	Test taker’s response category
	Test taker’s item
 score

	1
	Neutral
	3

	2
	Neutral
	3

	3
	Agree
	4

	4
	Strongly agree
	5

	5
	Disagree
	2

	6
	Agree
	4

	Test taker’s test score:
	21

	Test taker’s mean test score:
	21/6 = 3.5





Usually, tests consist of items that present problems or questions that are independent among each other. For example, Item
 7.3 is independent of Item
 7.1.

            
              Item
              
            
            7.3 Arithmetic
            
              item
              
            
            that is independent of
            
              Item
              
            
            7.1
            [image: $$ 12 \times 7 = \ldots ? $$]




          
However, some constructs can be measured more efficiently by dependent items. An example is the measurement of reading comprehension. The test consists of reading passages, and students have to answer questions about these passages. Usually, it is more efficient to use more than one item
 per passage. Figure 7.2 shows a schematic representation of a reading comprehension test that has several items per passage.[image: ../images/459008_1_En_7_Chapter/459008_1_En_7_Fig2_HTML.png]
Fig. 7.2Schematic representation of a reading comprehension test that has several items per reading passage



The items of each passage are dependent because they refer to the same passage, for example, Items 1, 2, and 3 refer to Passage A, Items 4, 5, and 6 refer to Passage B, and so on. A reading passage set of items is an example of a testlet
. Wainer, Bradlow, and Wang (2007, pp. 52–53) defined a 
              testlet
              
             as ‘a group of items that may be developed as a single unit that is meant to be administered together’.
The psychometric analysis of tests having testlets has to account for the testlet
-dependency of the items. A simple method is to consider each testlet
 as a single item
 consisting of several ordered response categories. For example, Passage A of Fig. 7.2 has three two-category (incorrect/correct) items that are combined to a single passage-item
 that has four response categories: (1) none of the three items correctly answered, (2) one item
 correctly answered, (3) two items correctly answered, and (4) three items correctly answered. The conventional scoring of these passage-items is done by assigning a 1 to a correct answer and a 0 to an incorrect answer, and summing these item
 scores per testlet
. Table 7.3 demonstrates the scoring of the reading comprehension test of Fig. 7.2.Table 7.3Conventional scoring of student’s answers to a reading comprehension test


	Passage
	
Item
 no.
	Student’s answer
	Student’s item
 score

	A
	1
	Correct
	1

	2
	Correct
	1

	3
	Correct
	1

	
Passage-item
 score:
	3

	B
	4
	Correct
	1

	5
	Incorrect
	0

	6
	Incorrect
	0

	
Passage-item
 score:
	1

	C
	.
	.
	.

	.
	.
	.

	.
	.
	.





The number of test items is reduced to the number of testlets, and the psychometric analysis is applied to the testlet
-items.
The conventional scoring strategy of both independent and dependent (testlet
) items has a serious weakness. The items are scored a priori, without any empirical or theoretical justification. For example, a correct answer to a maximum performance item
 is scored 1, and a neutral answer to a 5-point Likert item
 is scored 3, but not any justification is given for these item
 scores. Therefore, conventional item
 and test scoring was called ‘measurement 
              by fiat
              
            ’ (Torgerson, 1958, p. 22).
Two types of psychometric methods were developed to justify test scores. Scaling methods apply scaling techniques to score tests, and these methods give an empirical justification of test scores. Item Response Theory (IRT)
 applies item
 response models to score tests, and these methods give a theoretical justification of test scores (Mellenbergh, 2011, Sect. 6.7). The three (conventional, scaling, IRT
) scoring methods differ in the way they assign scores to test takers, but they have in common that test scores are always fallible. A test consists of a limited number of items, and a test does not completely coincide with the construct of interest. For example, the 10 items of a neuroticism test will not completely cover the neuroticism construct. Moreover, a test is administered at a given occasion, and it gives a picture of a test taker’s construct at a moment. For example, a test taker can be fatigued at the test administration. Whatever the cause and whatever the scoring method, test scores are always contaminated by measurement errors.
Two types of measurement errors are distinguished. A 
              systematic measurement error
              
             causes bias of the measurements. For example, cheaters at an arithmetic test bias their test results because they show better test results than they deserve. A 
              random measurement error
              
             does not bias test results, but it affects the precision of the measurements. Large random measurement error
 variance means that measurements are imprecise, whereas small random measurement error
 variance means that measurements are precise.
A test score is derived from a test taker’s item
 responses, which implies that it is an observed score. The observed test score is an imperfect measurement of a construct. Therefore, it is assumed that a test taker’s observed score can be decomposed into three components:[image: $$ {\text{Observed}}\,{\text{Test}}\,{\text{Score}} = {\text{True}}\,{\text{Value}} + {\text{Systematic}}\,{\text{Error}} + {\text{Random}}\,{\text{Error}}. $$]

 (7.1)




The True Value is the component of interest, but it can be contaminated by Systematic Error, and it is obscured by Random Error. The remainder of this chapter is devoted to random errors
 and the next chapter to systematic errors
.
7.2 Measurement Precision
The concept of 
              measurement precision
              
             has two different aspects (Mellenbergh, 1996). The variance of an individual’s observed test scores is the within-person aspect (see Sect. 7.2.1) and the reliability
 is the between-persons aspect (see Sect. 7.2.2). These concepts are introduced in this section, and are discussed in more detail in Chap. 15.
7.2.1 Within-Person Precision
A test taker’s observed test score gives a picture of his (her) performance or typical responding at a given moment. The test taker may have slept well or badly before taking the test, may be stressed or relaxed, may have good or bad luck at testing, and so on. Therefore, a test taker’s observed test score may be different when the test is administered at another occasion, although his (her) construct has not changed.
To define this individual variability a thought experiment is used. It is assumed that a test taker’s observed test score randomly fluctuates across possible test administrations, while his (her) construct remains unchanged. These (hypothetical) different test scores have a distribution. The mean of this distribution is the test taker’s 
                true score
                
               and the variance is his (her) within-person variance
.
In practice, test takers’ true scores and within-person variances are not known, but they can be estimated from empirical test data. A test taker’s true score
 is estimated by his (her) observed test score. Moreover, psychometrics has developed methods to estimate a test taker’s within-person variance
. These estimates can be used to estimate confidence intervals
 of a test taker’s true score
. A large confidence interval
 means that the test taker’s observed test score is an imprecise estimate of his (her) true score
, whereas a small confidence interval
 means that the observed test score is a precise estimate (see Example 7.1).
Example 7.1 Confidence intervals of true scores
A student has correctly answered 15 items of a 30-item
 arithmetic test. The student’s conventional test score is 15, and thus the estimate of his (her) true score
 is 15. Moreover, the psychometrical analysis estimated that the student’s within-person variance
 is approximately 7.5. Assuming that the student’s observed test score is normally distributed across possible test scores, the estimated 95% confidence interval
 of the student’s true score
 is from 15 − 1.96√7.5 = 9.6 to 15 + 1.96√7.5 = 20.4. The classical interpretation of this confidence interval is: If the test is administered a large number of times, while the test taker’s true score
 remains unchanged, and at each administration the 95% confidence interval
 is computed, 95% of these intervals will contain the test taker’s true score
. Another student has correctly answered 20 items of the test, and his (her) estimated within-person variance
 is approximately 6.67. Assuming that his (her) observed test score is normally distributed across possible test scores, this student’s 95% confidence interval
 is from 20 − 1.96√6.67 = 14.9 to 20 + 1.96√6.67 = 25.1. The second student’s confidence interval
 is smaller (25.1 − 14.9 = 10.2) than the first student’s interval (20.4 − 9.6 = 10.8). Therefore, the estimate of the first student’s true score
 is a bit less precise than the estimate of the second student’s true score
.

A test taker’s true score
 is defined as the mean of the (hypothetical) distribution of possible observed test scores. Usually, the observed test score is not equal to the true score
 because of random measurement error
. Therefore, the observed test score is not equal to the true score
 because of random measurement error
, and the observed test score is written as the sum of the true score
 and random error:[image: $$ {\text{Observed}}\,{\text{Test}}\,{\text{Score}} = {\text{True}}\,{\text{Score}} + {\text{Random}}\,{\text{Error}}. $$]

 (7.2)




Comparing Eqs. 7.1 and 7.2 shows that the True Score
 of Eq. 7.2 is not equal to the True Value of Eq. 7.1. The True Score
 is the sum of the True Value and the Systematic Error:[image: $$ {\text{True}}\,{\text{Score}} = {\text{True}}\,{\text{Value}} + {\text{Systematic}}\,{\text{Error}}. $$]

 (7.3)




The True Score
 only equals the True Value if the test is free from systematic errors
. An example of a systematic error is cheating
 at an examination. The true scores of cheaters will be larger than their true values because they have increased their true scores by cheating
.
7.2.2 Reliability

Reliability
 is the between-persons aspect of measurement precision
. It concerns the differentiation between the true scores of different test takers from a population. 
                Reliability
                
               is defined as the squared product moment correlation (pmc) between observed and true test scores in a population of test takers (Lord & Novick, 1968, p. 61). This definition is theoretical. The pmc between observed and true test scores cannot be computed because test takers’ true scores are unknown. However, under the assumptions of Classical Test Theory (CTT)
, the reliability
 can be assessed by computing the pmc between the observed test scores of a test and a parallel form of the test. In practice, usually a lower bound of the reliability
 is computed. A large value of the lower bound implies that the reliability
 is also large (i.e., equal to or larger than the lower bound). The most-used lower bound is Cronbach’s coefficient alpha
 (see Example 7.2). However, other lower bounds were derived that are more appropriate because they are closer to the reliability
 than alpha (see Sect.  15.​2.​2 of this book).
Example 7.2 A lower bound of reliability
Dekking (1983) constructed a 46-item
 test (SASC) to measure social anxiety of Dutch children (9–12 years inclusive). The SASC was administered to samples of 1110 boys and 1039 girls. Cronbach’s coefficient alpha
 for boys is 0.89 and for girls 0.90. Therefore, the reliability
 is estimated to be equal to or larger than 0.89 for boys and to be equal to or larger than 0.90 for girls.

Usually, the observed test score is used to estimate the true score
. The squared pmc between observed and true test scores can be interpreted as the proportion of true score
 variance that is ‘explained’ estimating the true scores by the observed scores in a population of test takers. For example, the reliability
 of the SASC is estimated to be at least 0.90 for girls (see Example 7.2). Therefore, the observed scores of the SASC are estimated to explain at least 0.9 × 100% = 90% of the girls’ true score
 variance.
A pmc is sensitive to the population where the variables are correlated. In general, a pmc will be smaller in a more homogeneous (smaller variance of the variables) population than in a more heterogeneous (larger variance of the variables) population. Therefore, the reliability
 can differ between populations or between different subpopulations of the same population (see Example 7.3).
Example 7.3 Sensitivity of reliability to test score homogeneity
The variances of the SASC-scores (Example 7.2) are 49.7 and 67.7 for boys and girls, respectively. The scores of the boys are more homogeneous than those of the girls (the variance is smaller for boys than girls), and the reliability
 is smaller for boys (0.89) than for girls (0.90).
The difference in reliability
 is negligible in this example. However, the differences can be substantial in other situations.

Reliability is a between-persons concept that applies to a population of persons. Therefore, the reliability
 of a test always has to be reported in combination with the population, for example, ‘the reliability
 of the SASC is 0.90 for Dutch girls’.

Reliability
 is probably the most frequently used concept of applied psychometrics. Reliability
 is a population-dependent concept, and it applies to situations, where a test is used to distinguish between test takers who have different true scores. A test that has a reliability
 of 1 perfectly differentiates between test takers who have different true scores, whereas a test that has a reliability
 of 0 cannot differentiate between test takers. A number of misconceptions exist on the reliability
 concept. These misconceptions are very persistent, and are discussed in Chap. 15.
7.3 Increasing Measurement Precision

The
 within-person precision of tests is increased by reducing within-person error variance
, and the differentiation between test takers is increased by increasing reliability
. Procedures to increase measurement precision
 concern the construction, analysis, and administration of tests, and the processing of test data. The construction of a test starts with the writing of items (Sect. 7.3.1) and the compiling of the items into a test (Sect. 7.3.2). Test data can be analyzed with classical (Sect. 7.3.4) and modern (Sect. 7.3.5) item
 analysis methods. Measurement precision
 is also increased by applying adequate administration (Sect. 7.3.6) and data processing (Sect. 7.3.7) methods.
7.3.1 Item Writing

Item
 writing is a hard job, and errors are easily made. The test construction literature gives many guidelines for writing items. Overviews of guidelines for writing maximum performance items are given by Haladyna, Downing, and Rodriguez (2002) and Mellenbergh (2011, Sect. 2.8), and for writing typical response items by Mellenbergh (2011, Sect. 3.8). Use of these guidelines helps to increase measurement precision
. Examples are the guidelines for the number of options of multiple-choice maximum performance items and the number of categories of Likert items.
A common opinion is that the number of options of multiple-choice items should be as large as possible to reduce the probability of selecting the correct option by random guessing. For example, the probability of guessing the correct option out of two options is 1/2, whereas the probability of guessing the correct option out of six options is 1/6. However, theoretical and empirical research showed that usually three (1 correct and 2 incorrect) options are preferable (Rodriguez, 2005). The reason is that it is usually hard to write more than two incorrect options that are plausible to test takers who do not know the correct answer. Exceptions to this guideline are areas, where it is easy to write plausible incorrect options, for example, arithmetic.
In practice, the number of categories of Likert items varies considerably between typical response tests. Krosnick and Presser (2010, Sect. 9.3) reviewed the literature on this issue. They concluded that in many cases seven categories is preferable.
The number of item
 writing guidelines is very extensive, and it is hard to apply all guidelines simultaneously. However, the application of these guidelines is essential for the measurement precision
 of tests.
Usually, the first draft of an item
 is not ready for inclusion into a test, and has to be reviewed. Item
 review panels need different types of expertise. First, expertise on the construct, for example, math teachers to review math test items, and clinical psychologists and psychiatrists to review personality test items. Second, expertise on the technical aspects and guidelines for item
 writing. Third, expertise on the sensitivity of item
 content and wording to subpopulations of the target populations, for example, sensitivity to females and minorities. These different types of expertise need not to be included into one panel, but can be spread across different panels, for example, one panel that reviews the content and technical aspects of the items, and another panel that reviews the sensitivity to subpopulations. The information of the review panels is used to rewrite items or to delete them altogether.
The revised items have to be administered to a small group (10–20) of test takers from the target population
. The test is administered to them, and they are interviewed on their thinking during the taking of the test. Two versions of the interview can be applied (Leighton & Gierl, 2007). Using the 
                concurrent interview
                
               the test takers are asked to think aloud while answering the items, and using the 
                retrospective interview
                
               the test takers are asked to recollect their thinking after completing an item
. This information is also used to rewrite or delete items.
7.3.2 Compiling the Test
The items that survived the item
 review process are candidates for inclusion into a test or subtest
. A number of the items is selected for the first draft of the test or subtest
. The number of items and the ordering of the items within the test have to be specified.
The 
                test length
                
               is the number of test items. In general, measurement precision
 increases with test length
. A long test is preferred from the measurement precision
 point of view. However, the disadvantage of a long test is that it costs much time to administer a long test. Therefore, an optimum of test length
 and administration time has to be sought.
The ordering of the items within a test also has to be specified. The strategy for ordering items differs between maximum performance and typical response tests.
In general, maximum performance items are ordered from easy to difficult. Test takers may be stressed or feeling uncomfortable at the start of test administration, and easy items may put their minds at rest. Moreover, the ordering from easy to difficult counters that test takers spend too much time on difficult items, and fall short of time at the end of the test.
Typical response tests can have items on controversial or sensitive topics, for example, on drug abuse, fraud, and so on. These items are put at the end of the test to prevent that test takers stop prematurely answering the items.
The first draft of the test is compiled, and instructions for test takers and test administrators are added. Content experts have to assess whether this first draft sufficiently covers the construct that has to be measured. For example, covers an arithmetic test sufficiently the arithmetic content of the curriculum? Moreover, test construction experts have to assess whether the instructions for test takers and test administrators are clear and comprehensible.
A test needs to be carefully constructed to increase measurement precision
. However, careful test construction does not guarantee that measurement precision
 is satisfactory. One or more pilot studies have to be done to study the psychometric properties of a newly constructed test. The test is administered to a sample of test takers and a psychometric analysis is applied to the test data. The sample needs not to be a random sample of the target population
. The only requirement is that the sample is sufficiently heterogeneous with respect to the construct that has to be measured by the test. For example, a sample of psychology freshmen may be sufficiently heterogeneous with respect to the construct of extraversion, but it may be too homogeneous with respect to the construct of verbal ability.
Two types of psychometric theories were developed to study the qualities of tests. Spearman’s publications of 1904 (Levy, 1995) founded Classical Test Theory (CTT)
. The theory was further developed during the first half of the 20th century, and it was summarized by Gulliksen (1950). The statistical foundations of CTT
 were provided by Lord and Novick (1968). Modern Item Response Theory (IRT)
 started with work of Lawley (Lord & Novick, 1968), Guttman (1950), Lazarsfeld (1950), and Lord (1952), and is developing continuously.
7.3.3 Classical Analysis of Test Scores
The test is administered to a sample of at least 200 test takers. The sample does not need to be a random sample, but it has to be sufficiently heterogeneous with respect to the construct that is measured by the test. The items are conventionally scored: Correct (agree) answers are scored 1, and incorrect (disagree) answers are scored 0 (see Table 7.1), and Likert items are scored by assigning rank numbers (1, 2, …) to their answer categories (see Table 7.2). For each of the test takers his (her) observed test score is computed, which is the sum or mean of his (her) item
 scores. The psychometric analysis is done at the level of the test scores and at the level of the item
 scores.
The test score distribution is described by a number of statistics
. The most common statistics
 are the mean, median, range
, variance, standard deviation, and skewness
. Moreover, usually Cronbach’s alpha is computed. The mean and median are measures for the location of the test score distribution. The range
, variance, and standard deviation indicate the variability of the test scores. The 
                median (Med)
                
               splits the frequency distribution into two equal halves: 50% of the scores is smaller than the median, and 50% of the scores is larger than the median. The 
                range
                
               is the difference between the largest and smallest test scores of the frequency distribution, and shows the width of the interval that the test scores cover. The standard deviation is the square root of the variance, and indicates the spread of the test scores. Usually, the standard deviation is easier to interpret than the variance. The 
                skewness
                
               indicates the symmetry of a distribution. Cronbach’s alpha is a lower bound of the reliability
 of the test scores in the group of test takers (see Sect. 7.2.2).
Relatively large values of the mean and median mean that the test is easy (attractive) for the group of test takers, whereas small values mean that the test is difficult (unattractive). A comparison of the mean and median gives information on the skewness
 of the distribution. The mean and median of a symmetrical distribution are equal, whereas the mean and median of an asymmetrical distribution differ from each other. Relatively large values of the range
, standard deviation, and variance mean that the test scores are heterogeneous in the group of test takers, whereas small values of these statistics
 mean that the test scores are homogeneous. A large value of Cronbach’s alpha implies that the test sufficiently distinguishes between the true scores of the group of test takers. Example 7.4 shows a frequency distribution of test scores, and some of its descriptive statistics
.
Example 7.4 Analysis of test scores
The Adjective Check List (ACL) was constructed by Gough and Heilbrun (1980) to measure a number of personality traits. The list consists of a large number of adjectives, and test takers have to indicate for each of these adjectives whether or not they apply to them. The adjectives are clustered in groups that form subtests that measure separate personality traits, such as, orderliness, dominance, and aggression. The ACL was translated into Dutch (Hendriks, Meiland, Bakker, & Loos, 1985; Oosterveld, 1989), and was administered to different groups of psychology freshmen at the University of Amsterdam. The Aggression subtest
 is used to demonstrate the classical analysis of test and item
 scores. The Aggression subtest
 has 10 items: 7 aggressive statements, for example, ‘squabbling’, and 3 nonaggressive statements, for example, ‘calm’. The dichotomous version of the subtest
 asks test takers to indicate for each of the statements whether it applies or does not apply to them. The items were dichotomously scores: 1 if an aggressive statement applies to the test taker and 0 if it does not apply, and 0 if a nonaggressive statement applies and 1 if it does not apply. The subtest
 was administered to 234 psychology freshmen, and for each of the students the conventional observed test score (i.e., the sum of the item
 scores) was computed. The data of this subtest
 were analyzed by van den Berg (2002). Table 7.4 reports the frequency distribution and descriptive statistics
 of the test scores.Table 7.4Frequencies, cumulative frequencies (between parentheses percentages), mean, median, range
, standard deviation, and Cronbach’s alpha Aggression subtest
 ACL, 234 psychology freshmen, University of Amsterdam (van den Berg, 2002)


	
Subtest
 score
	Frequency (%)
	Cumulative frequency (%)

	0
	39 (16.7)
	39 (16.7)

	1
	44 (18.8)
	83 (35.5)

	2
	38 (16.2)
	121 (51.7)

	3
	30 (12.8)
	151 (64.5)

	4
	22 (9.4)
	173 (73.9)

	5
	18 (7.7)
	191 (81.6)

	6
	27 (11.5)
	218 (93.2)

	7
	9 (3.8)
	227 (97.0)

	8
	5 (2.1)
	232 (99.1)

	9
	2 (0.9)
	234 (100)

	10
	0 (0)
	234 (100)

	Mean
	: 2.9

	Median
	: 1.9

	
                            Range

                          
	: 9

	Standard deviation
	: 2.3

	Cronbach’s alpha
	: 0.70





The median is the score that splits the frequency distribution into equal halves, that is, 234/2 = 117 scores are smaller than the median and the other 117 scores are larger than the median. The cumulative frequency column of Table 7.4 shows that the median is between the scores 1 and 2: 83 (less than 117) students have scores 0 or 1, and 121 (more than 117) students have scores 0, 1, or 2. Using linear interpolation (Canavos, 1984, p. 13) yields a median of 1.9. The mean (2.9) differs from the median (1.9), which means that the distribution is skewed. The frequency column of Table 7.4 shows that the small scores are overrepresented. The mean and median test scores are small. Therefore, the test is rather unattractive in the sense that the students tend to indicate that aggressive statements do not apply to them. The range
 is the difference between the largest and smallest scores in the sample of students. The largest score is 9 and the smallest is 0. Therefore, the range
 is 9 − 0 = 9. The range
, standard deviation, and frequency distribution show that the scores are reasonably heterogeneous. Cronbach’s alpha (0.70) is rather low, which means that the Aggression subtest
 does not well differentiate between students’ true aggression test scores.

7.3.4 Classical Item Analysis
The most common statistics
 at the item
 level are the mean item
 score, the item
 variance or standard deviation, and the item-rest correlation
. The general formulas for the sample mean, variance, and standard deviation are applied to the item
 scores. These general formulas also apply to dichotomously scored (1/0) items, where they take special expressions. The mean of dichotomously scored items is the proportion of correctly answered (agreed) items, and is called the item p-value
. The variance of these dichotomous item
 scores is a function of the item p-value
:[image: $$ S_{i}^{2} = \frac{n}{n - 1}p_{i} (1 - p_{i} ), $$]

 (7.4)


where n is the number of test takers of the sample, and pi is the sample p-value of the ith item
. The item
 standard deviation is the square root of Eq. 7.4 (see Example 7.5).
Example 7.5 Item p-value, variance, and standard deviation
A test is administered to a sample of 9 test takers. The items are dichotomously scored. The (fictitious) scores of the test takers at the second (i = 2) item
 are:

	Test taker no.
	Scores second item
 (i = 2)

	1
	1

	2
	1

	3
	0

	4
	1

	5
	0

	6
	0

	7
	1

	8
	0

	9
	0

	Sum
	4



The item p-value
 is the mean of the 9 item
 scores:[image: $$ p_{2} = \frac{\text{4}}{\text{9}} = 0.44. $$]





Using Eq. 7.4 the variance of the item
 scores is[image: $$ S_{2}^{2} = \frac{\text{9}}{{\text{9} - \text{1}}} \, \frac{\text{4}}{\text{9}}\left( {1 - \frac{4}{9}} \right) = 0.28, $$]



and the standard deviation is the square root of [image: $$ S_{2}^{2} $$]:[image: $$ S_{2} = \sqrt {0.28} = 0.53. $$]





The item-rest correlation
 is the product moment correlation between the item
 scores and the rest score, which is the test score after deleting the studied item
 from the test (see Example 7.6).
Example 7.6 Item-rest correlation
A test consists of three Likert items. The items have five response categories that are conventionally scored: 1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree), and 5 (strongly agree). The test is administered to ten test takers. Table 7.5 reports the (fictitious) item
 and rest scores, and indicates how the item-rest correlation
 of the first item
 is computed.Table 7.5(Fictitious) scores of 10 test takers at 3 Likert items, and the way the item-rest correlation
 of the first item
 is computed


	Test taker no.
	
Item
 no.
	Rest score Item
 no. 1

	 	1
	2
	3
	 
	1
	2
	1
	2
	3

	2
	3
	4
	5
	9

	3
	5
	5
	4
	9

	4
	4
	4
	5
	9

	5
	1
	2
	3
	5

	6
	3
	2
	2
	4

	7
	3
	3
	3
	6

	8
	4
	5
	4
	9

	9
	2
	2
	1
	3

	10
	1
	2
	1
	3

	 	
Item-rest correlation
 of Item
 no. 1





The rest score of the first item
 is computed by deleting the first item
 and computing the sum of the scores of the remaining items. For example, the first test taker’s rest score of Item
 no 1 is 1 (first test taker’s score Item
 no 2) + 2 (first test taker’s score Item
 no 3) = 3. The item-rest correlation
 of the first item
 is the product moment correlation between the Item
 no 1 scores and the rest scores of Item
 no 1. In the same way, the item-rest correlation
 is computed for each of the items.

The mean item
 score indicates the difficulty level of the items. For example, a dichotomously (1/0) scored item
 that has a p-value of 0.10 is very difficult (only 10% of the test takers correctly answered (agreed with) the item
), whereas an item
 that has a p-value of 0.90 is very easy (90% of the test takers correctly answered (agreed with) the item
). Items having extreme mean item
 scores (e.g., p < 0.10 and p > 0.90) and small item
 score variance do not contribute much to the differentiation between test takers. A small item-rest correlation
 indicates that test takers having small item
 scores have about the same rest scores as test takers who have large item
 scores. A large item-rest correlation
 indicates that test takers who have small item
 scores tend to have small rest scores, and test takers who have large item
 scores tend to have large rest scores. Therefore, items that have small item
-rest correlations are candidates for revision or removal from the test.
Usually, Cronbach’s alpha is computed to assess the reliability
 of a test. Cronbach’s alpha is a lower bound of the reliability
 (see Example 7.2). Therefore, a large value of alpha implies that the reliability
 of the test is high. Moreover, frequently the alpha-if-item
-deleted is computed. Cronbach’s alpha is computed for the test that remains after the studied item
 is deleted. An item
 that has an alpha-if-item
-deleted that is smaller than the alpha of the complete test seems to increase the reliability
 of the test. However, Raykov (2007) showed that the flagging of items based on alpha-if-item
-deleted can be misleading.
Classical item
 analysis is demonstrated with the Aggression subtest
 of the ACL.
Example 7.7 Classical item analysis
The dichotomous version of the Aggression subtest
 of the ACL was administered to 234 psychology freshmen (see Example 7.4). Van den Berg (2002) applied a classical item
 analysis to these data. Table 7.6 reports the item
 p-values and item
-rest correlations.Table 7.6
Item
 p-values and item
-rest correlations Aggression subtest
 of the ACL, 234 psychology freshmen, University of Amsterdam (van den Berg, 2002)


	
Item
 no.
	p-value
	
                            Item-rest correlation

                          

	1
	0.32
	0.46

	2
	0.30
	0.44

	3
	0.29
	0.38

	4
	0.09
	0.18

	5
	0.51
	0.49

	6
	0.41
	0.37

	7
	0.38
	0.33

	8
	0.11
	0.26

	9
	0.30
	0.51

	10
	0.15
	0.25






Items no. 4, 8, and 10 have small p-values and item
-rest correlations. These items are candidates for rewriting or removing from the test.
Classical item
 analysis focuses on the increase of test score variance and reliability
. As remarked before, reliability
 is the squared product moment correlation between true and observed test scores in a population of test takers. Therefore, classical item
 analysis is population-dependent. Item
 statistics
 (mean item
 score, item
 score variance, and item-rest correlation
) are defined in a population of persons, and depend on the population. For example, the p-values of an arithmetic item
 will be larger in a population of students who are competent in arithmetic than in a population of less competent students. Moreover, the item
-rest correlations and the reliability
 will be smaller in a population of students that is more homogeneous with respect to arithmetic skill than in a population that is less homogeneous. Therefore, classical test and item
 analysis are mainly suited for the construction of tests that have to differentiate between test takers of the target population
.
7.3.5 Modern Item Analysis

Item response theory (IRT)
 includes a large number of item
 response models (see van der Linden, 2016). Examples are the logistic item
 response models of Rasch (1960), Birnbaum (1968), and Samejima (1969), the nonparametric models of Mokken (1971), and the factoranalytic model of Jöreskog (1971).
Unidimensional item
 response models assume that test takers’ item
 response behavior is caused by one unobserved variable. The unobserved variable is continuous, and is called a latent trait.
A well-known example of a unidimensional latent trait model is Birnbaum’s (1968) two-parameter logistic item response model
. The model applies to dichotomous (correct/incorrect, agree/disagree) items, where test takers’ item
 responses are causally influenced by one latent trait (e.g., responses to an arithmetic item
 that are influenced by an unobserved (latent) arithmetic ability). The model assumes that test takers’ probability of giving the correct (yes) answer to the item
 is a logistic function of the latent trait. This 
                item response function (IRF)
                
               is characterized by two parameters
. Figure 7.3 shows the IRF
 of Birnbaum’s two-parameter logistic model.[image: ../images/459008_1_En_7_Chapter/459008_1_En_7_Fig3_HTML.png]
Fig. 7.3
IRF
 of Birnbaum’s two-parameter logistic item response model






The IRF
 of Birnbaum’s model has two parameters
. The b-parameter is the value of the latent trait where the probability of giving the correct (yes) answer to the item
 is 0.5. The b is called the 
                item difficulty parameter
                
              . A small b-parameter means that the item
 is easy (attractive) because the giving of the correct (yes) answer with probability 0.5 is at a small latent trait value. For example, an arithmetic item
 having a small b-parameter is easy because students of low arithmetic ability have a probability of 0.5 to give the correct answer to the item
. A large b-parameter means that the item
 is difficult (unattractive) because the giving of the correct (agree) answer with probability 0.5 is at a large latent trait value. For example, an arithmetic item
 having a large b-parameter is difficult because students of high arithmetic ability have a probability of 0.5 to give the correct answer to the item
. The a is the 
                item discrimination parameter
                
              . The a-parameter determines the steepness of the IRF
 at the latent trait value b (the a-parameter is proportional to the slope of the tangent line of the IRF
 at the latent trait value b; see Fig. 7.3). A large a-parameter means that the IRF
 strongly increases in the neighborhood of the latent trait value b. For example, a large a-value of an arithmetic item
 means that the probability of giving the correct answer to the item
 rapidly increases from students having latent trait values near to but smaller than b to students having latent trait values near to but larger than b. A small discrimination parameter means that the IRF
 slowly increases in the neighborhood of the latent trait value b. For example, a small a-parameter of an arithmetic item
 means that the probability of giving the correct answer to the item
 slowly increases from students having latent trait values near to but smaller than b to students having latent trait values near to but larger than b. Figure 7.4 shows the IRFs of two items that differ in their item
 difficulty (b-) and discrimination (a-) parameters
.[image: ../images/459008_1_En_7_Chapter/459008_1_En_7_Fig4_HTML.png]
Fig. 7.4IRFs of two items that differ in their a- and b-parameters
 (ak > al and bk < bl)




The IRF
 of Item
 k is left to the IRF
 of Item
 l, which means that Item
 k is easier (more attractive) than Item
 l (bk < bl). Moreover, the IRF
 of Item
 k is steeper than the IRF
 of Item
 l, which means that Item
 k is more discriminating between persons around the latent trait value bk than Item
 l between persons around the latent trait value bl.
It follows from the IRT
 assumptions that if an item
 response model fits the data of a population of test takers, the item
 parameters
 are invariant across subpopulations of the population. For example, if Birnbaum’s two-parameter logistic model fits the data of an arithmetic test in a population of students, the item
 a-, and b-parameters
 are the same for, for example, subpopulations of boys and girls, majority and minority groups, low and high arithmetic ability students, and so on. This property distinguishes IRT
-based item
 parameters
 from CTT
-based item
 parameters
, such as item
 p-values and item
-rest correlations, which may differ between subpopulations.
The fit of item
 response models can be tested using test data of a sample of test takers. If the model fits the data, the parameters
 of the model (e.g., the a-, and b-parameters
 of Birnbaum’s model) can be estimated from the sample data. Using these parameter estimates the latent trait value of each of the test takers can be estimated. Moreover, the within-person variance
 of each test taker’s latent trait value can be estimated.

Modern (IRT
-based) item
 analysis focuses on the model parameters
 (e.g., the a-, and b-parameters
 of Birnbaum’s model), and the within-person variance
 of test takers’ latent trait values (see, for example, Lord, 1980). Example 7.8 demonstrates item
 analysis based on Birnbaum’s two-parameter logistic model.
Example 7.8 Item analysis under Birnbaum’s two-parameter logistic model
The dichotomous version of the Aggression subtest
 of the ACL was administered to 234 psychology freshmen. Van den Berg (2002) fitted Birnbaum’s two-parameter logistic model to these data. Table 7.7 reports the parameter estimates.Table 7.7Parameter estimates Birnbaum’s two-parameter logistic model, Aggression subtest
 of the ACL, 234 psychology freshmen, University of Amsterdam (van den Berg, 2002)


	
Item
 no.
	Parameter estimate

	 	Attractiveness ([image: $$ \hat{b} $$])
	Discrimination ([image: $$ \hat{a} $$])

	1
	0.65
	1.74

	2
	0.82
	1.40

	3
	1.01
	1.14

	4
	3.13
	0.85

	5
	−0.04
	1.85

	6
	0.39
	1.15

	7
	0.61
	0.97

	8
	2.50
	0.97

	9
	0.72
	1.93

	10
	2.14
	0.95






Item
 no. 4 is the least attractive item
 (largest b-parameter: [image: $$ \hat{b}_{4} $$] = 3.13) and Item
 no. 5 is the most attractive item
 (smallest b-parameter: [image: $$ \hat{b}_{5} $$] = -0.04). The a-parameter of each of the items is substantially larger than 0, which means that each of the items is sufficiently discriminating students’ aggression. The analysis gives no reason to remove or rewrite items. Comparing the classical (Table 7.6) and the modern (Table 7.7) item
 analysis shows that the classical analysis flags more items than the modern analysis (3 vs. 0 items).

7.3.6 Test Administration
The main modes of test administration are oral, paper-and-pencil, and computerized administration. 
                Oral test administration
                
               is done by a test administrator who presents the items to the test taker. The administration can be face-to-face, where administrator and test taker meet personally, or by telephone. Paper-and-pencil test administration
 presents test takers a booklet with test items, and test takers write their answers in the booklet or an answer sheet. 
                Computerized test administration
                
               presents the test items by a computer. The test takers answer the items by computer, and the computer registers their answers. Test administration errors can come from the administration procedure, the administrator, and the test taker.
The test administration procedure has to be sufficiently standardized. The instructions to the test takers have to be clear and comprehensible to the members of the target population
. Usually, test takers are prepared to the testing situation by giving them some examples of test items. If test takers are not familiar with testing and computer use, they need to be trained more thoroughfully.
The behavior of test administrators has to be standardized by clear guidelines and training
. Test administrators who orally present items (face-to-face or by telephone) may make unintentional errors, such as, accidently forgetting to present an item
 or to register an answer. This type of errors is reduced when the test administrator is supported by a computer that presents the items to the test administrator and the administrator enters test takers’ answers into the computer.
Test takers may skip items on purpose or by accident. Skipping on purpose yields systematic error (see Sect. 8.​6). Accidental skipping is prevented by presenting the items by a computer. Test takers will become fatigued during testing. Therefore, the testing time should not be too long. A pilot study
 can be done to determine a testing time that is adequate for test takers of the target population
. Most test takers will be anxious taking tests, especially when taking high-stakes tests for, for example, admission to jobs or educational programs. A mild level of 
                test anxiety
                
               might positively affect test takers’ performance, but high levels may negatively affect their performance. Usually, it is impossible to prevent test anxiety
 for all test takers, but testing has to be least anxiety arousing as possible.
7.3.7 Data Processing
The data of computerized testing are automatically processed. However, unintentional errors can occur in the processing of data from oral and paper-and-pencil test administration
.
If errors are detected during testing, test takers can correct them theirselves. For example, if a test administrator notices that a test taker has skipped a whole page of a test booklet, he or she can attend the test taker to it. However, errors that are detected after testing have to be handled in the analysis of the data. Researchers are often inclined to correct errors immediately, for example, by changing irregular responses to an answer sheet. This type of correction is ad hoc, and is strongly discouraged. The preferred strategy is to record all errors and irregularities that are detected, and to postpone the handling of them to the test analysis phase (see Sect. 16.​7). A general strategy to handle errors has to be applied in test analysis. It is stressed that this strategy and possible effects of handling errors on the results have to be mentioned in the reporting of the study.
Researchers can also make unintentional errors during the processing of oral and paper-and-pencil test data. Data processing has to be done very carefully, and checks on the accuracy have to be build into data processing. An aspect of special concern is test takers’ privacy. The data processing has to guarantee test takers’ privacy and has to protect their rights.
7.4 Recommendations
Random and systematic measurement errors are distinguished. Random errors
 affect measurement precision
, but do not bias measurements. The following recommendations are given to reduce random errors
 of psychological and educational tests and questionnaires
:	(1)To assess both the within-person and between-persons (reliability
) aspects of measurement precision
. Theoretically, the within-person precision is independent of other test takers, but the reliability
 depends on the (sub)population of test takers.

 

	(2)To apply tried and tested guidelines to write items. Concept items have to be evaluated on their substantive content, technical aspects, and sensitivity to subpopulations. Usually, concept items have to be revised before they can be included into a test.

 

	(3)To use three options for multiple-choice maximum performance items, and seven answer categories for Likert items.

 

	(4)To order the items of a maximum performance test
 from easy to difficult, and to put sensitive items of a typical response test
 at the end of the test.

 

	(5)To study the psychometric properties of a test in a sample of test takers that is heterogeneous with respect to the construct that is measured by the test. Classical and modern psychometrical analyses yield information on the quality of the test and the items. This information is used to revise the items and the test. Test composed of testlets need specific psychometric methods because the items of a testlet
 are dependent.

 

	(6)To administer the test under standardized conditions. Usually, standardization
 is optimal in computerized test administration
. Errors of oral test administration
 are reduced by training
 the administrators and assisting them with a computer.


 

	(7)To inform test takers, and to make test administration least anxiety arousing and fatiguing as possible.
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Abstract
Systematic errors
 bias measurements. Obviously, cheating
 is a biasing factor
. Answer copying is a type of cheating
, which can be detected by answer-copying indices. Satisficing
 is responding to items with less than optimal efforts. It is detectable by building instructional manipulation checks or bogus items into the test. A response style
 is a typical way of taking a test. Plodding
 is a style where test takers start slowly and take much time to answer items. It is counteracted by informing test takers on the amount of time and number of items that remain. Fumbling
 is a style where test takers start rather panicky. It cannot be prevented, but testing should be less panic arousing as possible. The extremity and midpoint styles are the tendencies to choose extreme and midpoint answer categories, respectively. Acquiescence
 and dissentience
 are tendencies of yea- and nay-saying, respectively, and are detectable if the test is balanced (i.e., has about equal numbers of indicative and contra-indicative items). Satisficing
 and fumbling
 yield aberrant response patterns and acquiescence
 and dissentience
 aberrant response patterns at balanced tests that are detectable by person-fit indices. Item nonresponse
 is the tendency to skip items. It is reduced by computerized test administration
 and re-approaching test takers who omitted items. These styles and tendencies are sometimes person characteristics that are of interest of their own. Deleting test takers who show styles or tendencies yields missing data that have to be handled in the analysis of the data (see Chap. 16).
Keywords
Acquiescence and dissentienceCheatingExtremity and midpoint response stylesFumblingImpression managementItem missingnessPerson fitPloddingSatisficing
Typical for a large part of behavioral science measurements is that study participants are aware of being measured, for example, test takers know that they are tested. A consequence is that participants may, intentionally or unintentionally, react to the measurement procedure. These reactions systematically affect measurements, and can seriously bias measurements.
Research studies have to be designed such that they reduce the influence of systematic factors on measurements. Usually, it is impossible to prevent systematic factors completely. However, a number of systematic factors can be assessed when measurements are made. Moreover, after measurements are made, systematic factors can also be detected by studying test takers’ item
 response patterns.
This chapter starts with the discussion of cheating
, which is the most obvious systematic factor
 that causes bias of measurements. Usually, cheating
 does not lead to unexpected item
 response patterns, but many of the other systematic factors yield aberrant item
 response patterns. Therefore, Sect. 8.2 discusses person-fit indices that can be used to detect aberrant item
 response patterns. The remaining sections describe some important systematic factors, methods to assess them, and strategies to cope with them.
8.1 Cheating
It is obvious that 
              cheating
              
             will systematically bias test takers’ measurements. It is rather common and it is nearly always a serious threat in high-stakes measurement situations, such as, testing for certification and selection of applicants for jobs and educational programs.
The prevention of cheating
 in examinations has a long history. An early example is from the history of China. The Chinese emperor Sui founded an examination system for civil servants in 587 AD
. The system underwent many changes, but continued till 1904. The system applied many procedures to prevent and reduce cheating
. For example, candidates did their exams in cells that were guarded by soldiers, grading was done anonymously, and corrupt examiners were severely punished (Miyazaki 1963/1981). An early example from European history is from the examinations of the Jesuit order. In 1599 they published the final version of a document that describes procedures to prevent cheating
 (DuBois, 1970, Chap. 1).
Different types of cheating
 are distinguished. First, preknowledge of items and tests that will be used. Test takers who have preknowledge can prepare their answers to the test items in advance. Second, influencing persons who are responsible for the measurements. For example, bribing or threatening test administrators, examiners, graders, and so on. Third, using cheat sheets and electronic means at test administration. Finally, copying answers from other test takers. The Chinese and Jesuit procedures were meant to prevent cheating
 of each of these types. Similar procedures are applied nowadays. Recently, psychometric methods were developed to test the hypothesis that a test taker has copied answers of another test taker at multiple-choice tests.
Multiple-choice tests are prone to answer copying. For example, if a test taker is seated behind another test taker (the ‘source’), he or she might have seen the item
 options that the source has selected. If a test taker is suspected of having copied answers from a source, this suspicion can be tested. An answer copying index is computed between the suspected copier’s choices and the source’s choices, and the null hypothesis is tested that the suspected copier’s and the source’s choices are unrelated. A number of answer-copying indices and statistical tests have been described in the psychometric literature (see, among others, Wollack, 2006), and an R package is available to compute answer-copying indices (Zopluogo, 2013). However, the rejection of the null hypothesis that the suspected copier’s choices and the source’s choices are unrelated does not automatically mean that the suspect has copied answers from the source. First, a Type I error might have been made, that is, the null hypothesis is rejected although it is true. Second, other explanations are possible. For example, different examinees may choose the same incorrect option of multiple-choice items because of misinformation from common instruction (Sotaridona, van der Linden, & Meijer, 2006).
8.2 Person Fit
A test taker’s 
              item response pattern
              
             is his (her) pattern of responses to the items of a test. For example, the item response pattern
 of a student who correctly (c) answered the first four items of a 5-item
 arithmetic test and incorrectly (i) answered the last item
 is: (c, c, c, c, i). Cheating
 may yield item
 response patterns that are similar to the patterns of noncheaters, for example, because a cheater copied answers of a noncheater. However, other systematic factors that bias measurements may yield aberrant item
 response patterns. For example, a student who starts test taking very nervously may give incorrect answers to easy items at the beginning of the test and correct answers to difficult items at the end.
Aberrant item
 response patterns can be detected by person-fit indices. Person fit is discussed in this section. Systematic errors
 that bias measurements and may cause aberrant item
 response patterns are discussed in the remaining sections of this chapter.
A person-fit index
 is defined as an index that indicates the degree of fit of a test taker’s item response pattern
 to his (her) pattern that is expected under an item
 response model (Mellenbergh, 2011, Sect. 14.1). A person-fit index
 indicates whether the test taker’s item response pattern
 deviates from the pattern that is expected. Person-fit indices are used to detect test takers who have aberrant item
 response patterns. The index can indicate that an item response pattern
 is aberrant, but it does not show a test taker’s behavior that caused his (her) aberrant pattern.
A large number of person-fit indices have been described in the psychometric literature; an overview is given by Meijer and Sijtsma (2001). To illustrate person-fit indices Example 8.1 discusses two very simple indices.
Example 8.1 Person-fit indices under the Guttman model
The Guttman (1950) model is a deterministic model for dichotomous (correct/incorrect, agree/don’t agree) item
 responses. The model implies that a test taker who gave a correct (agree) answer to an item
 has to give correct (agree) answers to all items that are easier (more attractive) than this item
. Therefore, a test taker’s item response pattern
 that is expected under the Guttman model can be derived from the test taker’s total number of correctly answered (agreed) items and the item
 difficulties. For example, a student correctly answered 3 items of a 5-item
 arithmetic test. Under the Guttman model it is expected that the student has correctly answered the 3 easiest items and incorrectly the 2 most difficult items. The item
 difficulty is assessed by the proportion of students who correctly answered the item
 in a sample of students (i.e., the item p-value
, see Sect. 7.​3.​4 of this book). The item
 p-values of the 5-item
 test are: p1 = 0.70, p2 = 0.81, p3 = 0.65, p4 = 0.45, and p5 = 0.56. In Table 8.1 the items are ordered from easiest (p2 = 0.81) to most difficult (p4 = 0.45). The table shows the item
 responses of three test takers who have correctly answered 3 of the 5 items, and three test takers who have correctly answered 4 items.Table 8.1
Item
 response patterns of six students and (corrected) Guttman person-fit indices, 5-item
 arithmetic test


	Student no.
	
Item
 no.
	Guttman errors

	2 (p2 = 0.81)
	1 (p1 = 0.70)
	3 (p3 = 0.65)
	5 (p5 = 0.56)
	4 (p4 = 0.45)
	Number
	Corrected number

	1
	
                          c
                        
	
                          c
                        
	
                          c
                        
	
                          i
                        
	
                          i
                        
	0
	0

	2
	
                          c
                        
	
                          i
                        
	
                          c
                        
	
                          i
                        
	
                          c
                        
	3
	0.5

	3
	
                          i
                        
	
                          i
                        
	
                          c
                        
	
                          c
                        
	
                          c
                        
	6
	1

	4
	
                          c
                        
	
                          c
                        
	
                          c
                        
	
                          c
                        
	
                          i
                        
	0
	0

	5
	
                          c
                        
	
                          c
                        
	
                          i
                        
	
                          c
                        
	
                          c
                        
	2
	0.5

	6
	
                          i
                        
	
                          c
                        
	
                          c
                        
	
                          c
                        
	
                          c
                        
	4
	1


Note c: correct answer; i: incorrect answer





Each of students no. 1, 2, and 3 has correctly answered 3 of the 5 items, but their response patterns are different. Each of the Students no. 4, 5, and 6 has correctly answered 4 items, but their item
 response patterns are also different. For each pair of items four different item
 response patterns are possible: (1) both items are correctly answered (c, c), (2) both items are incorrectly answered (i, i), (3) the first item
 is correctly answered and the second item
 incorrectly (c, i), and (4) the first item
 is incorrectly answered and the second item
 correctly (i, c). If the items of a pair are ordered according to their difficulty (the first item
 is easier than the second one), the Guttman model admits the patterns (c, c), (i, i), and (c, i). However, it does not admit the pattern (i, c) because an incorrect answer to an easier item
 precedes a correct answer to a more difficult item
. For example, in the pair of Items 1 and 5 Item
 1 (p1 = 0.70) is easier than Item
 5 (p5 = 0.56). The answers of Students no. 1 (c, i), 2 (i, i), and 4 (c, c) to this pair are admissible under the Guttman model, but the answers of Student no. 3 (i, c) are not admissible. The pattern (i, c) is not expected under the Guttman model, and is called a 
              Guttman error
              
            . The item response pattern
 of Student no. 1 has no Guttman errors: the student has correctly answered the 3 easiest items and incorrectly the 2 most difficult items. The item response pattern
 of Student no. 2 has 2 (incorrect answer Item
 1 precedes correct answers Items 3 and 4) + 1 (incorrect answer Item
 5 precedes correct answer Item
 4) = 3 Guttman errors. Student no. 3 has 3 (incorrect answer Item
 1 precedes correct answers Items 3, 5, and 4) + 3 (incorrect answer Item
 2 precedes correct answers Items 3, 5, and 4) = 6 Guttman errors. The number of Guttman errors represents the deviation of a test taker’s item response pattern
 from his (her) pattern that is expected under the Guttman model. Therefore, the number of Guttman errors is a simple person-fit index
 (Meijer, 1994). The Guttman person-fit index
 of Students no. 1, 2, and 3 is 0, 3, and 6, respectively. The item response pattern
 of Student no. 3 has the maximum number of Guttman errors that is possible for a student who has correctly answered 3 of the 5 items: the student has correctly answered the three most difficult items and incorrectly answered the two easiest items. Students no. 4, 5, and 6 have correctly answered 4 of the 5 items. Student no. 4 has no Guttman errors because he or she correctly answered the four easiest items and incorrectly answered the most difficult item
. Student no. 5 has 2 Guttman errors (incorrect answer to Item
 3 precedes correct answers to Items 5 and 4). Student no. 6 has 4 Guttman errors, which is the maximum number of Guttman errors, because the incorrect answer to the easiest Item
 2 precedes correct answers to the four more difficult items. Comparing the number of Guttman errors of Students no. 3 and 6 shows that the maximum number depends on the number of correctly answered items: the maximum is 6 for a student who correctly answered 3 of the 5 items (Student no. 3) and 4 for a student who correctly answered 4 of the 5 items (Student no. 6). A person-fit index
 that corrects for different maxima is the number of Guttman errors divided by the maximum number for a given number of correctly answered items (Meijer, 1994). The corrected Guttman person-fit index
 is given in the last column of Table 8.1. For example, the corrected Guttman person-fit index
 of Student no. 2 is 3/6 = 0.5 and of Student no. 5 is 2/4 = 0.5. Students no. 2 and 5 have different numbers of Guttman errors (i.e., 3 and 2, respectively), but they have the same corrected Guttman person-fit index
 (i.e., 0.5).
Example 8.1 discussed two person-fit indices for dichotomous (correct/incorrect, agree/don’t agree) item
 responses. Guttman errors and their maxima can also be defined for items that have more than two response categories, such as, 5-point Likert items (Sijtsma & Molenaar, 2002, Chap. 7). Therefore, the two Guttman person-fit indices can be generalized to items that have more than two response categories.
The Guttman indices are simple examples of a large number of person-fit indices. These indices can be used to detect aberrant item
 response patterns that are caused by systematic measurement errors.
8.3 Satisficing
Not all
 test takers are motivated to take a test. For example, respondents may answer test questions to make some money, and students may take tests to fulfill course requirements. Taking a test involves cognitive efforts, such as, comprehending item
 information, and giving answers. Test takers who are not motivated may want to satisfy test requirements without making the required efforts. 
              Satisficing
              
             is responding to test items with less than optimal efforts (Krosnick & Presser, 2010, Sect. 9.1.1). An extreme type of satisficing
 is responding to the items without considering the content of the items. Examples of extreme satisficing
 are always selecting the same category (e.g., the first category of a Likert item
), and arbitrarily selecting an option of a multiple-choice item
. The detection of satisficers can be done during test administration or in the phase of test analysis.
The detection of satisficers during test administration can be done by adding specific items to the test. Two types of items to detect satisficers are mentioned, that is, instructional manipulation check
 items and bogus items.
A manipulation check
 is a procedure to check whether the manipulations of the independent variable got across the study participants (see Sect. 6.​5 of this book). Analogously to the check of the manipulations, Oppenheimer, Meyvis, and Davidenko (2009) described a method to check whether test takers complied with the test instructions. An 
              instructional manipulation check
              
             is a procedure to check whether test takers comply with the test instructions.
An instructional manipulation check
 item
 is added to the regular items of the test. This item
 resembles the regular items, but the instruction to answer this item
 differs from the instruction to answer the regular items. For example, the test taker is instructed to skip the response categories of the item
, and to do something else (see Example 8.2).
Example 8.2 Instructional manipulation check
A questionnaire consists of the following Likert type of items:


            Item 8.1 Example of a regular
            
              item
              
            
          
I am satisfied with my daily activities
Circle one of the following five categories. Please, circle the category that best applies to you.	1very weakly applicable to me

 

	2weakly applicable to me

 

	3moderately applicable to me

 

	4strongly applicable to me

 

	5very strongly applicable to me

 





Thanks
Item 8.2 is a possible instructional manipulation check
 item
 for this test:

            Item 8.2 An
            
              instructional manipulation check
              
            
            
              item
              
            
          
I am satisfied with my housing
Do not circle one of the following categories (this is just to screen random answering). Please, circle ‘Thanks’ below the categories	1very weakly applicable to me

 

	2weakly applicable to me

 

	3moderately applicable to me

 

	4strongly applicable to me

 

	5very strongly applicable to me

 





Thanks

Satisficing
 can also be detected by adding items to the test that can be answered in only one way (Beach, 1989). Meade and Craig (2012) called these items bogus items. An example of a bogus item
 is:

            Item 8.3 A
            
              bogus item
              
            
            (Meade & Craig,
            2012
            )
          
I have been to every country in the world
Strongly disagree
Disagree
Neither agree nor disagree
Slightly agree
Agree
Strongly agree
It is impossible to visit every country in the world. Therefore, test takers have to disagree with this item
. Test takers who agree with this item
 are responding without considering the content of the item
.

Instructional manipulation check
 or bogus items are added to the test to detect satisficers in the test administration phase. If these types of items are not added to the test, satisficers can also be detected by analyzing test taker’s item
 response patterns. Usually, satisficing
 will result into aberrant item
 response patterns, for example, a satisficer selects in turns the first and last category of a Likert item
. Person-fit indices can be applied to flag aberrant item
 response patterns. Inspection of flagged item
 response patterns can be applied to detect satisficing
 and other behaviors that caused the aberrant item
 response patterns.
8.4 Impression Management


              Impression management
              
             (Paulhus, 1984) is a test taker’s tendency to make a good or bad impression. Impression management
 can bias test takers’ measurements. It is not common, but making a bad impression on others can occur in both maximum performance tests and typical response tests. For example, a draftee who fakes to be incompetent and neurotic to be declared unfit. Making a good impression on others can only occur in typical response tests. Maximum performance tests asks test takers to do the best they can, and they cannot fake to make a better impression. Making a good impression on others is a systematic error that affects the measurements of typical response tests.

Impression management
 is specific to persons because it varies between test takers. Moreover, it is specific to the construct that is measured by the test because it may vary between different tests. For example, a student may give too positive answers to items measuring his (her) motivation for school learning, and, simultaneously, give honest answers to items measuring his (her) motivation for sports. Therefore, impression management
 is a person/construct-specific property that is relatively stable across measurements of the same construct at different occasions (de Vries, 2006, Sect. 3.1.4).

Impression management
 cannot be prevented, but it can be assessed by specific impression management
 tests. Impression management
 tests use two types of statements. First, statements of behaviors that are desirable from a social point of view, but unlikely to occur in daily life. Second, statements of behaviors that are undesirable from a social point of view, but likely to occur in daily life.
Test takers who endorse social desirable but unlikely statement may be trying to make a good impression. Therefore, the endorsement of this type of statements is an indication of impression management
. H.C.M. Vorst (personal communication, October 2, 2008) constructed an impression management
 test. Item
 8.4 is one of his items that is indicative for making a good impression.

            Item 8.4 Indicative
            
              impression management
              
            
            
              item
              
            
            (translated from Dutch)
          
I always enjoy doing my work	1very weakly applicable to me

 

	2weakly applicable to me

 

	3moderately applicable to me

 

	4strongly applicable to me

 

	5very strongly applicable to me

 





It is desirable that someone enjoys doing his (her) work, but it is unlikely that he or she is always doing that. Therefore, test takers who choose ‘very strongly applicable to me’ and ‘strongly applicable to me’ may try to make a good impression.
Test takers who deny social undesirable but likely statements may also be trying to make a good impression. Therefore, the endorsement of this type of statements is a contra-indication of impression management
, and the denial is an indication of impression management
. Item
 8.5 is one of Vorst’s items that is contra-indicative for impression management
.

            Item 8.5 Contra-indicative
            
              impression management
              
            
            
              item
              
            
            (translated from Dutch)
          
Once in a while, I abuse someone’s trust	1very weakly applicable to me

 

	2weakly applicable to me

 

	3moderately applicable to me

 

	4strongly applicable to me

 

	5very strongly applicable to me

 





It is undesirable that someone abuses an other’s trust, but it is likely that he or she does it once in a while. Therefore, test takers who choose ‘very weakly applicable to me’ and weakly applicable to me’ may try to make a good impression. Note that to score an impression management
 test the scale of the contra-indicative items has to be reversed. For example, choosing ‘very strongly applicable to me’ points to honestly answering Item
 8.4, whereas choosing ‘very weakly applicable to me’ points to impression management
 at Item
 8.5.
In general, impression management
 will not lead to aberrant item
 response patterns of typical response tests. Therefore, person-fit indices will not detect test takers who try to make a good impression. However, a high score on an impression management
 test may indicate that the test taker wants to make a good impression.
8.5 Response Styles
A 
              response style
              
             is a typical way of taking a test, irrespective of its content. It differs between persons, but it is relatively stable across the measurement of different constructs, and the measurement of the same construct at different occasions. Therefore, it is a personal style of test taking (de Vries, 2006, Sect. 3.1.2; Rorer, 1965).
Response styles can occur in both maximum performance tests and typical response tests. Section 8.5.1 discusses two response styles that can occur in both test types, but mainly occur in maximum performance tests. Sections 8.5.2 and 8.5.3 describe response styles that can only occur in typical response tests.
8.5.1 ‘Plodding’ and ‘Fumbling’

Some
 test takers
 start slowly and take much time to answer the items of especially maximum performance tests. Usually, they spend too much time in the beginning, and run out of time at the end of the test. This response style
 was called ‘plodding
’ by Wright and Stone (1979, p. 171).

Plodding
 is counteracted by informing test takers on the time that is left and on the number of items that has to be answered in the remaining time. This information has to be given early during test administration, and has to be updated regularly.

Plodding
 yields relatively many correct answers at the begin of the test and relatively many incorrect answers at the end. If the items of the test are ordered from easy to difficult and the plodder answered each of the test items, his (her) item response pattern
 will look normal: mainly correct answers to easy items and mainly incorrect answers to difficult items. A plodder’s item response pattern
 will not be aberrant, and, therefore, person-fit indices will not detect plodders. However, omitted items at the end of the test is a sign of plodding
.

‘Fumbling
’ (Wright & Stone, 1979, p. 171) is a response style
 where test takers start rather panicky because of, for example, test anxiety
 or inexperience with testing. Usually, they succeed to control themselves through test taking.
It is hard to prevent fumbling
. However, test administration should be less panic arousing as possible.

Fumbling
 yields relatively many incorrect answers at the begin of the test, and many correct answers at the end. If the items of the test are ordered from easy to difficult, a fumbler’s item response pattern
 will be aberrant.
8.5.2 The Extremity and Midpoint Style
The 
                extremity response style
                
               is a test taker’s tendency to choose extreme response categories (e.g., strongly agree and strongly disagree), whereas the 
                midpoint response style
                
               is a test taker’s tendency to choose the middle category (e.g., moderately applicable to me).
The frequency distribution of a test taker’s answers to typical response items shows whether he or she has a preference for extreme or midpoint answers (see Example 8.3).
Example 8.3 Preferences for extreme and midpoint answers
A 10-item
 attitude test is administered to a group of test takers. The items are Likert items that have 5 response categories: (1) very weakly applicable to me (vw), (2) weakly applicable to me (w), (3) moderately applicable to me (m), (4) strongly applicable to me (s), and (5) very strongly applicable to me (vs). Table 8.2 shows the item
 response patterns of two test takers.Table 8.2Extreme (Test taker no. 1) and midpoint (Test taker no.2) item
 response patterns


	Test taker no.
	
Item
 no.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	1
	vs
	vw
	s
	vw
	vs
	w
	vs
	vw
	vs
	vs

	2
	m
	s
	m
	m
	m
	w
	m
	m
	m
	m






The first test taker selected five times the ‘very strongly applicable to me’ (vs) category (50%) and three times ‘very weakly applicable to me’ (vw) category (30%). Figure 8.1 shows the histogram of his (her) item
 responses.[image: ../images/459008_1_En_8_Chapter/459008_1_En_8_Fig1_HTML.png]
Fig. 8.1Histogram of Test taker no. 1’s item
 responses



The figure shows that the distribution of Test taker no. 1’s item
 responses is bimodal: 80% of the test taker’s item
 responses are in the extreme categories (3 in the very weakly category and 5 in the very strongly category). Figure 8.2 shows the histogram of Test taker no. 2’s item
 responses.[image: ../images/459008_1_En_8_Chapter/459008_1_En_8_Fig2_HTML.png]
Fig. 8.2Histogram of Test taker no. 2’s item
 responses



The distribution of Test taker no. 2’s item
 responses is unimodal and is centered in the middle: 80% of the test taker’s item
 responses is in the middle category.
A histogram of a test taker’s item
 response categories shows whether he or she has a preference for extreme categories (see Fig. 8.1). However, a test taker’s preference for extreme categories does not necessarily imply that the test taker has an extremity response style
. The extreme choices can also mean that the test taker has an extreme position on the construct that is measured by the test. For example, environmentalists may give extreme answers to questions on environmental protection because these answers truly reflect their attitude. In the same way, a preference for the middle category (see Fig. 8.2) does not necessarily imply that the test taker has a midpoint response style
. The choices of the middle category can also reflect that the test taker takes a neutral position at the construct. For example, a student who does not care much about sports may choose the middle category of questions on students’ attitude on sports.
8.5.3 Acquiescence and Dissentience


                Acquiescence
                
               is a test taker’s tendency to agree with questions, independently of the content of the items. The test taker is always yea-saying, regardless of the questions (Couch & Keniston, 1960). 
                Dissentience
                
               is the opposite of acquiescence
, that is, the tendency to disagree with questions, independently of the content of the questions. The test taker is always nay-saying, regardless of the questions.

Acquiescence
 is hard to detect if a test exclusively consists of one type of items, that is, either items that are indicative for the construct or items that are contra-indicative. For example, yea-saying to a test that exclusively consists of items that are indicative for neuroticism leads to a high neuroticism score. Dissentience
 is hard to detect for the same reason. For example, nay-saying to a test that exclusively consists of items that are indicative for neuroticism leads to a low neuroticism score. The item
 response patterns are not aberrant. Yea-saying test takers have positive responses to all items, and nay-saying test takers have negative responses to all items. Therefore, person-fit indices will not point to deviant item
 response behavior. A histogram of a yea-sayer will show an overrepresentation of strongly agree and agree answers. However, this overrepresentation does not need to imply that the test taker is a yea-sayer because the overrepresentation can also come from a high value on the construct. In the same way, a histogram of a nay-sayer will show an overrepresentation of strongly disagree and disagree answers, but this overrepresentation can come from a low value of the construct instead of nay-saying. Therefore, person-fit indices and test takers’ item
 response histograms are not suited to detect acquiescence
 and dissentience
 if the test exclusively consists of one type of items (either only indicative items or only contra-indicative items).

Acquiescence
 and dissentience
 can be detected if the test is balanced. A 
                balanced test
                
               consists of approximately the same number of indicative and contra-indicative items. Agreeing with an indicative item
 points to a higher level of the construct than disagreeing. For example, agreeing with the indicative item
 ‘I am satisfied with my housing’ points to more satisfaction than disagreeing. Agreeing with a contra-indicative item
 points to a lower level of the construct than disagreeing. For example, agreeing with the contra-indicative item
 ‘I am dissatisfied with my housing’ points to less satisfaction than disagreeing.
A yea-saying test taker will agree with both the indicative and the contra-indicative items. A nay-saying test taker will disagree with both the indicative and the contra-indicative items. It is expected that a test taker who agrees with indicative items will disagree with contra-indicative items. However, a yea-sayer will agree with both indicative and contra-indicative items. In the same way, it is expected that a test taker who disagrees with indicative items will agree with contra-indicative items. However, a nay-sayer will disagree with both indicative and contra-indicative items. Therefore, yea-saying and nay-saying yield aberrant item
 response patterns.
A method to detect acquiescence
 and dissentience
 is to compute two histograms: one for a test taker’s responses to the indicative items, and one for his (her) responses to the contra-indicative items. The comparison of these two histograms yields information whether or not a test taker is yea-saying or nay-saying (see Example 8.4).
Example 8.4 Item response histograms to detect acquiescence and dissentience
A 10-item attitude test consists of 5 indicative (i) and 5 contra-indicative (c) items. The items are Likert items that have 5 response categories: (1) very weakly applicable to me (vw), (2) weakly applicable to me (w), (3) moderately applicable to me (m), (4) strongly applicable to me (s), and (5) very strongly applicable to me (vs). Table 8.3 shows the item
 response patterns of three test takers.Table 8.3
Item
 response patterns of three test takers, 10-item
 test, 5-point Likert items


	Test taker no.
	
Item
 no.

	1 (i)
	2 (c)
	3 (i)
	4 (c)
	5 (c)
	6 (i)
	7 (i)
	8 (c)
	9 (c)
	10 (i)

	1
	vs
	m
	s
	vs
	s
	m
	vs
	s
	s
	vs

	2
	w
	vw
	vw
	w
	w
	w
	m
	w
	vw
	w

	3
	w
	m
	vw
	vs
	s
	vw
	m
	s
	vs
	w






The first test taker selected the very strongly (vs) category at 3 of the 5 indicative (i) items (i.e., 60%) and 1 of the 5 contra-indicative (c) items (i.e., 20%). Figure 8.3 shows the histogram of this test taker’s choices at (a) the indicative items, and (b) the contra-indicative items.[image: ../images/459008_1_En_8_Chapter/459008_1_En_8_Fig3_HTML.png]
Fig. 8.3Histogram of Test taker no. 1’s choices at a the indicative (i) items and b the contra-indicative (c) items



The histograms point to yea-saying because the test taker preferred the ‘very strongly applicable’ and ‘strongly applicable’ categories at both the indicative and contra-indicative items. The histograms of the second test taker are (Fig. 8.4).
[image: ../images/459008_1_En_8_Chapter/459008_1_En_8_Fig4_HTML.png]
Fig. 8.4Histogram of Test taker no. 2’s choices at a the indicative (i) items and b the contra-indicative (c) items



The histograms point to nay-saying because the test taker preferred the ‘very weakly applicable’ and ‘weakly applicable’ categories at both the indicative and contra-indicative items. The histograms of the third test taker are (Fig. 8.5).[image: ../images/459008_1_En_8_Chapter/459008_1_En_8_Fig5_HTML.png]
Fig. 8.5Histogram of Test taker no. 3’s choices at a the indicative (i) items and b the contra-indicative (c) items



The histograms point to neither yea-saying nor nay-saying because the test taker responds differently to the indicative and contra-indicative items: 80% ‘very weakly’ and ‘weakly’ at the indicative items and 80% ‘very strongly’ and ‘strongly’ at the contra-indicative items. Figure 8.6 shows the histogram of the third test taker’s choices across all 10 items of the test:[image: ../images/459008_1_En_8_Chapter/459008_1_En_8_Fig6_HTML.png]
Fig. 8.6Histogram of Test taker no. 3’s choices at all 10 test items



The test taker has chosen each of the five categories with equal frequencies (i.e., 2 per category). Therefore, the histogram does not point to the extremity or midpoint response style
.
If a test is balanced (i.e., consists of about equal numbers of indicative and contra-indicative items), person-fit indices can detect acquiescence
 and dissentience
. Moreover, inspection of item
 response histograms can indicate whether a test taker is yea-saying or nay-saying.
8.6 Item Nonresponse

Nonresponse
 frequently occurs in behavioral science measurements. 
              Item nonresponse
              
             means that a test taker skipped one or more items of the test. The extreme case is that the test taker skipped each of the items, that is, the test taker skipped the whole test or subtest
. This type of nonresponse will be called test (
              subtest) nonresponse
              
            .

Item nonresponse
 can be accidental or nonaccidental. An example of accidental item nonresponse
 is the unintentional skipping of a page of a test booklet. In general, accidental item nonresponse
 yields random measurement error
. Therefore, it decreases measurement precision
, but it does not bias the measurements. In contrast, nonaccidental nonresponse can bias measurements.
Nonaccidental item nonresponse
 can occur in both maximum performance tests and typical response tests, but the reasons for nonresponse differ between these two test types. Two reasons for skipping maximum performance items are: First, the test taker does not know the answer to the item
 and skips the item
. Second, the test taker runs out of time and cannot answer the item
. In the first case the omitted items are scattered over the test, and in the second case the omitted items are piled up at the end of the test. Typical response items are skipped for other reasons. For example, a test taker refuses to answer sensitive questions, for example, on drug abuse and aggression. Other reasons are that the test taker wrongly thinks that an item
 does not apply to him or her, and that he or she does not understand the item
.

Item nonresponse
 can be reduced by computerized test administration
. For example, the computer can give a warning if a test taker skipped an item
, and the computer can inform test takers on the time that is left for answering the remaining items. If test takers’ mail or email addresses or telephone numbers are known to the researchers, test takers who omitted items can be re-approached (Huisman, Krol, & van Sonderen, 1998). If test takers again do not want to answer omitted items, they are asked for their reasons of nonresponding. Huisman et al. recommend to re-approach test takers who omitted items as soon as possible. As time passes, test takers’ construct may change and they may forget why they skipped an item
.
8.7 Coping with Systematic Errors
The systematic errors
 that were described in this chapter can be considered as intentional or unintentional attempts not to comply with test instructions. Cheating
, satisficing
, impression management
, and refusal to answer are instances of intentional noncompliance. For example, test takers are asked to respond to the content of questions, but satisficers give answers without considering the content of the questions. In general, the extremity and midpoint response styles, plodding
 and fumbling
 are unintentional ways not to comply with test instructions. For example, test takers are asked to answer each of the items, but plodders do not comply with this instruction because they spend too much time in the beginning.
Two naive approaches to 
              noncompliance with test instructions
              
             are very common. First, researchers do not collect information on noncompliance. For example, researchers do not administer impression management
 tests, compute person-fit indices, balance their tests, and inspect item
 response patterns. Second, researchers simply exclude noncompliers from their sample of study participants. For example, researchers delete nonresponders and satisficers from their sample. Both strategies are naive because noncompliance can seriously affect study results. Researchers who are uninformed on test takers’ noncompliance lack means to investigate the effects of noncompliance on their study results. Researchers who have information on compliance but exclude noncompliers from their study make strong assumptions on noncompliance. Exclusion of noncompliers means that noncompliers are turned into missing participants. Noncompliers will not bias study results if the noncompliers are missing completely at random (MCAR)
 or missing at random (MAR)
. These concepts were introduced in Sects. 2.​5 and 4.​7 of this book. MCAR
 means that noncompliers are a simple random sample from the total sample of study participants. For studies, where participants are randomly assigned to an E-
 or a C-condition, MAR
 means that noncompliers within the E-condition are a simple random sample from the E-condition participants, and noncompliers within the C-condition are a simple random sample from the C-condition participants. For randomized block designs and designs that apply covariates
, MAR
 can be further specified, but that will not be done in this section. Exclusion of noncompliers can bias study results if noncompliers are missing not at random (MNAR)
, that is, not MCAR
 or MAR
. Excluded noncompliers who are missing not at random spoil the random assignment of participants to conditions, and can introduce selection bias
 into a study. As drop out (see Sect. 4.​7 of this book), exclusion of noncompliers can cause a kind of selection bias
 that occurs after participants are assigned to the conditions. In other words, exclusion of MNAR
 noncompliers turns a randomized study into a nonrandomized one that is prone to selection bias
.
Compliance to test instructions has to be assessed, and researchers have to cope with noncompliance. The design of a study has to specify procedures to prevent or reduce noncompliance, and methods to assess noncompliance. Examples of methods to prevent or reduce noncompliance are procedures to keep test takers from cheating
, to re-approach test takers who did not respond to some of the items, to inform test takers on the time that is left to answer remaining items, and to reduce stress and anxiety at test administration. Examples of methods to assess noncompliance are instructional manipulation checks, administration of impression management
 tests, and the computation of person-fit indices.
Noncompliance that is assessed has to be handled in the analysis of the data. The assessment of noncompliance can be used to construct 
              compliance variables
              
            . Cheating
 yields a dichotomous variable
 (cheaters/noncheaters), and satisficing
 also yields a dichotomous variable
 (satisficers/nonsatisficers). As other psychological and educational tests, an impression management
 test yields scores of test takers. Person-fit indices and inspection of item response pattern
 can be used to construct response style
 variables. Plodding
 and fumbling
 can be assessed in a nominal variable that has three categories: (1) plodders, (2) fumblers, and (3) regularly working test takers. Acquiescence
 and dissentience
 also yields a 3-category nominal variable: (1) yea-sayers, (2) nay-sayers, and (3) regularly answering test takers.

Item nonresponse
 can be used to construct an 
              item missingness variable
              
            . For each of the test takers his (her) number of missing item
 responses is counted (see Example 8.5).
Example 8.5 The item missingness variable
An attitude test consists of six 5-point Likert items that are conventionally scored (1, 2, 3, 4, or 5). Table 8.4 gives the scores of three test takers to the items.Table 8.4
Item
 scores and item missingness
 scores of three test takers, six 5-point Likert items


	Test taker no.
	
Item
 no.
	
                          Item missingness

                        

	1
	2
	3
	4
	5
	6
	 
	1
	4
	–
	4
	5
	3
	5
	1

	2
	3
	4
	4
	3
	4
	4
	0

	3
	2
	–
	1
	2
	–
	2
	2


Note A blank indicates that the test taker skipped the item







The item missingness
 score is the number of items that the test taker omitted, for example, the first test taker omitted one item
 (item missingness
: 1) and the second test taker omitted none of the items (item missingness
: 0).
The compliance variables
 are included into the analysis of the data, which can be done in different ways. First, compliance variables
 are of their own interest, and their relations with other variables are studied. For example, in correlational studies it is investigated whether test takers’ impression management
 scores are correlated with their personality and attitude test scores, and in experimental and quasi-experimental studies it is studied whether the conditions affect compliance variables
 (see Example 8.6).
Example 8.6 Effect of treatment on satisficing
An experimental study is done on the effects of a new math program on students’ motivation to learn math. The sample consists of 100 high school students, 50 are randomly assigned to the new program and the other 50 to the standard program. At posttest, a motivation test for learning is administered to the students. This test includes an instructional manipulation check
 item
, which identifies 10 satisficers. To study the effect of the new program on satisficing
, the data are summarized in the following (hypothetical) 2 × 2 table.

	 	New program
	Standard program
	 
	Satisficers
	2
	8
	10

	Nonsatisficers
	48
	42
	90

	 	50
	50
	100



The chi-square statistic ([image: $$ X^{2} = \frac{{100(8 \times 48 - 2 \times 42)^{2} }}{50 \times 50 \times 90 \times 10} = 4.0 $$], df = 1) is significant at the 5% level. Therefore, the researchers conclude that the new math program reduces the number of satisficers compared to the standard program.
Second, if it is plausible that noncompliers are missing completely at random (MCAR)
, or missing at random (MAR)
, statistical missing data methods can be applied in data analysis. Third, if noncompliers are missing not at random (MNAR)
, study results may be affected by noncompliance, and the robustness of results against noncompliance has to be studied. Missing data methods and methods to study robustness are discussed in Sects. 16.​6 and 16.​7 of this book.
Although noncompliance to test instruction can seriously bias study results, information on noncompliance is rarely given in publications. Editors and reviewers of manuscripts have to require that authors include information on the assessment, occurrence, and handling of noncompliance in their manuscripts.
8.8 Recommendations
Intentional and unintentional noncompliance to test instructions are systematic errors
 that bias measurements. It is recommended:	(1)To prevent noncompliance, for example, by computerized test administration
 and re-approaching test takers who omitted items.

 

	(2)To detect noncompliers, for example, by computing person-fit indices, studying item
 response patterns, computing answer-copying indices of multiple-choice maximum performance tests, adding instructional manipulation checks or bogus items and an impression management
 test to typical response tests, and balancing indicative and contra-indicative items of a typical response test
.

 

	(3)To handle noncompliance as a variable of interest of its own, for example, by computing a dichotomous missingness variable or an impression management
 test score.

 

	(4)To handle noncompliers as missing test takers in data analysis. Statistical missing data methods are applied if noncompliers are missing completely at random (MCAR)
 or missing at random (MAR)
. However, if noncompliers are missing not at random (MNAR)
, methods for MNAR
 data have to be applied (see Chap. 16).

 

	(5)To report the number of noncompliers and the way noncompliance was handled in publications of the study.
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Abstract
Usually, participants know that they are measured, which implies that they can react to the measurement situation, for example, by satisficing
. Unobtrusive measurements
 are measurements where participants cannot react to the situation. Four measurement modes are distinguished, and for each of these modes examples of unobtrusive measurement procedures are given. First, the self-report mode
 where participants answer questions themselves (e.g., tests). An unobtrusive self-report disguises the construct that is measured. For example, a writing test to measure aggression instead of writing skill by counting the number of aggressive words in a student’s essay. Second, the other-report mode
 where an other person answers questions on a participant. For example, a teacher who answers questions on a student’s aggressive behavior. Third, the somatic indicators mode
 where a participant’s somatic reactions are observed. For example, the observation of a participant’s blushing. Fourth, the physical traces mode
 where physical traces of a participant are used. For example, traffic offences to assess a participant’s attitude on traffic safety. Random errors
 decrease the precision of unobtrusive measurements
, and systematic errors
 bias these measurements. The main systematic error is that the unobtrusive measure does not measure the construct that the researcher wants to measure. Unobtrusive measures that involve human judgment (e.g., ratings) are prone to systematic errors
, such as, the halo-effect
. Unobtrusive measures should not replace reactive measures, but they can complement these measures.
Keywords
Error of central tendencyError of leniencyHalo-effectOther-report modePhysical traces modeSomatic indicators modeSelf-report mode
The previous chapter was devoted to measurement procedures where study participants can react to the measurement procedure for example by impression management
 or satisficing
. This chapter discusses measurement procedures where participants cannot react to the measurement situation.
9.1 Measurement Modes
Measurement procedures of the behavioral sciences use different measurement modes. Four modes are distinguished. First, the self-report mode
, where a study participant answers items or questions him (her) self. For example, a student who answers the items of an arithmetic test, and a test taker who answers the questions of an attitude test. Second, the other-report mode
, where another person answers questions on a study participant. For example, a teacher (‘the other’) who answers questions on a child’s (‘the participant’) classroom behavior. Third, the 
              somatic indicators mode
              
            , where a participant’s somatic reactions are registered. For example, a researcher who registers a participant’s brain activities. Finally, the 
              physical traces mode
              
            , where physical traces of participant’s behavior are used. For example, a researcher who uses participants’ criminal records.
Usually, study participants are aware that they are measured by researchers. Test takers who answer questions on their attitudes know that their attitudes are measured, and participants who are put into a brain scanner know that their brain activities are measured. Therefore, participants can react to the measurement procedures, and reactions can occur in each of the four measurement modes.
The previous chapter discussed a number of reactions to self-report measurements, such as, impression management
, satisficing
, yea-saying, and so on. Participants who know that others will assess their behavior can react to these other-report measurements. For example, job applicants who are observed in an assessment procedure will adapt their behavior to this situation, where observers (‘others’) report about their behavior. Study participants who are physically measured can also react to these somatic measurements. For example, participants can react anxiously or stressed to a brain scanner. Physical traces are expressions of behavior in the past. However, persons who leave physical traces and know that their traces can be used in the future can pre-react to future use. For example, writers of letters, diaries, and memoirs can present biased impressions of their attitudes, personality characteristics, and behavior.
The measurement procedures that are mentioned above are obtrusive in the sense that the participants know that they are measured, and, therefore, they can react to these measurements. Webb, Campbell, Schwartz, and Sechrest (1966) published a book entitled ‘Unobtrusive measures’, and a revised edition of this book was published in 2000. An expanded version of the book, entitled ‘Nonreactive measures in the social sciences’ was published by Webb, Campbell, Schwartz, Sechrest, and Grove (1981). A discussion of unobtrusive measurements
 was given by Tan and Westhoff (2014). In contrast to obtrusive measurements, 
              unobtrusive measurements
              
             are measurements, where the participants cannot react to the measurement procedure, and cannot themselves affect, distort, or bias their measurements. Webb et al. recommended researchers to pay attention to measurement procedures that cannot be influenced by participants themselves. They emphasized that their intention was not to replace obtrusive measurement procedures by unobtrusive ones, but they recommended to supplement the usual obtrusive procedures by unobtrusive ones. The next section gives examples of unobtrusive procedures for each of the four measurement modes.
9.2 Examples of Unobtrusive Measurements

Usually
, self-report measurements are obtrusive because participants know that they answer items. The strategy of unobtrusive self-reports is to mislead participants on the construct that is of interest to the researcher, or to divert participants’ attention from this construct of interest. Misleading on the construct of interest is done by giving the participants the impression that a certain construct is measured, but, actually, the researchers measure something else. For example, students are asked to write short essays on different topics. The students get the impression that their writing skill is assessed, but, actually, the researchers count the number of aggressive words in the students’ essays to assess their aggressiveness. An example of an unobtrusive self-report, where participants’ attention is diverted from the construct of interest is given by Hickendorff, Heiser, van Putten, and Verhelst (2009). Students at the end of elementary school are asked to solve open-ended division problems (e.g., 432:12 = …). The children are asked to use the space next to each item
 to write down their calculations. In general, students’ attention will be focused on giving correct answers to the items. However, the researchers use the written calculations to assess the strategies that the students used to solve the items. The researchers interest is not only in the answers, but also in the strategies that the students use to get their answers.
Study participants can adapt their behavior when they know that others will assess their behavior. However, other-reports are unobtrusive when participants do not think or know that others will assess their behavior. Different types of unobtrusive other-reports are used in research.
First, others answer the same items as participants themselves. An example is Achenbach’s (1991) Child Behavior Checklist (CBCL). The CBCL consists of a large number of 3-point Likert items. Each of the items describes a behavioral problem (e.g., ‘can’t concentrate’) that can occur in childhood. The CBCL is a self-report questionnaire, which is administered to children. However, two other-report forms of the CBCL are available. The teacher- and parent-report forms include the behavioral problem items of the CBCL. The teacher-report form asks a teacher to answer the behavioral problem items of the CBCL about one of the children of his (her) class, and the parent-form asks a parent to answer the behavioral problem items about his (her) child.
Second, others observe participants and register their behavior. If participants are aware that they are observed, they may adapt their behavior. Observations are unobtrusive when participants do not know that they are observed by others. Examples are observations of children’s playing behind a one-way screen, and recording participants’ interactions by a hidden camera.
Third, ratings of persons’ behavior and characteristics. Persons who know that they will be rated may adapt their behavior. Ratings are unobtrusive if participants do not know that they will be rated or think that they will not be rated. Examples are teacher ratings of their students’ arithmetic skill, peer ratings of participants’ personality characteristics and attitudes, and nurses’ ratings of the quality of life of their dementia patients.
Usually, somatic indicators have to be assessed by equipments, such as, a brain scanner. Therefore, somatic indicators are mostly obtrusive measures, and participants can react to these measures. However, unobtrusive somatic measurements can be made if equipment is not needed. Examples are the observation of, for example, blushing and sweating of study participants.
Persons leave physical traces of their behavior. These traces can be biased when persons expect that their traces will be used in the future, for example, letters and memoirs may give a biased picture of a person’s characteristics and behavior. In the past, unobtrusive physical traces could only be found in archives and administrative systems. For example, police records can be used to find a person’s traffic offences. Traffic offences can be used to measure a person’s attitude on traffic safety because it is plausible that a person who commits many traffic offences will have a rather negative attitude on traffic safety. Nowadays, people leave a virtually unlimited number of physical traces at the Internet, supermarkets, shops, and so on. Moreover, modern technologies admit the registration of many physical traces (see, for example, “Big Data in Psychology”, 2016).
9.3 Random Errors of Unobtrusive Measurements
Chapter 7 of
 this book discussed random errors
 of obtrusive measurements. Random errors
 decrease the precision of measurements. Two aspects of measurement precision
 were distinguished, that is, the within-person (within-person variance
) and the between-persons (Reliability
) aspects. Usually, these aspects also apply to unobtrusive measurements
. However, many unobtrusive measurements
 involve human judgments. These judgments add other types of error to unobtrusive measurements
.
Unobtrusive self-reports can sometimes be described as tests that consist of a set of items. For example, students are asked to write short essays on different topics. The researchers do not evaluate students’ writing skill, but their aggressiveness by counting the number aggressive words per essay. The essay topics are the items of this aggression test, and the numbers of aggressive words per essay are the item
 responses. The classical and modern methods of test and item
 analysis (see Sect. 7.​3 of this book) can be applied to the data of this unobtrusive aggression test. However, this test involves human judgment because researchers have to count aggressive words, and they have to decide which words are aggressive, and which ones are nonaggressive.
Unobtrusive other-reports can also be in the form of a test. For example, the teacher- and parent-forms of the CBCL contain the same behavioral problem items as the child-form. Therefore, classical and modern test and item
 analysis methods are applicable to other- (teacher- and parent-) forms of the test.
Many unobtrusive self- and other-reports involve human judgments by, among others, observers and raters. The judges are fallible, and introduce both random and systematic errors
 into measurements. Random judgment errors are mentioned in this section, and systematic judgment errors in the next section.
Random judgment errors also have within-judge and between-judges aspects. The within-judge aspect applies to fluctuations of a given judge’s ratings in time. A judge gives his (her) ratings (e.g., counts of aggressive words in essays) at a given occasion. However, the judge could have given his (her) ratings at another occasion. In general, these two ratings will not exactly be the same. Random fluctuations of a judge’s ratings from occasion to occasion are the within- or intra-judge errors
. The intra-judge variance can be estimated by administering the same judgment task to the same judge at different occasions. For example, a judge counts the number of aggressive words in students’ essays at a given moment, and counts these numbers in the same essays two month later. The variance of the judge’s ratings is the intra-judge random error variance. Another method to quantify the intra-judge variability is to compute an index for the consistency of the judge’s ratings at the two occasions. Indices for intra-judge consistency are discussed in Sect. 11.​4 of this book.
The between-judges aspect of ratings applies to fluctuations between judges. For example, the numbers of aggressive words counted by different judges in the same essays may differ between judges. Random fluctuations of the ratings between different judges are the between- or inter-judges errors
. The inter-judges variance can be estimated by administering the same judgment task to different judges. The variance of the judges’ ratings is the inter-judges random error variance. Another way to assess inter-judges variability is to compute an index for the agreement of different judges’ ratings (see Sect. 11.​4).
Usually, the measurement precision
 of somatic indicators and physical traces is hard to establish. These measurements are usually not similar to psychological or educational tests. Therefore, the classical and modern methods of test and item
 analysis cannot be applied to them. However, some unobtrusive somatic indicators and physical traces involve human judgment, for example, observations of facial expressions and ratings of criminal records. For these unobtrusive measurements
, intra-judge and inter-judges precision can be assessed in the same way as for other human judgments.
9.4 Systematic Errors of Unobtrusive Measurements

Systematic errors
 will also occur in unobtrusive measurements
. This section mentions systematic errors
 for each of the four measurement modes.
Unobtrusive self-reports disguise the construct that is of interest to the researchers. This raises the question whether unobtrusive self-reports really measure the construct of interest. For example, ‘Is the number of aggressive words in students’ essays a measure of their aggressiveness, or are these words not typical for the students but provoked by the essay topic?’. This type of question can be asked for nearly all unobtrusive self-reports. Therefore, researchers have to show that unobtrusive self-reports are relevant for their studies, for example, by doing validation studies on unobtrusive self-report measures.
Other-reports call in others for measuring persons’ characteristics and behavior, for example, parents answer items on their children’s behavioral problems, observers register social interactions, and teachers rate their students’ arithmetic skill. The others are the judges who register or evaluate characteristics and behavior of study participants. Human judgments are fallible and prone to systematic errors
. Kerlinger (1986, pp. 495 and 496) mentions four important effects.
First, the halo-effect
, which is the tendency to give judgments in the same (positive or negative) direction for different person characteristics. The positive or negative judgment of one characteristic incorrectly spreads to a positive or negative judgment of other characteristics. For example, a mother who correctly evaluates her son as rather withdrawn, but incorrectly infers that he is feeling depressed. Second, the 
              error of leniency
              
            , which is the tendency to give too high judgments on all characteristics. For example, a teacher who gives high grades for all school subjects. Third, the 
              error of severity
              
            , which is the opposite of the error of leniency
, that is, the tendency to give too low judgments on all characteristics. For example, a teacher who gives low grades for all subjects. Finally, the 
              error of central tendency
              
            , which is the tendency to stick to judgments in the middle, and to avoid extreme judgments.
Unobtrusive somatic indicators are hard to obtain, and their interpretation may be ambiguous. For example, a study participant can be blushing because of embarrassment, shame, anxiety, or other reasons.
Nowadays, unobtrusive physical traces are all about. Conventionally, physical traces were kept in archives and records, but presently they are kept at the Internet, supermarkets, shops, banks, insurance companies, hospitals, and so on. Although modern technologies admit storage of very large amounts of traces, systematic errors
 can be made.
It is impossible to keep all physical traces, and a selection has to be made. In the past, archives and records had limited capacity, and someone had to make a selection of materials that were stored. Nowadays, storage capacity has tremendously increased, but selection keeps necessary. Therefore, selection bias
 is a systematic error of physical traces. Some material is kept and other material is left out, and the selection criteria are usually unknown or vague. Another systematical error of unobtrusive traces is that the selection criteria may shift in time. For example, the recent criteria for criminal behavior differ from the criteria of 100 years ago. Therefore, the comparison of recent and old traces may be biased by criteria shifts.
Modern technology admits the collection of ‘big data’ (i.e., very large sets of data). Couper (2013) distinguished three types of big data: (1) administrative (e.g., memberships and medical records), (2) transaction (e.g., credit card payments and telephone records), and (3) social media or social networking data. Moreover, he mentioned two systematic errors
 of big data. First, selection bias
 can occur in each of the three types of big data because some categories of persons are not included into the big data set. For example, some people have no health insurance, some people pay in cash instead of by credit card, and some do not use the social media. Second, some of the big data are prone to impression management
, for example, Facebook users may try to give a positive impression of themselves.
Some physical traces are collected at the group level, and cannot be linked to individuals. For example, traffic records may register accidents per group (e.g., number of car accidents per 1000 motorists, aged 20–30 years), but not at the level of individuals (i.e., accidents of an individual motorist). These traces can be used in studies at the group level (e.g., ‘Differs the number of accidents between age groups?’), but not at the individual level (e.g., ‘Are accidents correlated with motorists’ neuroticism?’).
9.5 Comments

Unobtrusive measurements
 are nonreactive in the sense that study participants cannot react to these measurements. Unobtrusive measurements
 counteract the systematic errors
 that threat obtrusive measurements, such as, impression management
 and yea-saying. However, unobtrusive measurements
 are threatened by their own systematic errors
, such as, rating errors. Webb et al. (1966/2000) remarked that unobtrusive measurements
 should not replace obtrusive ones, and recommended to complement obtrusive measurements by unobtrusive ones. This chapter supports Webb et al.’s message, and recommends to complement obtrusive measurements by unobtrusive ones as far as possible.
Modern technologies yield many opportunities to collect data unobtrusively. However, unobtrusive measurement raises many ethical questions. Laws have to protect study participants’ rights and privacy. Moreover, research organizations have to provide professional standards for the use of unobtrusive measurements
.
9.6 Recommendations
Participants cannot react to unobtrusive measurements
 because they are unaware of being measured. As obtrusive measurements, unobtrusive measurements
 are affected by random and systematic errors
. It is recommended:	(1)If possible, to assess the precision of unobtrusive measurements
 as for test. The precision of unobtrusive ratings is assessed with intra-judge consistency and inter-judge agreement indices (see Chap. 11).

 

	(2)To conduct validation studies of unobtrusive measurements
 because these measurements might not measure the constructs that should be measured. Systematic rating errors are reduced by standardizing the rating procedures and training
 the raters.

 

	(3)To complement obtrusive measures with unobtrusive measurement procedures as far as possible. However, unobtrusive measurements
 may violate persons’ privacy and rights, and researchers must protect these.
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Abstract
The dimensionality of a test
 is the number of latent variables that is measured by the test. An essential unidimensional test
 measures predominantly one latent variable, and a multidimensional test
 measures more than one latent variable. Three types of multidimensionality are described. First, a simple structure
. The test measures two or more latent variables, and falls apart into two or more essential unidimensional subtests. Second, a complex structure
. Each of the items measures the same two or more latent variables. Third, a bi-factor structure
. Each of the items measures the same general latent variable, while subgroups of items also measure specific latent variables. The interpretation of study results is straightforward if the dependent variable is a simple-structure test, but is hard if it is a complex-structure test. Factor Analysis (FA)
 and Principle Component Analysis (PCA)
 of inter-item
 product moment correlations (pmcs) and the reliability
 are often applied to assess the dimensionality of a test
. FA
 and PCA
 of inter-item
 pmcs fail, especially if the number of answer categories of the items is small, and high reliability
 does not guarantee that the test is essential unidimensional. Appropriate methods to assess test dimensionality are FA
 of inter-item
 tetrachoric (dichotomous items) and polychoric (more than two ordered answer categories) correlations, Mokken scale analysis, and full-information FA
. The factor
 analytic methods make stronger assumptions than Mokken’s method, but Mokken’s method is not capable to assess the type of multidimensionality. Measurement invariance
 of an item
 with respect to a variable (e.g., E-
 and C-condition membership) means that the same item
 response model applies to all values of that variable (e.g., the same model in E-
 and C-conditions). Test scores should be measurement invariant to interpret study results, for example, measurement invariant with respect to condition membership to compare the difference of E-
 and C-condition test score means.
Keywords
Full-information factor analysisHomogeneity (H-) coefficientMeasurement invarianceMokken scale analysisPolychoric correlationReliability and test dimensionalitySimple-, bi-factor, and complex structureTetrachoric correlation
The 
            dimensionality of a test
            
           is the number of constructs (latent variables) that is measured by the test. A 
            unidimensional test
            
           measures one construct, and a 
            multidimensional test
            
           measures two or more constructs.
In empirical studies on experimental (E-
) group and control (C-
) group differences, results of unidimensional tests are easier to interpret than results of multidimensional tests. For example, a study is done on the effects of a new arithmetic program on students’ arithmetic performance compared to the effects of a standard program. If the dependent variable of the study is a unidimensional arithmetic test, the results of the study are unambiguous: If the mean arithmetic test score is substantively and significantly higher in the new program group than in the standard program, it is concluded that the new program leads to better arithmetic performance than the standard program. However, the interpretation is ambiguous if the dependent variable is a multidimensional test
. For example, if the dependent variable is a test that measures both arithmetic and reading skills, a difference in mean test scores between the new and standard program can be caused in different ways: The new program leads to better arithmetic performance, the new program leads to better reading performance, or the new program leads to both better arithmetic and reading performance than the standard program.
It can rightly be argued that not any test is unidimensional. Usually, test takers need more than one latent variable to answer test items. For example, some reading skill is needed to understand the items of an arithmetic test. However, if all students sufficiently master the skill to understand the items, the arithmetic skill will predominantly influence students’ answers to the items. If one construct dominates the other constructs, the test is predominantly measuring one latent variable, for example, arithmetic skill. Stout (1990) called a test that is predominantly measuring one latent variable an 
            essential unidimensional test
            
          .
In empirical studies, it is usually sufficient that a test is essential unidimensional to make unambiguous interpretation of the study results. The interpretation of the study results can be focused on the dominant construct, and effects on other constructs are assumed to be negligible. However, note that a test that is essential unidimensional in one population of test takers need not to be essential unidimensional in other populations. For example, an arithmetic test can be essential unidimensional in a population of native speakers who sufficiently master the skill to understand the items, but two-dimensional in a population of nonnative speakers who need both arithmetic and reading skill to answer the items.
10.1 Types of Multidimensionality
Different types of test multidimensionality are discussed in the psychometric literature. Three of these types are mentioned in this section.
A test has a simple structure
 if the test measures two or more latent variables, and each of the test items measure only one of these latent variables. The items fall apart into subgroups of items that measure different latent variables, where it is admitted that the latent variables are correlated among each other. Figure 10.1 gives a schematic representation of the simple structure of 6 items that measure 2 latent variables.[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig1_HTML.png]
Fig. 10.1Schematic representation of the simple structure of 6 items that measure 2 latent variables. 
                      LV
                      
                    : latent variable; E: error



The circles of Fig. 10.1 indicate latent variables, and the rectangles indicate observed variables (i.e., item
 responses). The one-headed arrows from LV1 to Items 1, 2, and 3 indicate that the first latent variable causally influences the responses to the first three items, and the one-headed arrows from LV2 to Items 4, 5, and 6 indicate that the second latent variable causally influences the responses to the last three items. The one-headed arrows from the E-terms to the rectangles indicate the random measurement error
 of the item
 responses. The double-headed arrow between LV1 and LV2 indicates the correlation between the two latent variables. Example 10.1 demonstrates a simple-structure test.
Example 10.1 (Hypothetical) simple-structure test
A 30-item
 test of an introductory psychology course has 25 items that measure knowledge and insight in psychology, and 5 items that measure knowledge of statistics
. It is plausible that this test has a simple structure
 because 25 items measure one latent variable (i.e., “knowledge and insight in psychology”) and 5 items measure another latent variable (i.e., “knowledge of statistics”). Moreover, the two latent variables will be positively correlated if students who master psychology tend to master statistics
, and students who do not master psychology tend not to master statistics
.

A simple-structure test can be split into different unidimensional subtests. These subtests can be correlated, but each of the subtests measures only one latent variable. For example, the 30-item
 test of Example 10.1 can be split into a 25-item
 subtest
 that measures knowledge and insight in psychology, and a 5-item
 subtest
 that measures knowledge of statistics
. The two subtests can be correlated, but each of the subtests measures only one latent variable.
A test has a complex structure
 if the test measures two or more latent variables, and each of the test items measures the same latent variables. Figure 10.2 gives a schematic representation of a complex structure of 6 items.[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig2_HTML.png]
Fig. 10.2Schematic representation of a complex structure of 6 items that measure two latent variables. 
                      LV
                      
                    : latent variable; E: error



From each of the two latent variables of Fig. 10.2 arrows point to each of the items, which means that each of the two latent variables causally influences the responses of each of the 6 items. An example is a story problem test that consists of the following type of items.

            Item 10.1 A story problem
            
              item
              
            
            (Camilli et al.,
            2008
            )
          
Jim has 3/4 of a yard of string, which he wishes to divide into pieces, each 1/8 of a yard long. How many pieces will he have?
This item
 does not only measure students’ arithmetic ability, but also their ability to understand the question. Therefore, a story problem test measures both arithmetic and verbal skills. A complex-structure test cannot be split into subtests because each of the items measures the same latent variables.
A test has a bi-factor-structure
 if the test measures one general latent variable, and two or more specific latent variables. Each of the items measures the general latent variable, while subgroups of items measure different specific latent variables. Figure 10.3 illustrates the bi-factor-structure of six items.[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig3_HTML.png]
Fig. 10.3Schematic representation of a bi-factor-structure of six items that measure one general latent variable and two specific latent variables. GLV: general latent variable; SLV: specific latent variable; E: error



The one-headed arrows from the general latent variable (GLV) to each of the six items indicate that a general latent variable causally influences the responses to each of the 6 items. The one-headed arrows from the first specific latent variable (SLV1) to Items 1, 2, and 3 indicate that the first specific latent variable causally influences the responses to the first three items, while the one-headed arrows from the second specific latent variable (SLV2) to Items 4, 5, and 6 indicate that the second specific latent variable causally influences the responses to the last three items. The responses to each of the items are causally influenced by two latent variables, that is, the general latent variable and one specific latent variable. Therefore, two-headed arrows between the latent variables are absent in Fig. 10.3. An example is a test that consists of testlets (see Sect. 7.​1 of this book), such as, a reading comprehension test consisting of a number of reading passages and two or more items per passage. The responses to each of the items are causally influenced by two latent variables: a general latent reading comprehension variable and a latent variable that is specific to the reading passage. Each of the items is measuring reading comprehension and also comprehension that is specific to the passage.
As remarked above, the interpretation of empirical studies that use essential unidimensional tests is unambiguous. The interpretation of studies that use multidimensional tests differs between types of multidimensionality. The interpretation of, for example, differences between E-
 and C-groups is straightforward for simple-structure tests: The test is split into its subtests and E-
 and C-group differences are studied separately for each of these subtests. The interpretation of a bi-factor test
 is relatively unambiguous. The responses to each of the items are influenced by a general latent variable (e.g., reading comprehension), and by a latent variable that is specific to a subgroup of items (e.g., a reading passage). Usually, the test scores are for a large part determined by the general latent variable, and for minor parts by the specific latent variables. Therefore, the interpretation of, for example, E-
 and C-group differences can be made in terms of the general latent variable (e.g., reading comprehension). The interpretation of empirical studies that use complex-structure tests as dependent variables is ambiguous. The responses to each of the items are influenced by two or more latent variables that are the same for all items (e.g., arithmetic and verbal skill). The test scores are a mixture of two latent variables. Therefore, E-
 and C-group differences in test scores can result from differences in the first latent variable (e.g., arithmetic skill), the second latent variable (e.g., verbal skill), or both latent variables.
10.2 Reliability and Test Dimensionality
A widely
 held belief is that high reliability
 of a test implies that the test is unidimensional. Green, Lissitz, and Mulaik (1977) and, more recently, Sijtsma (2009) showed that this is a misconception, but this misconception is very persistent.
Green et al. artificially constructed multidimensional tests that yield high values of Cronbach’s coefficient alpha
. Figure 10.4 is a schematic representation of one of their artificial tests.[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig4_HTML.png]
Fig. 10.4Schematic representation of a 5-dimensional 10-item
 test (Green et al., 1977). 
                      LV
                      
                    : latent variable; E: error



The coefficient of the linear regression (loading) of each item
 on the latent variables was set at 0.67. Cronbach’s alpha of this test is 0.81. The items of the test measure five different dimensions. Nevertheless, Cronbach’s coefficient alpha
 is relatively high.

Reliability
 of Classical Test Theory
 is defined as the squared product moment correlation between true and observed test scores in a population of test takers (see Sects. 7.​2.​2 and 15.​2.​2 of this book). The true score
 of a multidimensional test
 is often a mixture of two or more latent variables. The multidimensionality of a test does not exclude that this mixture is highly correlated with the observed test scores in a population of test takers. The property that a reliable test does not need to be unidimensional is counter-intuitive. Other counter-intuitive properties of the reliability
 of the observed test score are discussed in Sect. 15.​3 of this book.
10.3 Detecting Test Dimensionality
A high reliability
 means that the test can differentiate between the true scores of different test takers of a population, but it does not mean that the test is unidimensional. Other methods have to be applied to study the dimensionality of a test
. The classical approach to the study of test dimensionality is to compute the product moment correlations (pmcs) between pairs of items, and to apply 
              Principle Component Analysis (PCA)
              
             or 
              Factor Analysis (FA)
              
             to these inter-item
 pmcs. However, it is known for a long time that these methods fail if a test consists of items having dichotomous (correct/incorrect, agree/don’t agree) responses (Carroll, 1945).
10.3.1 Factor Analysis of Inter-item Product Moment Correlations
The usual
 equation
 for the computation of the pmcs between two variables is given in introductory statistics
 books for the behavioral sciences. Dichotomous item
 responses are scored by assigning 1 to a correct or agree response, and 0 to an incorrect or disagree response. The pmc computed between two dichotomously scored variables is called the 
                phi coefficient
                
              . The phi coefficient
 can be computed by applying the usual equation of the pmc to the dichotomous (1/0) scores. However, it has been shown that this equation of the pmc applied to dichotomous scores is equivalent to a more simple equation. This equation of the phi coefficient
 between two items (Items i and j) is:[image: $$ phi_{ij} = \frac{{p_{ij} - p_{i} p_{j} }}{{\sqrt {p_{i} \left( {1 - p_{i} } \right)p_{j} \left( {1 - p_{j} } \right)} }}, $$]

 (10.1)


where pij is the proportion of test takers who correctly answered (agreed with) both items, and pi and pj are the p-values of Items i and j (i.e., the proportions of test takers who correctly answered (agreed with) Items i and j, respectively).
A characteristic of the phi coefficient
 is that it cannot reach its maximum value of 1 if the item
 p-values of the two items are unequal (see Example 10.2).
Example 10.2 Phi coefficients and maximum values of phi, three dichotomously scored items
A 3-item
 arithmetic test is administered to 10 students. A correct answer is scored 1 and an incorrect answer is scored 0. Table 10.1 gives the dichotomous scores of the 10 students.Table 10.1(Fictitious) scores of 10 students, 3 dichotomously scored items


	Test taker no.
	
Item
 no.

	1
	2
	3

	1
	1
	1
	1

	2
	1
	1
	1

	3
	0
	1
	0

	4
	1
	0
	1

	5
	0
	0
	0

	6
	1
	0
	0

	7
	1
	0
	0

	8
	0
	0
	0

	9
	1
	0
	0

	10
	0
	0
	0






The first item
 is correctly answered by 6 of the 10 students. Therefore, the p-value of the first item
 is p1 = 6/10 = 0.6. The p-values of the second and third item
 are p2 = 3/10 = 0.3 and p3 = 3/10 = 0.3, respectively. Items 1 and 2 are both correctly answered by 2 of the 10 students (i.e., the first two students). Therefore, the proportion of students who correctly answered both items is p12 = 2/10 = 0.2. Using Eq. 10.1 the phi coefficient
 between Items 1 and 2 is:[image: $$ phi_{12} = \frac{{p_{12} - p_{1} p_{2} }}{{\sqrt {p_{1} \left( {1 - p_{1} } \right)p_{2} \left( {1 - p_{2} } \right)} }} = \frac{0.2 - 0.6 \times 0.3}{{\sqrt {0.6 \times 0.4 \times 0.3 \times 0.7} }} = 0.09. $$]





The phi coefficient
 is rather small. However, the maximum that can be reached is much smaller than 1. Item
 no. 2 has the smallest p-value of the two items (i.e., p2 = 0.3 < p1 = 0.6). The number of students who correctly answer both items is at most 3 (each of the 3 students who correctly answered the second item
 also correctly answered the first item
). Therefore, using Eq. 10.1, the maximum phi for two items, where the smallest of the two p-vales is 0.3 and the largest 0.6, is:[image: $$ phi(max)_{12} = \frac{0.3 - 0.6 \times 0.3}{{\sqrt {0.6 \times 0.4 \times 0.7 \times 0.3} }} = 0.53. $$]





This maximum is much smaller than 1. Item
 no. 3 is correctly answered by 3 of the 10 students, and its p-value is p3 = 3/10 = 0.3. Both Items 2 and 3 are correctly answered by 2 of the 10 students. Therefore, the proportion of students who correctly answered both items is p23 = 2/10 = 0.2. Using Eq. 10.1, the phi coefficient
 of Items 2 and 3 is:[image: $$ phi_{23} = \frac{0.2 - 0.3 \times 0.3}{{\sqrt {0.3 \times 0.7 \times 0.3 \times 0.7} }} = 0.52. $$]





Items 2 and 3 have the same p-values (p2 = p3 = 0.3). The phi coefficient
 between two items that have the same p-values can reach the maximum of 1. The maximum phi of Items 2 and 3 is reached if the 3 students who correctly answered Item
 3 also correctly answered Item
 2, that is if p23 = 3/10 = 0.3. The maximum phi of Items 2 and 3 is:[image: $$ phi(max)_{23} = \frac{0.3 - 0.3 \times 0.3}{{\sqrt {0.3 \times 0.7 \times 0.3 \times 0.7} }} = 1. $$]





The phi coefficients of Items 1 and 2 (phi12 = 0.09) and Items 2 and 3 (phi23 = 0.52) are hard to compare because the maximum phi of Items 1 and 2 (phi(max)12 = .53) is much smaller than the maximum phi of Items 2 and 3 (phi(max)23 = 1).
Example 10.2 demonstrated that phi coefficients computed between dichotomously scored items are incomparable if the p-values of the items differ substantially among each other. Therefore, application of PCA
 and FA
 to phi coefficients is not suited for the study of the dimensionality of tests that differ in their item
 p-values.
Tests can consist of items that have more than two ordered response categories, for example, Likert items that have 5 response categories. The conventional way of scoring is to assign a 1 to the first category (e.g., “strongly disagree”), a 2 to the second category (e.g., “disagree”), and so on. The pmcs are computed between the scores of item
 pairs, and PCA
 or FA
 is applied to these inter-item
 pmcs. The question is whether, and when, PCA
 and FA
 are suited for the study of test dimensionality. This question was studied for FA
 by, among others, Boomsma (1993) and Dolan (1994), and was part of a meta-analysis of Hoogland and Boomsma (1998). The conclusions of these studies are nuanced, but the following general conclusions seem to be warranted: (1) the number of item
 response categories has to be 5 or more, (2) the sample size
 has to be 400 or more test takers, and (3) the distributions of the item
 scores have to be approximately symmetrical. In many cases, these conditions are not fulfilled, and other methods have to be applied for the study of test dimensionality.
Different methods were developed to circumvent the flaws of pmcs computed between items that have two or a small number of response categories. The remainder of this section describes some of these methods. Sections 10.3.2 and 10.3.3 discuss methods that are based on the association between the scores of item
 pairs, and Sect. 10.3.4 mentions a method that is based on the information of the response patterns of all items.
10.3.2 Factor Analysis of Inter-item Tetrachoric and Polychoric Correlations
As remarked above, the flaw of the phi coefficient is that it cannot reach the maximum of 1 if the p-values of the two items are unequal. This problem is circumvented by computing the 
                tetrachoric correlation
                
               between a pair of items. A characteristic of this correlation is that its maximum is 1, whatever the p-values of the two items.
The tetrachoric correlation
 applies to dichotomous (correct/incorrect, agree/don’t agree) items. It is assumed that a separate unobserved continuous item
 response variable underlies test takers’ responses to each of the dichotomous test items. A threshold divides each underlying item
 response variable into two segments: Test takers having underlying item
 response variable values equal to and above the threshold give a correct (agree) answer to the item
, and test takers having underlying item
 response variable values below the threshold give an incorrect (don’t agree) answer to the item
. Figure 10.5 shows this assumption for one item
 (i.e., Item
 i).[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig5_HTML.png]
Fig. 10.5Schematic representation of the assumption of an underlying response variable that divides test takers into test takers who give a correct (agree) answer and test takers who give an incorrect (don’t agree) answer to Item
 i



Moreover, it is assumed that for each pair of items, the two underlying response variables are bivariate normally distributed in the population of test takers. This bivariate normal distribution cannot be observed because the underlying item
 response variables are unobserved. The thresholds of the underlying response variables of two items divide the bivariate distribution into four parts, and the proportion of test takers per part can be estimated from the data of a sample of test takers. Figure 10.6 shows the assumptions for two items (Items i and j).[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig6_HTML.png]
Fig. 10.6Schematic representation of two underlying item
 response variables that divide test takers into four groups



The dotted lines divide test takers into four groups:	1.Test takers giving an incorrect (don’t agree) answer to Item
 i and a correct (agree) answer to Item
 j (0,1);

 

	2.Test takers giving a correct (agree) answer to both items (1,1);

 

	3.Test takers giving a correct (agree) answer to Item
 i and an incorrect (don’t agree) answer to Item
 j (1,0);

 

	4.Test takers giving an incorrect (don’t agree) answer to both items (0,0).

 





The frequencies and proportions per part of the bivariate distribution of the underlying response variables can be estimated from empirical test data (see Example 10.3).
Example 10.3 Frequencies and proportions of students per part of the bivariate distribution, Table 10.1
Table 10.1 of Example 10.2 reports the (fictitious) scores of 10 students who answered 3 arithmetic items. The frequencies and proportions of students per part of the bivariate distribution of the underlying item
 response variables are obtained from the test data of Table 10.1. For example, the frequency of students who incorrectly answered Item
 1 and correctly answered Item
 2 is 1 (Student no. 3), and the corresponding proportion is 1/10 = 0.1. Figure 10.7 reports the frequencies, and (between double parentheses) proportions of students per part of the bivariate distribution of Items 1 and 2 of Table 10.1.[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig7_HTML.png]
Fig. 10.7Frequencies and (between double parentheses) proportions of students per part of the bivariate distribution of the underlying response variables of Items 1 and 2 (Table 10.1, Example 10.2)




The product moment correlation of the bivariate normal distribution of the underlying item
 response variables can be estimated from these proportions, and is called the tetrachoric correlation
. In contrast to phi coefficients, tetrachoric correlations can vary between -1 and +1, whatever the item
 p-values.
The generalization to items that have more than 2 ordered response categories is straightforward (see, among others, Mellenbergh, 2011, Sect. 6.​6.​2). For this type of items the pmc of the underlying item
 response variables of two items can also be estimated from empirical test data, and is called the 
                polychoric correlation
                
              . As the tetrachoric correlation
, the polychoric correlation
 can vary between -1 and +1, whatever the proportions of test takers per item
 response category.

Inter-item
 tetrachoric or polychoric correlations can be compared among each other because the maximum of all inter-item
 correlations is 1. Therefore, FA
 can be applied to tetrachoric or polychoric correlations in a two-step procedure: In the first step, the tetrachoric or polychoric correlations are computed, and, in the second step, FA
 is applied to these inter-item
 correlations. Tetrachoric and polychoric correlations can be computed with the PRELIS-program (Jöreskög & Sörbom, 2001), and FA
 can be applied using SPSS or a Structural Equation Modeling (SEM) program. However, tetrachoric and polychoric correlations are derived under very strong assumptions that are easily violated in empirical test data. Moreover, the two-step procedure may encounter technical difficulties (McLeod, Swygert, & Thissen, 2001, p. 197). Two-step FA
 uses intercorrelations that are comparable among each other, but it may fail in practice. However, psychometrics has also developed other methods for the study of test dimensionality.
10.3.3 Mokken Scale Analysis

Inter-item
 phi coefficients are incomparable if item
 p-values differ among each other. A solution to this problem is to replace phi by the tetrachoric correlation
. As phi, the tetrachoric correlation
 is a pmc, but it repairs the flaw of phi. Inter-item
 tetrachoric correlations are comparable, but the tetrachoric correlation
 is derived under strong assumptions. The tetrachoric correlation
 is the pmc between two unobserved variables that underlie test takers’ item
 responses. These variables are bivariate normally distributed, and each of these variables has a threshold that splits test takers into a group that gives a correct (agree) answer to the item
 and another group that gives an incorrect (don’t agree) answer.
Another solution is to use coefficients that are comparable among each other, and do not make strong assumptions. Loevinger’s homogeneity (H-) coefficient
 has these two properties. The homogeneity coefficient of Items i and j is:[image: $$ H_{ij} = \frac{{phi_{ij} }}{{phi(max)_{ij} }}, $$]

 (10.2)


where phiij is given by Eq. 10.1, and phi(max)ij is the maximum of phi given the p-values (pi and pj) of the two items. Example 10.4 shows the computation of the homogeneity coefficient.
Example 10.4 Computation of the homogeneity coefficients of Example 10.2
Table 10.1 of Example 10.2 reports the (fictitious) scores of 10 students to three dichotomous arithmetic items. The phi coefficient
 between Items 1 and 2 is phi12 = 0.09 and its maximum, given the p-values p1 = 0.6 and p2 = 0.3, is phi(max)12 = 0.53. Using Eq. 10.2, the homogeneity coefficient of Items 1 and 2 is:[image: $$ H_{12} = \frac{0.09}{0.53} = 0.17. $$]





The phi coefficient
 between Items 2 and 3 is phi23 = 0.52 and its maximum, given the p-values p2 = p3 = 0.3, is phi(max)23 = 1. Using Eq. 10.2, the homogeneity coefficient of Items 2 and 3 is:[image: $$ H_{23} = \frac{0.52}{1} = 0.52. $$]






Inter-item
 homogeneity coefficients are comparable because each coefficient has a maximum of 1. For example, H12 of Example 10.4 has a maximum of 1 that is reached if phi12 = phi(max)12, and H23 has also a maximum of 1. Moreover, no assumptions are made to derive the homogeneity coefficient. Therefore, the homogeneity coefficient is a viable alternative for phi and the tetrachoric correlation
.

The homogeneity coefficient for dichotomous items was generalized to a homogeneity coefficient for items that have more than two ordered response categories, such as, 3- and 5-point Likert items (Molenaar, 1991, 1997). These generalized inter-item
 homogeneity coefficients are also comparable among each other, and do not make strong assumptions. Therefore, the generalized homogeneity coefficient is a viable alternative for the pmc and polychoric correlations computed between items that have more than two ordered response categories.

FA
 was developed for the analysis of inter-item
 covariances and pmcs. The tetrachoric and polychoric correlations are pmcs, and, therefore, FA
 can be applied to these correlations. However, homogeneity coefficients are neither covariances nor pmcs. Therefore, FA
 cannot be applied to inter-item
 homogeneity coefficients, and other methods are needed to assess test dimensionality if homogeneity coefficients are used.
Mokken (1971, 1997) developed item
 response models that are based on homogeneity coefficients. These models can be fitted to empirical test data by the MSP-program (Molenaar & Sijtsma, 2000). An introduction to these models is given by Sijtsma and Molenaar (2002). Houtkoop and Plak (2015) described how the models are applied in R. The 
                Mokken models
                
               can be used in a confirmatory and an explanatory way to assess the dimensionality of a test
. The confirmatory method fits a Mokken model to the test data, and evaluates whether the model fits the data. If a Mokken model fits the data, it is likely that the test is unidimensional. However, if the Mokken model does not fit the data, the test is multidimensional. The multidimensionality can be further explored under the Mokken models
. The MSP-program is instructed to search the test data for subgroups of items such that the Mokken models
 fit these subgroups. If the MSP-program detects one or more of these subgroups, the program has identified one or more subtests that are unidimensional because a Mokken model fits the subtest
 data.
Example 10.5 demonstrates the application of Mokken scale analysis to empirical test data.
Example 10.5 Mokken scale analysis of items that were constructed to measure dementia patients’ ability of preserving an emotional balance
Ettema (2007) constructed a questionnaire to assess the quality of life of dementia patients. The questionnaire was designed to measure different aspects of a theoretical model of dementia patients’ quality of life, among other things, the ability of preserving an emotional balance. In general, it is impossible to ask dementia patients questions on their quality of life. Therefore, Ettema used the unobtrusive other-report mode
 (see Sect. 9.​1 of this book). Certified nursing assistants (CNAs) answered questions (e.g., “Is cheerful”) on their patients quality of life using four ordered response categories (never, rarely, sometimes, frequently). A pilot version of the questionnaire was administered to a sample of 202 CNAs. Nineteen of the items were constructed to measure the latent variable of preserving an emotional balance. Ettema, Dröes, de Lange, Mellenbergh, and Ribbe (2007) report Mokken analysis on the dimensionality of, among other things, the preserving an emotional balance items. Mokken analysis was applied using generalized inter-item
 homogeneity coefficients of the 19 preserving an emotional balance items and the MSP-program. The analysis showed that the group of 19 items is not unidimensional. Therefore, an explorative Mokken scale analysis was applied to the 19 items. This analysis yielded three unidimensional subgroups of items that were called positive affect (6 items), negative affect (3 items), and restless tense behavior (3 items), while the remaining 7 items did not belong to one or more unidimensional subgroups of items.

10.3.4 Full-Information Factor Analysis

The
 two-step FA
 and Mokken methods use the information that is contained in item
 pairs. This information is limited in the sense that only at every turn two items are considered. For example, the tetrachoric correlation
 and homogeneity coefficient are computed between two items. In contrast, full-information 
                item
                
               
                factor
                
               analysis uses simultaneously the information of all test items.

Full information FA
 for dichotomous items was developed by Bock, Gibbons, and Muraki (1988). It resembles two-step FA
 by assuming that test takers’ responses to each item
 are determined by a separate unobserved variable that underlies test takers’ item
 responses. As two-step FA
, it also assumes that a threshold at the underlying item
 response variable divides test takers into a subgroup that gives a correct (agree) answer to the item
 and another subgroup that gives an incorrect (don’t agree) answer. However, full-information FA
 differs from two-step FA
 by directly fitting the factoranalytic model to the test data, without computing inter-item
 tetrachoric correlations. Full-information item
 FA
 is a single-step method that uses simultaneously the information of all test items. The computations can be done with the TESTFACT-program (Bock, Gibbons, Schilling, Muraki, Wilson & Wood, 2000), and Mplus (Muthén & Muthén, 1998–2015). Examples of the application of full-information item
 FA
 to empirical test data are given by, among others, McLeod, Swygert, and Thissen, 2001).

Full-information FA
 for dichotomous items was generalized to items that have more than two ordered response categories (e.g., 5-point Likert items) by Muraki and Carlson (1995). It is also a single-step method that fits the factoranalytic model to the test data, without computing the polychoric correlations. The computations can be dome with the POLYFACT-program (Muraki, 1993), and Mplus (Muthén & Muthén, 1998–2015). Examples of the application of full-information FA
 to empirical test data are given by, among others, Swygert, McLeod, and Thissen (2001).
10.3.5 Comments

FA
 is very popular in the behavioral sciences, and is often used to study the dimensionality of tests. FA
 is applied to inter-item
 pmcs, but it is known since long that FA
 fails if pmcs are computed between items that have a small number of response categories. FA
 is only appropriate if a number of conditions is fulfilled (i.e., at least 5 item
 response categories, a sample of at least 400 test takers, and item
 response distributions that are approximately symmetrical). In practice, these conditions are often not fulfilled, and FA
 applied to inter-item
 pmcs is mostly not appropriate for the study of test dimensionality. Fortunately, better methods are available to assess test dimensionality.
Three methods were discussed, that is, two-step and single-step FA
, and Mokken scale analysis. These methods were developed for the study of test dimensionality, but differ in their characteristics. Two-step FA
 is most similar to conventional factor
 analysis of inter-item
 pmcs. Pmcs are replaced by tetrachoric or polychoric correlations, and FA
 is applied to these correlations. However, it makes strong assumptions, and uses information that is limited to item
 pairs (i.e., correlations between two items). As two-step FA
, full-information FA
 makes strong assumptions. However, it is a single-step method that uses all information that is contained in test takers’ item
 response patterns. As two-step FA
, Mokken scale analysis uses information that is limited to item
 pairs (i.e., homogeneity coefficients between two items). However, it makes less stringent assumptions than the two FA
-methods.
A difference between on one side the two FA
-methods and on the other side Mokken scale analysis is that the FA
-methods yield more information on the type of multidimensionality. The FA
-methods are able to detect different types of multidimensionality, such as, the simple-, complex-, and bi-factor-structure
 of a test. Mokken scale analysis is mainly suited for simple-structure tests, that is, tests that consist of a number of unidimensional subtests. If the confirmatory Mokken analysis indicates that a test is multidimensional, the exploratory analysis searches for subtests. These subtests are unidimensional because separate Mokken models
 fit the data of each of these subtests. However, the exploratory analysis does not show whether item
 responses are influenced by two or more latent variables as in a complex-, or bi-factor-structure test
.

FA
-methods yield information on test dimensionality and types of multidimensionality, but at the cost of rather strong assumptions. Theoretically, full-information FA
 has to be preferred above two-step FA
. In practice, researchers may prefer two-step FA
 because they are accustomed to apply FA
 to correlations. Mokken scale analysis makes less stringent assumptions than the FA
-methods. It is well suited to study test dimensionality, but it is less suited to study types of multidimensionality.
10.4 Measurement Invariance

Measurement invariance
 is a concept that applies to the comparability of scores of different test takers of a population. In global terms, 
              measurement invariance
              
             of an item
 with respect to a variable V means that the same item
 response model applies at all values of V (Mellenbergh, 2011, Sect. 10.3). 
              Measurement bias
              
             means that the same item
 response model does not apply at all values of V. Suppose that V is gender, which is a variable that has two values (i.e., male and female). An arithmetic item
 is measurement invariant with respect to students’ gender if the same item
 response model applies to the item
 for both boys and girls. Measurement bias
 is present if different item
 response models apply to the item
 for boys and girls. A formal definition that corresponds to this global description was given by Mellenbergh (1989). A comprehensive review of measurement invariance
 and methods to study measurement invariance
 is given by Millsap (2011).

Measurement invariance
 is defined with respect to a variable V. Measurement bias
 means that different item
 response models apply to test takers at different values of V. Therefore, V is called a 
              violator
              
             of the measurements (Oort, 1993).
10.4.1 Measurement Bias with Respect to Group Membership

In
 the practice of psychological and educational testing, the violator
 V is usually a group membership variable (e.g., male and female, minority and majority groups). In the psychometric literature, measurement bias
 with respect to group membership is often called 
                differential item functioning (DIF)
                
              . DIF
 can be studied for both dichotomous (correct/incorrect, agree/don’t agree) items and items that have more than two response categories (e.g., 5-point Likert items). The discussion of this section is restricted to dichotomous items.
A dichotomous item
 is differentially functioning between two groups (A and B) if different item
 response models apply to these groups. For example, a story problem, such as, Item
 10.1, may be differentially functioning between native and non-native speakers of English. Native speakers sufficiently master English to understand the item
, and their item
 responses are mainly determined by their arithmetic ability. Non-native speakers have more difficulty to understand the item
, and their item
 responses are determined by both their arithmetic and verbal abilities. Therefore, the probability of giving the correct answer by native and non-native speaking students of equal arithmetic ability will be smaller for non-native speakers than native speakers, because of their disadvantage in English.
A well-known model for dichotomous item responses is Birnbaum’s two-parameter logistic model (see Sect. 7.​3.​5 of this book). An item response function (IRF)
 of this model is shown in Fig. 7.​4. The IRF
 of an item
 can be computed for different groups (e.g., Groups A and B). An item
 is not differentially functioning between Groups A and B (i.e., the item
 is measurement invariant with respect to the A/B group membership) if the IRFs of the two groups coincide. An item
 is differentially functioning between Groups A and B if the IRFs of the two groups do not coincide. Shealy and Stout (1993) distinguished two types of DIF
, which are shown in Fig. 10.8.[image: ../images/459008_1_En_10_Chapter/459008_1_En_10_Fig8_HTML.png]
Fig. 10.8IRFs of two groups that show a unidirectional, and b bidirectional DIF


                        
                       under Birnbaum’s two-parameter logistic item response model







                Unidirectional DIF
                
              

                
               means that the IRFs of the two groups do not intersect (see Fig. 10.8a). The probability of giving the correct (yes) answer to the item
 is at all values of the latent trait smaller for test takers of Group B than for test takers of Group A. Therefore, test takers of equal latent trait have a smaller probability of giving the correct (yes) answer if they belong to Group B than if they belong to Group A. 
                Bidirectional DIF
                
              

                
               means that the IRFs of the two groups intersect at least once (see Fig. 10.8b). The IRFs of Fig. 10.8b intersect at the latent trait value θint. Test takers of equal latent trait smaller than θint have a smaller probability of giving the correct (yes) answer if they belong to Group A than if they belong to Group B. For example, test takers of Group A, who have a latent trait value of 0 which is smaller than θint, have a smaller probability of giving the correct (yes) answer than test takers of Group B who have the same latent trait value of 0. Test takers of equal latent trait larger than θint have a smaller probability of giving the correct (yes) answer if they belong to Group B than if they belong to Group A. For example, test takers of Group B who have a latent trait value of 2, which is larger than θint, have a smaller probability of giving the correct (yes) answer than test takers of Group A who have the same latent trait value of 2.
Under the two-parameter logistic model, an item
 is measurement invariant with respect to group membership if the IRFs of the groups coincide. The IRF
 of the two-parameter model is completely determined by its difficulty (b-) and discrimination (a-) parameters
 (see Sect. 7.​3.​5 of this book). Therefore, an item
 is measurement invariant with respect to the two groups if, simultaneously, (1) the b-parameters
 of the two groups are equal, and (2) the a-parameters
 of the two groups are equal. The psychometric literature has described different methods to test the simultaneous null hypothesis of equal b- and a-parameters
 of two groups. An example is Thissen, Steinberg, and Gerard’s (1986) IRT
-likelihood ratio method. The computation of this method can be done with the IRTLRDIF-program (Thissen, 2001). Example 10.6 illustrates this method.
Example 10.6 Measurement invariance of the Aggression subtest of the ACL with respect to gender
The 10-item
 dichotomous version of the Aggression subtest
 of the ACL (see Examples 7.​4, 7.​7, and 7.​8 of this book) was administered to 165 female and 68 male psychology freshmen of the University of Amsterdam. N. Smits (personal communication, July 3, 2002) studied measurement invariance
 of the Aggression subtest
 with respect to students’ gender. He applied Thissen et al.’s (1986) IRT
-likelihood ratio method to the data. The null hypothesis that simultaneously the a-parameters
 of the two groups and the b-parameters
 of the two groups are equal was not rejected at the 5% significance level for each of the 10 items. The conclusion is that the Aggression subtest
 is measurement invariant with respect to gender of psychology freshmen of the University of Amsterdam.

The concepts of measurement invariance
 and bias are defined within the context of item response theory (IRT)
. A number of methods for the study of measurement invariance
 fit in with these definitions. These methods assume an item
 response model, and test whether measurement invariance
 holds under this model. For example, the IRT
-likelihood ratio method is based on Birnbaum’s two-parameter logistic model, and tests the null hypothesis that the IRFs of different groups coincide. Theoretically, these IRT
-based methods are preferred for the study of measurement invariance
 because they comply with the definition of this concept. However, in practice, IRT
-based methods may be hard to apply, and researchers may prefer methods that do not use item
 response models.
An example of a method that does not use an item
 response model is Swaminathan and Rogers’ (1990) logistic regression method. It resembles the IRT
-likelihood ratio method, but it does not use a latent trait. Conventionally, a test is scored by summing its item
 scores (see Sect. 7.​1 of this book). The conventional observed score of a test that consists of dichotomously scored items is the number correctly answered (agreed) items. The logistic regression method uses the observed test score as an approximation of the latent trait. It uses only observed variables, that is, test takers’ observed test scores, their item
 scores (0 or 1) and their group membership (A or B). For each of the two groups the logistic regression function is computed, where test takers’ observed test scores are used to predict their dichotomous item
 scores. Measurement invariance
 is studied by testing the null hypothesis that the logistic regression functions of the two groups coincide.
10.4.2 Measurement Invariance and Behavioral Research

In
 the practice of psychological and educational testing, the violator
 (V) is usually a variable that is of societal relevance, for example, age and group membership (e.g., males and females, majority and minority groups). Measurement bias
 causes that test scores of different groups are hard to compare. Therefore, measurement invariance
 of tests is an issue that is relevant for the fairness of testing (Camilli, 2006).
In behavioral research, it is usually assumed that measurements are comparable. Studies that use more than one measurement occasion (e.g., a pre-, post-, and follow-up-test) implicitly assume that measurements are invariant with respect to Time of measurement. Studies that use different (E-
 and C-
) conditions implicitly assume that measurements are invariant with respect to Condition. Measurements that are biased with respect to Condition or Time harm the interpretation of study results. For example, the interpretation of a difference in test scores between E-
 and C-groups is ambiguous if test scores are incommensurable because of measurement bias
.

Measurement invariance
 with respect to Condition and Time are a prerequisite for the interpretation of test score differences between E-
 and C-groups, and between occasions. Examples of measurement bias
 in behavioral research are given by Wicherts, Dolan, and Hessen (2005) and Wicherts, Dolan, Hessen, Oosterveld, van Baal, Boomsma, et al. (2004). Wicherts et al. (2005) studied measurement invariance
 with respect to stereotype threat. Stereotype threat means that stereotypes of groups (e.g., girls are bad in arithmetic) have an adverse effect on the test performance of these groups (e.g., girls’ arithmetic test scores). Wicherts et al. (2005) experimentally induced stereotype threat for Dutch females and minority group members. They found, among other things, that measurement invariance
 of intelligence and mathematics tests did not hold with respect to stereotype threat and control conditions. Therefore, the test scores of stereotype threat and control condition participants are not comparable. Wicherts et al. (2004) studied the Flynn-effect of intelligence tests in the Netherlands, Denmark, and Estonia. The Flynn-effect denotes the phenomenon that intelligence test scores increase over time. Wicherts et al. (2004) found that, in general, measurement invariance
 with respect to Time of measurement did not hold.
The above mentioned studies show that measurement invariance
 is not only relevant for practice, but also for research. Measurement bias
 violates the interpretation of study results. Therefore, researchers have to prove measurement invariance
 before claiming substantive results.
10.5 Recommendations
The structure of a test is relevant for the interpretation of test scores that are used in research studies. The interpretation of scores of essential unidimensional tests, subtests of a simple-structure test, and a bi-factor test
, which has a dominant general factor
, is rather unambiguous. Therefore, it is recommended to use essential unidimensional tests and subtests and bi-factor tests
, which have a dominant general factor
.
A reliable test may have a complex structure
, which means that the interpretation of the test scores is ambiguous. Therefore, other psychometric methods have to be applied to assess the dimensionality of a test
. The preferred methods are full-information factor analysis
 and Mokken scale analysis. Full-information FA
 yields more information on the structure of a test than Mokken scale analysis, but at the cost of stronger assumptions.
Test scores have to be comparable across (e.g., E-
 and C-
)conditions and different (e.g., pretest
 and posttest) occasions. Therefore, it is recommended to study measurement invariance
 of test scores with respect to Condition or Time.
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Abstract
A bivariate relation
 is a relation between two (X and Y) variables. A large number of coefficients for bivariate relations was developed. A classification of coefficients is presented to facilitate the choice of an appropriate coefficient. The classification is based on two distinctions. First, three types of relations are distinguished: (1) symmetrical (the relation between X and Y is the same as between Y and X), (2) equality (symmetrical and equality of X- and Y-values), and (3) asymmetrical (one variable is the independent variable or predictor and the other variable is the dependent variable or criterion). Second, five types of variables are distinguished: (1) dichotomous (two unordered or ordered categories), (2) nominal-categorical (more than two unordered categories), (3) ordinal-categorical (more than two ordered categories), (4) ranked (rank numbers), and (5) continuous (values from a continuum). Crossing of these two distinctions yields 3 × 5 = 15 different combinations. An example of a coefficient is given for 13 of these combinations (coefficients for the two other combinations are not known to the author). The examples are restricted to coefficients for relations between two variables of similar type, for example, Cohen’s kappa for an equality relation
 between two nominal-categorical variables.
Keywords
Cohen’s (weighted) kappaCramer’s V-squareGoodman and Kruskal’s gammaGoodman and Kruskal’s lambdaLog odds ratioPearson’s pmcR-squareSomer’s dSpearman’s rank correlationZegers and ten berge’s identity
A 
            bivariate relation
            
           is a relation between two variables. Statistics
 has provided many coefficients to quantify the strength of a bivariate relation
, and computer packages enable researchers to compute an overwhelming number of coefficients. Usually, researchers have a hard time to choose a coefficient, and they may easily choose a coefficient that is not optimal for their research question.
This chapter aims to give researchers guidelines for choosing an appropriate coefficient. Distinctions are made between (1) different types of bivariate relations (see Sect. 11.1), and (2) different types of variables (see Sect. 11.2). Crossing these two distinctions yields a classification of coefficients (see Sect. 11.3). Section 11.4 presents examples of coefficients within the classification system. The system does not give an exhaustive overview of existing coefficients, but is intended to enable researchers to make an informed choice from the plethora of coefficients for bivariate relations.
11.1 Bivariate Relation Types
The two variables of a bivariate relation
 are referred to as the X- and Y-variables. Three types of relations between the X- and Y-variables are distinguished.
First, the relation between the X- and Y-variables is symmetrical. A 
              symmetrical relation
              
             means that the relation between X and Y is the same as the relation between Y and X. For example, a researcher studies the relation between Aggression and Dominance. He or she does not make a distinction between the relation of Aggression and Dominance and the relation of Dominance and Aggression. The researcher only wants to know whether Aggression and Dominance go together. Coefficients for a symmetrical relation
 need to have the same value for the relation between X and Y as for the relation between Y and X.
Second, the relation between the X- and Y-variables is an 
              equality relation
              
            . This is a symmetrical relation
, but it is stronger than a symmetrical relation
. Additional to symmetry, it is asked whether the X- and Y-variables yield the same values. For example, two teachers independently grade the essays of the same students. The question is whether the teachers assign the same grades to the same essays, for example, give both teachers an A to Mary’s essay and a B to John’s essay?
Finally, the relation between the X- and Y-variables is asymmetrical. An 
              asymmetrical relation
              
             means that one variable is an independent variable or predictor and the other variable is the dependent variable. The X-variable is referred to as the independent variable, and the Y-variable is the dependent variable. For example, a researcher uses an intelligence test (X-variable) to predict students’ Grade Point Average (Y-variable).
11.2 Variable Types
Five types of variables are distinguished. This distinction is not based on theoretical grounds. It is a pragmatic distinction because these types of variables are frequently used in behavioral research.
First, dichotomous variables. The values of a 
              dichotomous variable
              
             are two categories. These categories can be ordered or unordered. An example of an ordinal-dichotomous variable
 is High School Graduation that has two ordered categories: graduated and not graduated. An example of a nominal-dichotomous variable
 is Gender that has categories: male and female. However, a distinction between ordinal-dichotomous and nominal-dichotomous variables is not needed because the coefficients for bivariate relations of dichotomous variables are the same for ordered and unordered categories.
Second, nominal-categorical variables. The values of a nominal-categorical variable
 are more than two unordered categories. An example is Religion with six unordered categories: Catholic, Protestant, Jewish, Muslim, Other Religion, and No Religion.
Third, ordinal-categorical variables. The values of an ordinal-categorical variable
 are more than two ordered categories. An example are a teacher’s grades (A, B, C, D, and E) of students’ essays.
Fourth, ranked variables. The values of a 
              ranked variable
              
             are rank numbers. Two ranking methods are often applied in empirical research. The first one is that a judge (e.g., rater, observer, committee) directly assigns rank numbers to participants with respect to a construct. For example, a clinical psychologist assigns rank numbers to his (her) patients with respect to the severity of their depression: 1 to the most seriously depressed patient, 2 to the next to most depressed patient, and so on. The second method is that a measurement instrument is administered to the participants, and participants’ scores are converted to rank numbers. For example, a clinical psychologist administers a depression test to his (her) patients, and assigns rank numbers to the test scores: 1 to the largest test score, 2 to the second largest test score, and so on.
A specific problem of ranking is that ties may occur. A 
              tie
              
             between two or more participants means that no decision on the ranking of these participants can be made. Ties can occur in both direct ranking of participants and in the ranking of their scores. For example, a clinical psychologist directly ranks his (her) patients with respect to the severity of their depression. He or she ranks one patient as the most depressed one, but has two candidates for the next to most depressed position. However, the clinical psychologist cannot decide who of the two candidates is the more depressed one. Therefore, these two patients are tied in the psychologist’s ranking. Ties can also occur in the conversion of scores to rank numbers. If two or more participants have the same score, they are tied in the ranking.
Note that an ordinal-categorical variable
 is a special case of a ranked variable
: It is a ranked variable
 that has a large number of ties (see Example 11.1).
Example 11.1 An ordinal-categorical variable as a special case of a ranked variable
In a study on creativity, 30 participants perform a complex task. A rater divides participants’ performance into three categories: high (H), medium (M), and low (L) creativity (see Table 11.1).Table 11.1(Fictitious) creativity ratings of 30 participants’ performance of a complex task


	Participant no.
	Rating

	1
.
.
.
.
7
8
.
.
.
.
20
21
.
.
.
.
30
	H
.
.
.
.
H
M
.
.
.
.
M
L
.
.
.
.
L


Note H: high creativity; M: medium creativity; L: low creativity




The ratings are ordered from high to low, but the ranking has a large number of ties: 7 participants have tied rankings H, 13 participants have tied rankings M, and 10 participants have tied rankings L.

Finally, continuous variables. The values of a 
              continuous variable
              
             come from a continuum. An example is reaction time. A reaction time of, for instance, 1.2 s comes from continuous time.
11.3 Classification of Coefficients for Bivariate Relations
The distinctions of variable types and relation types are used to classify coefficients for bivariate relations. Crossing of the five variable types and three relation types yields 5 × 3 = 15 different combinations. Table 11.2 reports an example of a coefficient for 13 of these combinations (the author is not aware of coefficients for two situations).Table 11.2Examples of coefficients for bivariate relations per combination of variable type and relation type


	Type of X- and Y-variables
	Relation type

	Symmetrical
	Equality
	Asymmetrical

	Dichotomous
	
                        Log odds ratio

                      
	Cohen’s Kappa
	Goodman & Kruskal’s Lambda

	Nominal-categorical
	Cramer’s V-square


	Cohen’s Kappa
	Goodman & Kruskal’s Lambda

	Ordinal-categorical
	Goodman & Kruskal’s Gamma
	
                        Cohen’s Weighted Kappa

                      
	Somer’s dY|X

	Ranked
	
                        Spearman’s rank correlation

                      
	?a
	?a

	Continuous
	Pearson’s Pmc
	Zegers & ten Berge’s Identity
	RL-square,
RQ-square,
RC-square


Note aThe author is not familiar with coefficients for these situations




11.4 Examples of Coefficients
This section discusses the coefficients of Table 11.2. The coefficients are restricted to the situation where the X- and Y-variables are of the same variable type (e.g., both X and Y are dichotomous variables, both X and Y are nominal-categorical variables, and so on). The equations are given for a number of coefficients and a sample of n participants.
The X-variable of nominal- and ordinal-categorical variables has R categories and the Y variable has C categories. Nominal- and ordinal-categorical variables were defined as variables that have more than two (unordered or ordered) categories (see Sect. 11.2). The discussion of the coefficients of nominal- and ordinal-categorical variables includes situations where one of the variables has two or more categories and the other variable has more than two categories, for example, X has two categories and Y has four categories (R = 2 and C = 4) and X has three categories and Y has two categories (R = 3 and C = 2).
11.4.1 Dichotomous Variables and a Symmetrical Relation
X and Y are dichotomous variables that have a symmetrical relation
. The values of the categories can be ordered (e.g., pass and fail) and unordered (e.g., male and female) because the coefficients for ordinal- and nominal-dichotomous variables are the same.
Chapter 10 of this book discussed two coefficients for dichotomously scored test item
 responses, that is, the tetrachoric correlation
 (Sect. 10.​3.​2) and Loevinger’s homogeneity (H-) coefficient
 (Sect. 10.​3.​3). These coefficients are used in the analysis of psychological and educational tests, but can be used for other dichotomous variables as well. This section discusses another coefficient to assess the strength of a symmetrical relation
 between two dichotomous variables.
The data of two dichotomous variables can be summarized in the following 2 × 2 frequency table:	Category no. X
	Category no. Y
	Total

	 	1
	2
	 
	1
	
                          n
                          
                          11
                        
	
                          n
                          
                          12
                        
	n11 + n12

	2
	
                          n
                          
                          21
                        
	
                          n
                          
                          22
                        
	n21 + n22

	Total
	n11 + n21
	n12 + n22
	
                          n
                        





In this table, n11 is the frequency of participants in the first category of the X-variable and the first category of the Y-variable, n12 the frequency in the first category of X and second category of Y, n21 the frequency in the second category of X and the first category of Y, n22 the frequency in the second category of X and the second category of Y, and the sum of these frequencies is equal to the sample size
 (i.e., n11 + n12 + n21 + n22 = n).
For participants in the first category of X, the probability of being in the second category of Y is estimated by

[image: $$ n_{12} /\left( {n_{11} + n_{12} } \right), $$]



and the probability of being in the first category of Y is estimated by

              [image: $$ n_{11} /\left( {n_{11} + n_{12} } \right). $$]




            
The odds of being in the second category of Y instead of the first category is estimated by the ratio of these two probabilities:[image: $$ \frac{{n_{12} /\left( {n_{11} + n_{12} } \right)}}{{n_{11} /\left( {n_{11} + n_{12} } \right)}} = \frac{{n_{12} }}{{n_{11} }}. $$]





Similarly, for participants in the second category of X, the odds of being in the second category of Y instead of the first category is estimated by[image: $$ \frac{{n_{22} }}{{n_{21} }}. $$]





The odds ratio is the ratio of these two odds:[image: $$ \frac{{n_{22} /n_{21} }}{{n_{12} /n_{11} }} = \frac{{n_{11} n_{22} }}{{n_{12} n_{21} }}. $$]





This odds ratio is also called the cross-product ratio because it is the ratio of the product of the diagonal frequencies (n11 n22) and the product of the off-diagonal frequencies (n12 n21) of the 2 × 2 table.
The natural logarithm (i.e., the logarithm at base e = 2.718…) of the odds ratio is the 
                log odds ratio
                
              :[image: $$ Log\,odds\,ratio = ln\frac{{n_{11} n_{22} }}{{n_{12} n_{21} }} = ln\,n_{11} + ln\,n_{22} - ln\,n_{12} - ln\,n_{21} , $$]

 (11.1)


where ln denotes the natural logarithm. The log odds ratio
 is a measure for the strength of a symmetrical relation
 between two dichotomous variables because the log odds ratio
 between X and Y is the same as the log odds ratio
 between Y and X. The log odds ratio
 is larger than 0 if the two variables are positively related, is equal to 0 if the two variables are independent, and is smaller than 0 if the two variables are negatively related. Example 11.2 illustrates the log odds ratio
.
Example 11.2 The log odds ratio
It is studied whether depressive patients’ suicidal tendency is related to treatment. A sample of 400 patients consists of 100 treated and 300 untreated patients (see Table 11.3).Table 11.3(Fictitious) frequencies Treatment x Suicidal attempt table


	Treatment
	Suicidal attempt
	Total

	No
	Yes
	 
	Treated
	90
	10
	100

	Untreated
	240
	60
	300

	Total
	330
	70
	400





Using Eq. 11.1 yields[image: $$ Log\,odds\,ratio = ln\frac{90 \times 60}{10 \times 240} = 0.81. $$]






The two variables are positively related, which means that treated patients make relatively less suicidal attempts than untreated patients.
A problem arises when one of the four frequencies is 0 because the logarithm in Eq. 11.1 is infinite if n11, n22, n12 or n21 is 0. A simple solution is to add 0.5 to each of the four frequencies (Agresti, 1984, Sect. 2.4). The estimated log odds ratio
 is[image: $$ Log\,odds\,ratio = ln(n_{11} + 0.5) + ln(n_{22} + 0.5) - ln(n_{12} + 0.5) - ln(n_{21} + 0.5) $$]

 (11.2)


if one of the four frequencies is 0.
11.4.2 Dichotomous Variables and Equality of X- and Y-Categories
The two dichotomous variables have the same categories. The relation between the two variables is symmetrical, and the interest is in the equality of the X- and Y-categories (see Example 11.3).
Example 11.3 2 × 2 agreement table of two teachers who pass or fail students’ examination papers
Two teachers (A and B) pass or fail students’ examination papers. The question is whether the teachers agree in their passing and failing of papers. Table 11.4 gives the frequencies of the 2 × 2 table.Table 11.4(Fictitious) frequencies and (between parentheses) proportions of students’ examination papers that are passed or failed by two teachers


	Teacher A
	Teacher B
	Total

	Pass
	Fail
	 
	Pass
	65
(0.65)
	15
(0.15)
	80
(0.80)

	Fail
	5
(0.05)
	15
(0.15)
	20
(0.20)

	Total
	70
(0.70)
	30
(0.30)
	100
(1.00)





Both teachers passed 65% of the essays and both failed 15% of the essays. Therefore, the observed proportions of category-equality is the sum of the diagonal proportions of the 2 × 2 table: 0.65 (pass A/pass B) + 0.15 (fail A/fail B) = 0.80. The two teachers agreed on 80% of the essays, which seems to indicate that the degree of agreement between the two teachers is rather high.

The observed proportion of category-equality is a naive measure for the degree of category-equality of two categorical variables because category-equality can come about by chance. Therefore, Cohen (1960) proposed to correct the observed proportion of category-equality by the chance-expected proportion of category-equality. The chance-expected proportion is computed under the assumptions that (1) the category proportions of the X- and Y-variables are fixed, and (2) X and Y are independently distributed. Cohen’s coefficient kappa
 is:[image: $$ Kappa = \frac{Obs - Exp}{1 - Exp}(Exp &lt; 1), $$]

 (11.3)


where Obs and Exp are the observed and chance-expected proportions of category-equality, respectively (see Example 11.4).
Example 11.4 Kappa for the data of Table 11.4
The observed proportion of category-equality of Table 11.4 is Obs = 0.80 (see Example 11.3). Under the two assumptions that were mentioned above, the chance-expected proportion of pass-equality is the product of Teacher A’s proportion of passes and Teacher B’s proportion of passes: 0.80 × 0.70 = 0.56. Moreover, the chance-expected proportion of fail-equality is the product of Teacher A’s proportion of fails and Teacher B’s proportion of fails: 0.20 × 0.30 = 0.06. Therefore, the chance-expected proportion of category-equality is 0.56 + 0.06 = 0.62. Using Eq. 11.3 yields[image: $$ Kappa = \frac{0.80 - 0.62}{1 - 0.62} = 0.47. $$]





This value of kappa gives a less rosy picture of the agreement between the two teachers than the observed proportion of category-agreement (Obs = 0.80).

It follows from Eq. 11.3 that kappa is maximal (Kappa = 1) if all proportions are at the diagonal (i.e., Obs = 1). Moreover, kappa is 0 if the observed proportions at the diagonal of the table are equal to their chance-expected proportions (i.e., Obs = Exp).
11.4.3 Dichotomous Variables and an Asymmetrical Relation
X and Y are
 dichotomous variables. The relation between the two variables is asymmetrical: X is the independent variable and Y is the dependent variable.

Goodman and Kruskal’s lambda
 assesses the strength of the prediction of Y from X. Lambda is based on two probabilities (Wickens, 1989, Sect. 9.3). First, the probability of making a prediction error when X is not used to predict Y: Prob (prediction error not using X). Second, the probability of making a prediction error when X is used to predict Y: Prob (prediction error using X). 
                Goodman and Kruskal’s Lambda
                
               is the relative reduction of the error using X to predict Y:[image: $$ Lambda_{Y|X} = \frac{Prob(pred.error\,not\,using\,X) - Prob(pred.error\,using\,X)}{Prob(pred.error\,not\,using\,X)}, $$]

 (11.4)


where the subscript Y|X indicates that Y is predicted from X. Lambda is equal to 0 if the use of X does not improve the prediction of Y (i.e., Prob(pred. error not using X) = Prob(pred. error using X)), and lambda is equal to 1 if X perfectly predicts Y (i.e., Prob(pred. error using X) = 0).
Example 11.5 illustrates lambda.
Example 11.5 Lambda
A secondary school offers a program that is the same for all of its first-year students. At the end of the first year the school allocates the students either to a higher or a lower level program. An elementary school provides 100 of its students to the secondary school. The elementary school gives an evaluation of each of these students: Suited or not suited for the higher level program. After one year, the elementary school checks whether its evaluations predict the secondary school’s allocation. Table 11.5 reports the frequencies of the 2 (Evaluation) × 2 (Allocation) table.Table 11.5(Fictitious) frequencies Evaluation x Allocation table


	Elementary school’s evaluation
	Secondary school’s allocation
	Total

	High
	Low
	 
	Suited
	
                            70
                          
	10
	80

	Not suited
	5
	
                            15
                          
	20

	Total
	75
	25
	100


Note The largest frequency per row of the table is italicized





The frequencies of the allocation are reported in the last row of the table: 75 students were allocated to the higher level program and 25 to the lower level program. If the elementary school’s evaluations are not used the best prediction is that the student will be allocated to the higher level program because the frequency of students allocated to the higher level (75) is larger than the frequency of students allocated to the lower level (25). The best prediction is that all 100 students will be allocated to the higher level program. If this prediction is made, the number of errors is 25 (higher level predicted, but allocated to lower level). Therefore, the estimated probability of making a prediction error when the elementary school’s evaluation is not used is: Prob (prediction error not using Evaluation) = 25/100 = 0.25. The allocation frequencies of students who are evaluated to be suited (first row of the table) are: 70 students are allocated to the higher level program and 10 to the lower level program. If the elementary school’s evaluation of suited is used, the best prediction is that the student will be allocated to the higher level program because the frequency of suited students allocated to the higher level program (70) is larger than the frequency of suited students allocated to the lower level program (10). The best prediction is that all 80 suited students will be allocated to the higher level program. If this prediction is made, the number of errors is 10 (higher level predicted, but allocated to a lower level). The allocation frequencies of students who are evaluated to be not suited (second row of the table) are: 5 students are allocated to the higher level program and 15 to the lower level program. If the elementary school’s evaluation of not suited is used, the best prediction is that the students will be allocated to the lower level program because the frequency of not-suited students allocated to the lower level program (15) is larger than the frequency of not-suited students allocated to the higher level program (5). The best prediction is that all 20 not-suited students will be allocated to the lower level program. If this prediction is made the number of errors is 5 (lower level predicted, but allocated to higher level). Therefore, if the elementary school’s evaluation is used, the total number of errors is 10 (higher level predicted, but allocated to lower level) + 5 (lower level predicted, but allocated to higher level) = 15, and the estimated probability of making a prediction error is: Prob (prediction error using Evaluation) = 15/100 = 0.15. Equation 11.4 yields:[image: $$ Lambda_{X|Y} = \frac{0.25 - 0.15}{0.25} = 0.40, $$]



which means that the probability of making a prediction error is 40% reduced by using the elementary school’s evaluation compared to not using this evaluation.
Note that lambda is a measure for an asymmetrical relation
. Equation 11.4 is for the prediction of Y from X, and not for the prediction of X from Y. In general, lambda for the prediction of Y from X differs from lambda for the prediction of X from Y (i.e., LambdaY|X ≠ LambdaX|Y).
11.4.4 Nominal-Categorical Variables and a Symmetrical Relation
The X- and Y-variables
 have unordered categories. One of these two variables has two or more categories and the other variable has more than two categories. The relation between X and Y is symmetrical.
The data of two nominal-categorical variables can be summarized in an R × C frequency table. For example, the variables Gender with two nominal categories (R = 2) and Religion with six nominal categories (C = 6) yields a 2 × 6 frequency table.
A number of measures for a symmetrical relation
 between nominal-categorical variables is based on the chi-square statistic for an R × C frequency table (Everitt, 1977, Sect. 3.7.1). An example is Cramer’s V-square
 (Agresti, 1984, Sect. 2.5):[image: $$ V{-}square = \frac{{X^{2} }}{{n\{ Min(R,C) - 1\} }}, $$]

 (11.5)


where X2 is the usual chi-square statistic for the R × C table in a sample of n participants, and Min(R, C) is the smallest of R and C (e.g., if R = 4 and C = 5, Min(R, C) = Min(4, 5) = 4). V-square is between 0 and 1, where larger values indicate a stronger relation, but usually V-square is hard to interpret (Agresti, 1984, Sect. 2.5).
11.4.5 Nominal-Categorical Variables and Equality of X- and Y-Categories
The X- and Y-variables have unordered categories. An equality relation
 between two nominal-categorical variables means that participants belong to the same category at both variables. The concept of equality of categories only applies if the two variables have the same number of identical categories. Therefore, the frequency table of the two variables has to be square. A 
                square table
                
               is a table that has the same number of categories of the X- and Y-variables (i.e., R = C). Moreover, both variables need to have the same categories. Examples of studies where the interest is in the degree of equality are interrater agreement and intrarater consistency studies.
Section 11.4.2 discussed Cohen’s (1960) kappa for dichotomous variables. Kappa also applies to nominal variables that have more than two categories. Equation 11.3 is applied to a square table
 where both variables have identical categories: Obs is the observed proportion of category-equality and Exp is the chance-expected proportion of category-equality. The chance-expected proportions of equal ratings are computed in the same way and under the same assumptions as for dichotomous variables (see Sect. 11.4.2). Kappa is maximal (Kappa = 1) if all observed proportions are at the diagonal of the table (i.e., Obs = 1). Kappa is 0 if the observed proportions at the diagonal of the table are equal to their chance-expected proportions (i.e., Obs = Exp).
11.4.6 Nominal-Categorical Variables and an Asymmetrical Relation
X and Y are
 nominal variables. One of these variables has two or more categories and the other variable has more than two categories. The relation between X and Y is asymmetrical: X is the independent variable and Y is the dependent variable.
Section 11.4.3 discussed Goodman and Kruskal’s lambda
 for two dichotomous variables, where X is the independent variable and Y the dependent variable. Lambda can also be applied when the number of categories of the variables is larger than two. The computations of the two prediction errors are done in the same way as for dichotomous variables (see Example 11.5), and Eq. 11.4 is used to compute LambdaY|X.
11.4.7 Ordinal-Categorical Variables and a Symmetrical Relation
The X- and Y-variables
 have ordered categories. One of these variables has two or more categories and the other variable has more than two categories. The relation between X and Y is symmetrical. The data can be summarized in an R × C frequency table (see Example 11.6).
Example 11.6 Constructed bivariate ordinal-categorical data and corresponding frequency table
The X-variable (e.g., socioeconomic status) has three (R = 3) ordered categories: low (L), middle (M), and high (H). The Y-variable (e.g., educational level) also has three (C = 3) ordered categories: low (L), medium (M), and high (H). The categories of the X- and Y-variable of six participants are:	Participant no.
	Category X
	Category Y

	1
	L
	L

	2
	L
	L

	3
	M
	L

	4
	M
	M

	5
	H
	H

	6
	H
	L





The data are summarized in a 3 × 3 frequency table: [image: ../images/459008_1_En_11_Chapter/459008_1_En_11_Figa_HTML.png]

Two participants (no. 1 and 2) belong to the low category of both variables, one participant (no. 3) belongs to the middle category of X and the low category of Y, and so on.

Goodman and Kruskal’s coefficient gamma is based on concordant and discordant pairs
 of participants (Agresti, 2002, Sect. 2.4.3). A pair of participants is concordant if they are in the same order at both the X- and Y-variable. For example, the pair of participants no. 1 and 4 of Example 11.6 is concordant: Participant no. 4 belongs to a higher category of X (M) than no. 1 (L), and also to a higher category of Y (M) than no. 1 (L). A pair of participants is discordant if they are in different orders at the X- and Y-variables. For example, the pair of participants no. 4 and 6 of Example 11.6 is discordant: Participant no. 6 belongs to a higher category of X (H) than no. 4 (M), but to a lower category of Y (L) than no. 4 (M). Note that a pair of participants that is tied on the X-variable, the Y-variable, or both variables is neither concordant nor discordant. For example, the pair of participants no. 3 and 4 of Example 11.6 is neither concordant nor discordant because both participants are tied on X, that is, both belong to the same category (M) of X.
The total number of different pairs of participants of a sample of n participants is n(n − 1)/2. This number of pairs is the sum of (1) concordant (ncon), (2) discordant (ndis), (3) only tied on X (ntied X), (4) only tied on Y (ntied Y), and (5) tied on both X and Y (ntied XY) pairs. The proportion of concordant pairs
 of the number of concordant and discordant pairs
 is:[image: $$ \frac{ncon}{ncon + ndis}, $$]



and the proportion of discordant pairs
 of concordant and discordant pairs is:[image: $$ \frac{ndis}{ncon + ndis}. $$]





Goodman and Kruskal’ gamma is defined as the difference of these two proportions:[image: $$ Gamma = \frac{ncon}{ncon + ndis} - \frac{ndis}{ncon + ndis} = \frac{ncon - ndis}{ncon + ndis} $$]

 (11.6)




(see Example 11.7).
Example 11.7 Pairs of participants (data Example 11.6), type of pair, and gamma
The total number of different pairs of the six participants of Example 11.6 is 6(6 − 1)/2 = 15. Table 11.6 reports the type of each of these pairs.Table 11.6The different pairs of the six participants of Example 11.6, and the type of each of these pairs


	Pair of participants
	Type

	1 & 2
	Tied on X and Y

	1 & 3
	Tied on Y

	1 & 4
	Concordant

	1 & 5
	Concordant

	1 & 6
	Tied on Y

	2 & 3
	Tied on Y

	2 & 4
	Concordant

	2 & 5
	Concordant

	2 & 6
	Tied on Y

	3 & 4
	Tied on X

	3 & 5
	Concordant

	3 & 6
	Tied on Y

	4 & 5
	Concordant

	4 & 6
	Discordant

	5 & 6
	Tied on X





The numbers of concordant and discordant pairs
 are ncon = 6 and ndis = 1, respectively. Equation 11.6 yields:[image: $$ Gamma = \frac{6 - 1}{6 + 1} = 0.71. $$]






Gamma is a symmetrical measure because gamma between X and Y is the same as gamma between Y and X. It is easy to interpret because it is a difference of two proportions. Gamma = 0 means that the proportions of concordant and discordant pairs
 are equal. Gamma larger than 0 means that X and Y are positively related because the proportion of concordant pairs
 exceeds the proportion of discordant pairs
, and gamma smaller than 0 means that X and Y are negatively related because the proportion of discordant pairs
 exceeds the proportion of concordant pairs
.
11.4.8 Ordinal-Categorical Variables and Equality of X- and Y-Categories
The X- and Y-variables have ordered categories. Both variables have the same number of R identical categories. The data can be summarized in a square (R x R) frequency table. Examples of studies where the interest is in the degree of equality are interrater agreement and intrarater consistency studies.
The categories are ordered which means that some differences are more serious deviations from equality than other differences (see Example 11.8).
Example 11.8 Constructed 3 × 3 table to assess the degree of agreement of two raters
Two raters (A and B) rated the performance of 100 participants on a creativity task using three categories: low (L), medium (M), and high (H) creativity. Table 11.7 is the 3 × 3 frequency table of the two raters.Table 11.7(Fictitious) frequencies of the ratings of two raters (A and B) who rated a task performance of 100 participants


	Rater A
	Rater B
	Total

	L
	M
	H
	 
	L
	8
	18
	4
	30

	M
	2
	50
	8
	60

	H
	0
	2
	8
	10

	Total
	10
	70
	20
	100





A rated 18 participants L and B rated these participants M. Moreover, A rated 4 participants L and B rated these participants H. The difference L (Rater A)/M (Rater B) deviates less from equality rating than the difference L (Rater A)/H (Rater B) because M is nearer to L than H is to L.

Cohen (1968) proposed weighted kappa to take account of differences between ratings. A weight is assigned to each of the cells of the square table
. The largest weights are assigned to the diagonal cells of the table because the X- and Y-categories at the diagonal are identical. The weights decrease with increase of the difference between X- and Y-categories. 
                Cohen’s weighted kappa
                
               is:[image: $$ Weighted\,kappa = \frac{wObs - wExp}{1 - wExp}\left( {wExp &lt; 1} \right), $$]

 (11.7)


where wObs and wExp are the weighted sum of observed and chance-expected proportions of the table, and these sums are computed over all cells of the table. The weights have to be specified by the researcher. Examples are linear and quadratic weights. Warrens (2012) showed that quadratically weighted kappa has some undesirable properties. Therefore, only linear weights are discussed. Rank numbers are assigned to the categories: 1 to the lowest category, 2 to the second lowest category, and so on. The linear weight of the cell corresponding to the ith category of the row and the jth category of the column is:[image: $$ lw_{ij} = 1 - \frac{{\left| {difference\,rank\,numbers\,ith\,row\,and\,jth\,column\,category} \right|}}{R - 1} $$]

 (11.8)


where the upright lines indicate the absolute value (see Example 11.9).
Example 11.9 Linearly weighted kappa, Table 11.7
Table 11.8 gives the proportions corresponding to the frequencies of Table 11.7 and the linear weights per cell of the table.Table 11.8Proportions corresponding to the frequencies of Table 11.7 and linear weights per cell of the table


	Rater A
	Rater B
	Total

	(1) L
	2 (M)
	(3) H
	 
	(1) L
	0.08
lw11 = 1
	0.18
lw12 = 0.5
	0.04
lw13 = 0
	0.30

	(2) M
	0.02
lw21 = 0.5
	0.50
lw22 = 1
	0.08
lw23 = 0.5
	0.60

	(3) H
	0.00
lw31 = 0
	0.02
lw32 = 0.5
	0.08
lw33 = 1
	0.10

	Total
	0.10
	0.70
	0.20
	 




The linear weights are computed using Eq. 11.8:[image: $$ lw_{11} = 1 - \frac{{\left| {1 - 1} \right|}}{3 - 1} = \, 1, $$]




[image: $$ lw_{12} = 1 - \frac{{\left| {1 - 2} \right|}}{3 - 1} = 0.5, $$]



and so on. The weighted sum of the observed proportions is[image: $$ \begin{aligned} wObs &amp; = 1 \times 0.08 + 0.5 \times 0.18 + 0 \times 0.04 + 0.5 \times 0.02 + 1 \times 0.50 \\ &amp; \quad + \,0.5 \times 0.08 + 0 \times 0.00 + 0.5 \times 0.02 + 1 \times 0.08 = 0.81. \\ \end{aligned} $$]





The weighted sum of the chance-expected proportions is:[image: $$ \begin{aligned} wExp &amp; = 1 \times \left( {0.30 \times 0.10} \right) + 0.5 \times \left( {0.30 \times 0.70} \right) + 0 \times \left( {0.30 \times 0.20} \right) + 0.5 \times \left( {0.60 \times 0.10} \right) \\ &amp; \quad + \,1 \times \left( {0.60 \times 0.70} \right) + 0.5 \times \left( {0.60 \times 0.20} \right) + 0 \times \left( {0.10 \times 0.10} \right) \\ &amp; \quad + \,0.5 \times \left( {0.10 \times 0.70} \right) + 1 \times \left( {0.10 \times 0.20} \right) = 0.70. \\ \end{aligned} $$]





Equation 11.7 yields:[image: $$ Weighted\,kappa = \frac{0.81 - 0.70}{1 - 0.70} = 0.37. $$]






11.4.9 Ordinal-Categorical Variables and an Asymmetrical Relation
The X- and Y-variables
 have ordered categories. One of these variables has two or more categories and the other variable has more than two categories. The relation between the variables is asymmetrical: X is the independent variable and Y is the dependent variable.

Somer’s d
 is a measure for the asymmetrical relation
 between ordinal-categorical variables (Agresti, 1984, Sect. 9.2). As Goodman and Kruskal’s gamma
 (Sect. 11.4.7), Somer’s d
 is based on concordant and discordant pairs
 of participants. In contrast to gamma, it takes account of the number of pairs that are tied on the dependent variable (ntied Y). Somer’s d
 is:[image: $$ d_{Y|X} = \frac{ncon - ndis}{ncon + ndis + ntied\,Y} $$]

 (11.9)




(see Example 11.10).
Example 11.10 Somer’s d, data Example 11.6
A clinical psychologist predicts the probability of recovery by therapy for six patients: high (H), medium (M), and low (L). At the end of the therapy, another psychologist evaluates the patients’ mental health: recovered (H), partly recovered (M), and not recovered (L). The data are those of Example 11.6, where the variable X is the predictor of recovery, and Y the recovery at the end of therapy. Table 11.6 gives the numbers of concordant (ncon = 6), discordant (ndis = 1) and tied on Y (ntied Y = 5) pairs of participants. Equation 11.9 yields:[image: $$ d_{Y|X} = \frac{6 - 1}{6 + 1 + 5} = 0.42. $$]





Note that Somer’s d
 is a measure for an asymmetrical relation
. Equation 11.9 is for the prediction of Y from X, and contains the number of participants tied on the dependent variable (ntied Y). In general, this number differs from the number of participants tied on X (ntied X). Therefore, generally, Somer’s d
 for the prediction of Y from X differs from d for the prediction of X from Y (i.e., dY|X ≠ dX|Y).

11.4.10 Ranked Variables and a Symmetrical Relation

The participants
 are ranked on each of the X- and Y-variables, for example, a teacher ranks his (her) students on their ability to concentrate and on their arithmetic ability. A coefficient for the strength of a symmetrical relation
 between ranked variables is 
                Spearman’s rank correlation
                
              . This rank correlation is the usual product moment correlation (pmc) applied to the rank numbers. The rank correlation is a coefficient for a symmetrical relation
 because the pmc between the X- and Y-rankings is the same as the pmc between the Y- and X-rankings.
As said in Sect. 11.2, ties may occur in a ranking. Usually, Spearman’s rank correlation
 handles ties by assigning midranks
 to the tied participants. The 
                midranks
                
               of a number of tied participants is the average of the ranks that they would have if they could be ranked (Gibbons, 1971, Sect. 5.3). Example 11.11 illustrates the assignment of midranks
 to tied test scores.
Example 11.11 Midranks assigned to tied test scores
An intelligence test is administered to 10 participants. The intelligence test scores are ranked from the lowest to the highest score (see Table 11.9).Table 11.9(Fictitious) intelligence test scores and their ranking


	Participants initials
	Test score
	Rank number

	IL
	89
	1
	 
	AC
	92
	2

	CK
	98
	3

	CL
	102
	5
	
                            Midranks

                          

	PB
	102
	5 


	DA
	102
	5

	LM
	107
	7
	 
	KN
	115
	8

	ST
	118
	9

	RB
	122
	10





The test scores of participants CL, PB, and DA are tied because they have the same score (102). Therefore, these participants should have the same rank number in the ranking. The tied participants hold the 4th, 5th, and 6th position in the ranking. The midranks
 of these positions is their average: (4 + 5 + 6)/3 = 5. Therefore, rank number 5 is assigned to each of these three participants.
Another coefficient to assess the symmetrical relation
 between two ranked variables is Kendall’s tau
 (Everitt, 1977, Sect. 3.7.3). The equation of this coefficient is given in Sect. 17.​9 of this book.

11.4.11 Continuous Variables and a Symmetrical Relation
X and Y are
 continuous variables, for example, reaction time or responses to a continuous line. The relation between the two variables is symmetrical.


                Pearson’s product moment correlation (pmc)
                
               assesses the strength of the relation between two continuous variables. The pmc applies to symmetrical relations because the pmc between X and Y is the same as the pmc between Y and X.
11.4.12 Continuous Variables and Equality of X- and Y-Values
X and Y are continuous variables, for example, reaction time or a 10-cm line. The relation between the two variables is symmetrical, and the interest is in the equality of the X- and Y-values. An example is a study on interrater agreement, where different raters use a 10-cm line, and the interest is in the agreement of the ratings of different raters.
Zegers and ten Berge (1985) discussed a general coefficient for the association of metric variables. A special case is their coefficient of identity of variables that are measured on an absolute scale. An absolute scale is a scale where it is not admissible to transform the scale to another scale. Usually, continuous variables, such as reaction time and a line, have a fixed 0-point (e.g., 0 s, 0 cm), but it is admissible to multiply the scale values by a constant (e.g., multiplying cm by 2.54 to get inches). The coefficient of identity changes when the 0-point of the X- and Y-variables is changed, but it does not change when both variables are multiplied by the same constant. Therefore, it is proposed to use the coefficient of identity to assess the degree of equality of X- and Y-values when both of these continuous variables have a fixed 0-point and the same scale (e.g., two raters using a 10-cm line).
Zegers and ten Berge’s coefficient of identity is:[image: $$ Id = \frac{{2\sum\limits_{i = 1}^{n} {X_{i} Y_{i} } }}{{\sum\limits_{i = 1}^{n} {X_{i}^{2} } + \sum\limits_{i = 1}^{n} {Y_{i}^{2} } }}, $$]

 (11.10)


where Xi and Yi are the ith participant’s values of the X- and Y-variables, respectively, and n is the number of participants of the sample. The coefficient applies to a symmetrical relation
 because Id between X and Y is the same as Id between Y and X.
The coefficient can be used for, among other things, the study of interrater agreement and interrater consistency (see Example 11.12).
Example 11.12 The coefficient of identity to assess interrater agreement
Two nurses (A and B) independently rate the quality of life of 10 dementia patients. The nurses give their ratings by marking a 10-cm line, for example,[image: ../images/459008_1_En_11_Chapter/459008_1_En_11_Figb_HTML.png]


The ratings are recorded in millimeters from the left (bad quality of life) to the mark. Table 11.10 reports the (fictitious) ratings and the terms of Eq. 11.10.Table 11.10(Fictitious) ratings of two nurses (A and B) of the quality of life of 10 dementia patients, and the terms of Eq. 11.10


	Patient no.
	Rating
	Terms Eq. 11.10

	Nurse A (X)
	Nurse B (Y)
	
                            X
                            2
                          
	
                            Y
                            2
                          
	
                            XY
                          

	1
	86
	75
	7396
	5625
	6450

	2
	30
	18
	900
	324
	540

	3
	17
	35
	289
	1225
	595

	4
	60
	50
	3600
	2500
	3000

	5
	49
	36
	2401
	1296
	1764

	6
	58
	78
	3364
	6084
	4524

	7
	11
	17
	121
	289
	187

	8
	22
	34
	484
	1156
	784

	9
	42
	20
	1764
	400
	840

	10
	5
	9
	25
	81
	45

	Sum
	20344
	18980
	18729






Equation 11.10 yields:[image: $$ Id = \frac{2 \times 18729}{20344 + 18980} = 0.95. $$]





11.4.13 Continuous Variables and an Asymmetrical Relation
X and Y are
 continuous variables. The relation between the variables is asymmetrical: X is the independent variable and Y is the dependent variable.
If the dependent (Y-) variable is linearly related to the independent (X-) variable, linear regression is used to predict Y-values from X-values:[image: $$ Y_{L}^{\prime} = b_{L0} + b_{LI} X, $$]

 (11.11)


where Y’ is the predicted dependent variable, and bL0 and bL1 are the intercept and slope of the 
                linear regression equation
                
              . A measure for the strength of the linear relation between X and Y is the squared pmc between the observed (Y-) and predicted (Y’-) values (RL-square). In linear regression RL is equal to Pearson’s pmc between X and Y.
Equation 11.11 is a linear function. However, the dependent (Y-) variable can also be nonlinearly related to the independent (X-) variable. A 
                quadratic regression equation
                
               adds a quadratic term:[image: $$ Y_{Q}^{\prime} = b_{Q0} + b_{{{Q}_{1} }} X + b_{{{Q}_{2} }} X^{2} , $$]

 (11.12)


where [image: $$ Y_{C}^{{\prime }} $$] is the predicted dependent variable, bQ0 is the intercept, and bQ1 and bQ2 are the regression coefficients of the linear and quadratic terms, respectively. A measure of the strength of the quadratic relation between the X- and Y-variables is the squared pmc between the observed (Y-) and predicted (Y’-) values (RQ-square).
Nonlinear regression functions can be extended by adding powers of X (X3, X4,…). For example, a 
                cubic regression equation
                
               adds a term of the third power of X:[image: $$ Y_{c}^{\prime} = b_{co} + b_{CI} X + b_{C2} X^{2} + b_{CS} X^{3} , $$]

 (11.13)


where [image: $$ Y_{C}^{{\prime }} $$] is the predicted dependent variable, bC0 is the intercept, and bC1, bC2, and bC3 are the regression coefficients of the linear, quadratic, and cubic terms, respectively. A measure for the strength of the cubic relation between the X- and Y-variables is the squared pmc between the observed (Y-) and predicted (Y’-) values (RC-square).
In general, corresponding coefficients of Eqs. 11.11, 11.12, and 11.13 are not equal (i.e., bL0 ≠ bQ0 ≠ bC0, bL1 ≠ bQ1 ≠ bC1, and bQ2 ≠ bC2). Moreover, the R-squares of Eqs. 11.11, 11.12, and 11.13 are generally not equal (i.e., RL-square ≠ RQ-square ≠ RC-square).
Standard computer programs can be used to fit Eqs. 11.11, 11.12, and 11.13 to sample data. R-squares of these equations are compared to select an appropriate equation for the relation of the Y- and X-variables. However, multicollinearity
 may occur in this type of regression analysis. 
                Multicollinearity
                
               means that some of the predictors are highly correlated, which causes that estimates of the regression parameters
 are unstable. Multicollinearity
 can easily occur using Eqs. 11.12 and 11.13. Usually, psychological and educational measurements have positive values, for example, intelligence test scores are positive. X and X2 of positive X-scores will be different, but their ranking is the same. Therefore, X and X2 will be highly correlated. Multicollinearity
 of Eq. 11.12 can be removed by centering
 a positive X-variable. 
                Centering
                
               of the X-variable means that the sample mean [image: $$ (\bar{X}) $$] is subtracted from each of the X-values, for example, the centered X-value of the ith participant is [image: $$ X_{Ci} = X_{i} - \bar{X} $$]. These centered values are partly positive and partly negative in the sample of participants. The square of the centered X-value of the ith participant is [image: $$ X_{{C_{i} }}^{2} = \left( {X_{i} - \bar{X}} \right)^{2} $$], and these squared centered values are positive for all participants of the sample. Therefore, the pmc between the centered [image: $$ X_{C} $$] - and [image: $$ X_{C}^{2} $$]-variables will be smaller than the pmc between the uncentered X- and X2-variables.
11.5 Comments
The overview of coefficients of Table 11.2 is not exhaustive. It is intended to enable researchers to make informed choices from the existing coefficients for bivariate relations.
A limitation of the overview is that it is restricted to situations where X and Y are of the same variable type (e.g., both X and Y are dichotomous variables, both X and Y are nominal-categorical variables, and so on). The independent and dependent variables of experimental and quasi-experimental studies are usually of different variable types. The independent (X-) variable is a manipulated variable that consists of two or more unordered or ordered categories (e.g., experimental and control conditions). The dependent variable is often a continuous variable
 (e.g., reaction time) or a variable that is treated as a continuous variable
 (e.g., a test score). A coefficient for the asymmetrical relation
 between these variables is Hays’ omega-square
 (Hays, 1973, Sect. 12.18).
The coefficients are estimated in a sample of participants. For most of the coefficients of Table 11.2 the variance of the estimates can be computed. This variance can be used to compute confidence intervals
 and to test null hypotheses. Example 11.13 demonstrates the computation of a confidence interval
 and the testing of a null hypothesis on the log odds ratio
.
Example 11.13 Confidence interval and null hypothesis test, log odds ratio, data Table 11.3
The log odds ratio
 of a 2 × 2 frequency table is estimated in a sample of participants by Eq. 11.1. The variance of this estimate is estimated by (Agresti, 1984, Sect. 2.4):[image: $$ V\hat{a}r (\log \,odds\,ratio\,estimate) = \frac{1}{{n_{11} }} + \frac{1}{{n_{12} }} + \frac{1}{{n_{21} }} + \frac{1}{{n_{22} }}. $$]

 (11.14)




The log odds ratio
 of the fictitious data of Table 11.3 is 0.81 (see Example 11.2). Using Eq. 11.14 the estimated variance is:[image: $$ {\text{V}}{\hat{\text{a}}}{\text{r}}(0.81) = \frac{1}{90} + \frac{1}{10} + \frac{1}{240} + \frac{1}{60} = 0.1319. $$]





Therefore, the 95% confidence interval
 is from [image: $$ 0.81 - 1.96\sqrt {0.1319} = 0.10 $$] to [image: $$ 0.81 + 1.96\sqrt {0.1319} = 1.52 $$]. This confidence interval
 does not contain 0, which implies that the null hypothesis that the log odds ratio
 is 0 is rejected at the 5% significance level.

Standard computer packages can be used to compute most of the coefficients of Table 11.2. An exception is Zegers and ten Berge’s coefficient of identity, but it is easily computed using Eq. 11.10. Coefficients kappa, weighted kappa, and their confidence intervals
 can also be computed with the program AGREE, which is distributed by SciencePlus (http://​www.​scienceplus.​nl).
11.6 Recommendations
The number of coefficients to assess the relation between two variables is rather large, and researchers have to choose a coefficient that fits their research question. This choice is facilitated by distinguishing different types of bivariate relations and different types of variables. Pragmatic distinctions of three types of relations (i.e., (1) symmetrical, (2) equality, and (3) asymmetrical relations), and five types of variables (i.e., (1) dichotomous, (2) nominal-categorical, (3) ordinal-categorical, (4) ranked, and (5) continuous variables) are made. Researchers are recommended to base their choice of a coefficient on these or similar distinctions.
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Abstract
Null hypothesis testing applies to confirmatory research
, where substantive hypotheses are tested. The preferred approach is to construct a confidence interval (CI)
 because a CI
 simultaneously assesses the precision of a parameter estimate and tests a null hypothesis on the parameter. Two- and one-sided CIs
 and two- and one-tailed tests are considered. The CI
 approach is demonstrated for conventional tests of the null hypothesis of equal means of paired (Student’s t test) and independent (Student’s t and Welch tests) variables. Bootstrap methods make weaker assumptions than the conventional tests. The bootstrap t method for the means of paired and independent variables and the modified percentile bootstrap method for the product moment correlation are described. Null hypothesis testing is often incorrectly understood and applied. Several methods to correct these flaws are discussed. First, the overlap of the CIs of two means does not imply that the difference of the two means is not significant. Second, a two-step procedure, where the choice of a test is based on results of tests of the assumptions of the test, inflates the Type I error. Third, standardized effect sizes can be computed in different ways, which hampers the comparability of effect sizes in meta-analysis. Fourth, an observed power analysis
, where the effect size
 is estimated from sample data, cannot explain nonsignificant results. Fifth, testing multiple null hypotheses increases the probability of rejecting at least one true null hypothesis, which is prevented by applying multiple null hypothesis testing methods (e.g., Hochberg’s method
). Sixth, data exploration may yield interesting substantive hypotheses, but these have to be confirmed with new data of a cross-validation or replication study
. Seventh, adding participants to the sample till the null hypothesis is rejected inflates the Type I error, which is prevented by using sequential testing methods (e.g., the group sequential testing procedure
). Finally, if researchers do not want to reject a null hypothesis, they have to apply equivalence testing
.
Keywords
Bootstrap methodsConditional null hypothesis testingConfidence intervalsCross-validation designEquivalence testingGroup sequential testing methodHochberg’s multiple null hypotheses testing methodOverlapping confidence intervalsPower analysisReplication designStandardized effect sizeStudent’s t-testWelch test
Classical null hypothesis testing is probably the most applied method of behavioral research. However, it is beset with conceptual and practical problems (see, among others, Nickerson, 2000). This chapter does not enter into the different philosophical views that exist on null hypothesis testing. Instead, it focuses on the classical methods and the avoidance of common pitfalls. For an introduction to the Bayesian approach the reader is referred to, among others, Lee and Wagenmakers (2013).
A distinction is made between confirmatory and exploratory research
. 
            Confirmatory research
            
           prespecifies one or more substantive hypotheses that are tested using empirical data, whereas 
            exploratory research
            
           derives one or more hypotheses from the data. Frequently, studies are partly confirmatory and partly exploratory: some hypotheses are prespecified and other hypotheses are derived from the data.
De Groot (1956/2014) was probably the first or one of the first psychologists who argued that null hypothesis testing applies to confirmatory research
. If null hypothesis testing is applied in exploratory research
, rejection of a null hypothesis does not give conclusive evidence on a substantive hypothesis. A hypothesis that is derived from data has to be tested again using other data.
Today, de Groot’s maxim is as relevant as it was in the fifties, and is supported by many behavioral scientists (see, for example, Wagenmakers, Wetzels, Borsboom, van der Maas, and Kievit 2012). It is reiterated here: Null hypothesis testing applies to confirmatory research
, where hypotheses are prespecified and null hypotheses are tested using empirical data. If hypotheses are derived from data and null hypotheses are tested using these data, the null hypotheses have to be tested again using other data. Moreover, authors have to report which of their hypotheses were prespecified and which ones were derived from the data.
Wilkinson and Task Force on Statistical Inference (1999) recommended to use confidence intervals
 instead of classical null hypothesis tests. This recommendation was adopted by the American Psychological Association in its publication manual (APA, 2010, p. 34). Nevertheless, classical null hypothesis testing dominates in the behavioral sciences. A confidence interval is more informative than a null hypothesis test because it includes the null hypothesis test, and what’s more, it yields information on the precision of the parameter estimate. Therefore, this chapter focuses on the confidence interval
 approach to null hypothesis testing.
12.1 The Confidence Interval Approach to Null Hypothesis Testing

A variable
 has a distribution in a population, and, generally, it can be characterized by a limited number of 
              parameters
              
            . These parameters
 are unknown, but can be estimated by sample 
              statistics
              
            . For example, if intelligence test scores are normally distributed in a population of students, this distribution is characterized by its mean and variance, which are the parameters
 of the normal distribution. These parameters
 are usually unknown, and have to be estimated from a sample. A sample of students is randomly selected from the population, and the intelligence test is administered to the participants of the sample. The sample mean and variance of the intelligence test scores are the statistics
 that estimate the population parameters
 (i.e., the population mean and variance, respectively).
A 
              confidence interval (CI
              
            ) assesses the precision of a parameter estimate (e.g., the population mean). A CI
 is characterized by its 
              confidence coefficient
              
             1 − α, and the CI is called a 100(1 − α)% CI. For example, if α = 0.05, the confidence coefficient
 is 1 − 0.05 = 0.95, and the CI is a 100(1 − 0.05)% = 95% CI
.
The interpretation of the CI is complicated. Hoekstra, Morey, Rouder, and Wagenmakers (2014) found that the CI is often misinterpreted by psychology students and researchers. Within classical statistics
 a parameter has a fixed value, whereas the CI
 varies from sample to sample. For example, the population mean of intelligence test scores is a fixed value, but its CI varies across samples. Therefore, the classical interpretation of a 100(1−α)% CI is: If repeatedly samples of size n are randomly selected from a large population, and in each of these samples the 100(1−α)% (e.g., 95%) CI of a population parameter (e.g., the mean) is computed, in the long run 100(1−α)% (e.g., 95%) of these CIs will include the population parameter (e.g., mean). A CI
 indicates the precision of a parameter estimate: For example, a smaller 95% CI
 of a mean indicates that the sample estimate of the population mean is more precise than a larger 95% CI.
A CI indicates the precision of a parameter estimate, but it can also be used to test a null hypothesis on a parameter. A distinction is made between a two-sided
 and a one-sided CI
. A two-sided CI
 is an interval that is bounded by two end points (i.e., a lower and an upper end point), whereas a one-sided CI
 has only one endpoint (i.e., either a lower end point or an upper end point). A lower end-point CI
 is a one-sided CI
 that stretches to plus infinity from a lower end point
, and an upper end-point CI
 is a one-sided CI
 that stretches to minus infinity from an upper end point (Cumming, 2012, Chap. 4). Figure 12.1a shows a two-sided CI
, Fig. 12.1b a lower end-point CI
, and Fig. 12.1c an upper end-point CI
. A two-tailed test
 is done by a two-sided CI
, and one-tailed tests by one-sided CIs
. This section discusses the CI
 approach to two- and one-tailed tests of null hypotheses on the difference between means. For convenience, the significance level is set at 5%, but the tests are easily adapted to other significance levels (e.g., 1 or 10%).[image: ../images/459008_1_En_12_Chapter/459008_1_En_12_Fig1_HTML.png]
Fig. 12.195% CIs for testing the null hypothesis μD = 0 against a μD ≠ 0, b μD > 0, and c μD < 0



12.1.1 Classical Confidence Intervals of the Difference of the Means of Paired Scores
This section discusses the CI
 approach to testing null hypotheses on the difference of the means of paired dependent variable (DV)
 scores. An example of paired DV
 scores is a sample of students who respond to a math test at pretest
 and posttest, and another example is a married couple where both husband and wife respond to an attitude questionnaire.
A sample of n pairs is selected from a population. The DV
 scores of the two members of the ith pair are denoted by X1i and X2i. For example, X1i and X2i are the pretest
 and posttest scores, respectively, of the ith student, or X1i and X2i are husband and wife’s scores of the ith couple. The difference score of the ith pair is[image: $$ D_{i} = X_{2i} {-}X_{1i} . $$]

 (12.1)




For example, the fourth (i = 4) student of a sample has correctly answered 10 items of a math test at pretest
 (X14 = 10) and 18 items at posttest (X24 = 18). His (her) difference score is:[image: $$ D_{4} = 18{-}10 = 8. $$]





The population means are denoted by μ1 and μ2 (lower case Greek letter mu), respectively, and the population mean of the difference score by μD. The population mean of the difference score is equal to the difference of the two population means:[image: $$ \upmu_{D} =\upmu_{2} -\upmu_{1} . $$]

 (12.2)




A substantive hypothesis on the two means is formulated. This substantive hypothesis may be very specific, for example, the posttest mean score is 2 points larger than the pretest
 mean score (i.e., μ2 − μ1 = 2). However, most substantive hypotheses of behavioral research are not so specific. It is rather common that the substantive hypothesis states that the pretest
 and posttest means differ without specifying the direction of the difference (i.e., μ1 ≠ μ2). The substantive hypothesis may indicate the direction of the difference, the posttest mean is larger than the pretest
 mean (i.e., μ2 > μ1), or the posttest mean is smaller than the pretest
 mean (i.e., μ2 < μ1). In each of these three cases the null hypothesis is that the pretest
 and posttest means are equal (μ1 = μ2). It follows from Eq. 12.2 that this null hypothesis is identical to the null hypothesis that the difference of the two means is equal to zero:[image: $$ {\text{H}}_{0:} \,\upmu_{D} = 0. $$]

 (12.3)




A two-sided CI
 and a two-tailed test
 are applied if the substantive hypothesis is nondirectional (i.e., μD ≠ 0), and a one-sided CI
 and a one-tailed test
 are applied if the substantive hypothesis is directional (i.e., μD > 0 or μD < 0). Note that only one variable (i.e., D) has to be considered because the two dependent variable (DV)
 scores (X1 and X2) are combined into one difference score (D).
Conventionally, null hypothesis Eq. 12.3 is tested by Student’s t test. The testing procedure differs between two-tailed and one-tailed tests. The discussion starts with two-sided CIs
 and two-tailed tests, and continues with one-sided CIs
 and one-tailed tests.
It is assumed that the difference score D is normally distributed in the population with mean μD and variance [image: $$ \sigma_{D}^{2} $$]. Under this assumption, the statistic[image: $$ T_{D} = \frac{{\bar{D} -\upmu_{D} }}{{S_{D} \sqrt {\tfrac{1}{n}} }}, $$]

 (12.4)


where [image: $$ \bar{D} $$] and SD are the sample mean and standard deviation of the difference score, has Student’s t distribution with n − 1 degrees of freedom. Equation 12.4 and Student’s t distribution are used to construct a two-sided 95% CI
 of μD. The 0.025 quantile of Student’s t distribution with n − 1 degrees of freedom is denoted by tL and the 0.975 quantile by tU. It follows from Student’s t distribution that the probability that T is between tL and tU (i.e., tL < T < tU) is 0.95. Substituting the second term of Eq. 12.4 for TD yields:[image: $$ t_{L} &lt; \frac{{\bar{D} -\upmu_{D} }}{{S_{D} \sqrt {\tfrac{1}{n}} }} &lt; t_{U} . $$]





Multiplying by [image: $$ S_{D} \sqrt {\tfrac{1}{n}} $$] yields:
[image: $$ t_{L} \times S_{D} \times \sqrt {\tfrac{1}{n}} &lt; \bar{D} -\upmu_{D} &lt; t_{U} \times S_{D} \times \sqrt {\tfrac{1}{n}} $$], and subtracting [image: $$ \bar{D} $$] yields:[image: $$ - \bar{D} + t_{L} \times S_{D} \times \sqrt {\tfrac{1}{n}} &lt; -\upmu_{D} &lt; - \bar{D} + t_{U} \times S_{D} \times \sqrt {\tfrac{1}{n}} . $$]





Multiplying by—yields the two-sided 95% CI
 of μD:[image: $$ \bar{D} - t_{L} \times S_{D} \times \sqrt {\tfrac{1}{n}} &gt;\upmu_{D} &gt; \bar{D} - t_{U} \times S_{D} \times \sqrt {\tfrac{1}{n}} , $$]



or,[image: $$ \bar{D} - t_{U} \times S_{D} \times \sqrt {\tfrac{1}{n}} &lt;\upmu_{D} &lt; \bar{D} - t_{L} \times S_{D} \times \sqrt {\tfrac{1}{n}} . $$]

 (12.5)




Note that the upper 0.975 quantile of Student’s t distribution with n − 1 degrees of freedom (tU) is at the lower end point of the 95% CI
 and the lower 0.025 quantile (tL) at the upper end point of the 95% CI
. The null hypothesis Eq. 12.3 is rejected at the 5% significance level if zero is outside the 95% CI
, and is not rejected if zero is within this CI
.

A one-sided CI
 and a one-tailed test
 are applied if researchers specify the direction of a substantive hypothesis. For example, researchers expect that the posttest mean is larger than the pretest
 mean (i.e., μD > 0). TD of Eq. 12.4 has Student’s t distribution with n − 1 degrees of freedom. The 0.95 quantile of this distribution is indicated by [image: $$ t_{U}^{*} $$], where the asterisk indicates that the 0.95 quantile [image: $$ \left( {t_{U}^{*} } \right) $$] differs from the 0.975 quantile [image: $$ \left( {t_{U} } \right) $$]. It follows from Student’s t distribution that the probability that T is smaller than [image: $$ t_{U}^{*} $$] (i.e., [image: $$ T &lt; t_{U}^{*} $$]) is 0.95. Substituting the second term of Eq. 12.4 for TD yields:[image: $$ \frac{{\bar{D} -\upmu_{D} }}{{S_{D} \sqrt {\tfrac{1}{n}} }} &lt; t_{U}^{*} . $$]





The lower end-point 95% CI
 of μD is constructed by applying the same operations as were used to derive Eq. 12.5:[image: $$ \upmu_{D} &gt; \bar{D} - t_{U}^{*} \times S_{D} \times \sqrt {\tfrac{1}{n}} $$]

 (12.6)




(see Fig. 12.1b). The null hypothesis Eq. 12.3 is rejected at the one-tailed 5% significance level against the alternative that μD is larger than zero if zero is outside this interval, and it is not rejected if zero is within this interval.

The one-sided CI
 of Eq. 12.6 applies when researchers expect that the posttest mean is larger than the pretest
 mean. A different situation is that researchers expect that the posttest mean is smaller than the pretest
 mean (i.e., μD < 0). Analogously to the derivation of Eq. 12.6, the upper end point CI
 of μD is constructed:[image: $$ \upmu_{D} &lt; \bar{D} - t_{L}^{*} \times S_{D} \times \sqrt {\tfrac{1}{n}} $$]

 (12.7)


where [image: $$ t_{L}^{*} $$] is the 0.05 quantile of Student’s t distribution with n − 1 degrees of freedom. The null hypothesis Eq. 12.3 is rejected at the one-tailed 5% level against the alternative that μD is smaller than zero if zero is outside this interval, and is not rejected if zero is within this CI
.
Figure 12.1 graphically displays the two-sided (Eq. 12.5) and the two one-sided CIs
 (Eqs. 12.6 and 12.7).
Example 12.1 demonstrates the two-tailed testing of null hypothesis Eq. 12.3 using a CI
.
Example 12.1 Testing null hypothesis Equation 12.3 [image: $$ {\boldsymbol(\upmu_{D} = 0)} $$]
A 30-item
 arithmetic test is administered to a sample of n = 10 students at pretest
 and posttest. Table 12.1 reports their fictitious pretest
, posttest, and difference scores.Table 12.1(Fictitious) pretest
, posttest, and difference scores of a sample of 10 students


	Student no.
	Score

	Posttest (X2)
	
Pretest
 (X1)
	Difference (D)

	1
	17
	15
	2

	2
	18
	14
	4

	3
	20
	12
	8

	4
	14
	9
	5

	5
	25
	20
	5

	6
	21
	18
	3

	7
	24
	17
	7

	8
	21
	21
	0

	9
	24
	23
	1

	10
	26
	20
	6

	Sum:
	210
	169
	41

	Mean:
	21.0
	16.9
	4.1

	Standard deviation D:
	2.6





The 0.025 quantile of Student’s t distribution with n − 1 = 10 − 1 = 9 degrees of freedom is tL =  −2.26 and the 0.975 quantile is tU = 2.26. Using Eq. 12.5, the two-sided 95% CI
 of μD is from 4.1 − 2.26 × 2.6 × [image: $$ \sqrt {\tfrac{1}{10}} = 2.24 $$] to 4.1 − (−2.26) × 2.6 × [image: $$ \sqrt {\tfrac{1}{10}} = 5.96 $$], that is,[image: $$ 2.24 &lt;\upmu_{D} &lt; 5.96. $$]





This 95% CI
 does not include zero. Therefore, the null hypothesis of equal pretest
 and posttest means (Eq. 12.3) is rejected at the two-tailed 5% significance level.
A one-tailed test
 is more powerful than a two-tailed test
 at the same significance level if the data point into the same direction as was expected by the researchers. This phenomenon is illustrated by Fig. 12.1. The two-tailed test
 at the 5% significance level does not reject the null hypothesis of equal posttest and pretest
 means (i.e., μD = 0) because zero is within the two-sided 95% CI
 (see Fig. 12.1a). However, the one-tailed test
 rejects this null hypothesis if the researchers expect that the posttest mean is larger than the pretest
 mean (i.e., μD > 0) because zero is outside the lower end point 95% CI
 (see Fig. 12.1b). A one-tailed test
 is only more powerful than a two-tailed test
 if the data point into the same direction as expected by the researchers. If the data point into the other direction, the one-tailed test
 does not reject the null hypothesis: Fig. 12.1c shows that the one-tailed test
 of equal posttest and pretest
 means is not rejected if the researchers expect that the posttest mean is smaller than the pretest
 mean (i.e., μD < 0) because zero is within the upper end point 95% CI
.

A one-tailed test
 is more powerful than a two-tailed test
 at the same significance level if the data point into the same direction as researchers’ expectation. An inadmissible strategy is to inspect the data, and to choose a one-tailed test
 in the same direction as the data. Another example of an inadmissible strategy is to switch from a one-tailed test
 to a two-tailed test
 to obtain a significant result. The researcher has specified a one-tailed test
 in one direction, but the data point into the other direction. The researcher switches from the prespecified one-tailed test
 to a two-tailed test
 when that test yields a significant result in the not-specified direction. Researchers must specify whether they will apply a two-tailed or one-tailed test
 before they have seen their data. Moreover, they must specify the significance level of the test before they have seen the data.
12.1.2 Classical Confidence Intervals of Independent DV Score Means
This section
 discusses the CI
 approach to testing null hypotheses of independent DV
 score means. An example of independent scores are the scores of distinct experimental (E-
) and control (C-) condition
 participants.
It is assumed that the DV
 score is normally distributed in the population with mean μ and variance σ2. The substantive hypothesis is usually that the E-
 and C-condition differentially influence the E-
 and C-group means. A sample of n participants is randomly selected from the population, nE of them are randomly assigned to the E-condition, and the remaining nC to the C-condition (nE + nC = n). At the end of the study, a DV
 is administered to each of the n participants. The population means of the E-
 and C-groups are μE and μC, respectively. It is assumed that the population variance is not affected by the E-
 and C-conditions. Therefore, it is assumed that the E-
 and C-group variances are homogeneous (i.e., [image: $$ \upsigma_{E}^{2} =\upsigma_{C}^{2} =\upsigma^{2} $$]).
Under the assumption of 
                homogeneous variance
                
              , the population variance σ2 is estimated by the pooled sample variance
:[image: $$ S^{2} = \frac{{(n_{E} - 1)S_{E}^{2} + (n_{C} - 1)S_{C}^{2} }}{{n_{E} + n_{C} - 2}} $$]

 (12.8)


where [image: $$ S_{E}^{2} $$] and [image: $$ S_{C}^{2} $$] are the sample DV
 score variances of the E-
 and C-group, respectively.
Under the assumptions of a normally distributed DV
 and homogeneous variance
, the statistic[image: $$ T^{{\prime }} = \frac{{\bar{X}_{E} - \bar{X}_{C} - (\upmu_{E} -\upmu_{C} )}}{{\sqrt {\tfrac{{S^{2} }}{{n_{E} }} + \tfrac{{S^{2} }}{{n_{C} }}} }} $$]

 (12.9)


has Student’s t distribution with nE + nC − 2 = n − 2 degrees of freedom. The prime is used to distinguish Student’s t distribution with n − 2 degrees of freedom from Student’s t distribution of Eq. 12.4, which has n − 1 degrees of freedom; [image: $$ t_{L}^{{\prime }} $$] and [image: $$ t_{U}^{'} $$] denote the 0.025 and 0.975 quantiles
, respectively, of Student’s t distribution with n − 2 degrees of freedom. Equation 12.9 and Student’s t distribution are used to construct CIs of μE − μC. It follows from Student’s t distribution that the probability that T’ is between [image: $$ t_{L}^{{\prime }} $$] and [image: $$ t_{U}^{'} $$] (i.e., [image: $$ t_{L}^{'} &lt; T' &lt; t_{U}^{'} $$]) is 0.95. Using the same method as for the difference score (see the previous section) yields the two-sided 95% CI
 of μE − μC:[image: $$ \bar{X}_{E} - \bar{X}_{C} - t_{U}^{{\prime }} x\sqrt {\tfrac{{S^{2} }}{{n_{E} }} + \tfrac{{S^{2} }}{{n_{C} }}} &lt;\upmu_{E} -\upmu_{C} &lt; \bar{X}_{E} - \bar{X}_{C} - t_{L}^{{\prime }} x\sqrt {\tfrac{{S^{2} }}{{n_{E} }} + \tfrac{{S^{2} }}{{n_{C} }}} . $$]

 (12.10)




The null hypothesis is that the two condition means are equal (i.e., μE = μC), which implies the null hypothesis that their difference is zero:[image: $$ H_{0:} \,\upmu_{E} -\upmu_{C} = 0. $$]

 (12.11)




The null hypothesis Eq. 12.11 is rejected at the two-tailed 5% significance level if zero is outside the 95% CI
 and it is not rejected if zero is within this CI
.
Equation 12.10 is derived under the assumptions that (1) the DV
 scores are randomly selected from a normal distribution, and (2) the variances of the E-
 and C-group DV
 scores are homogeneous (i.e., [image: $$ \upsigma_{E}^{2} =\upsigma_{C}^{2} =\upsigma^{2} $$]). These assumptions can be relaxed by omitting the homogeneous variance
 assumption. The E-
 and C-condition variances may be different (i.e., [image: $$ \upsigma_{E}^{2} \ne\upsigma_{C}^{2} $$]), and they are estimated by the sample variances [image: $$ S_{E}^{2} $$] and [image: $$ S_{C}^{2} $$]. If de DV
 score is normally distributed in the population, the 
                Welch statistic
                
              
[image: $$ W = \frac{{\bar{X}_{E} - \bar{X}_{C} - (\upmu_{E} -\upmu_{C} )}}{{\sqrt {\tfrac{{S_{E}^{2} }}{{n_{E} }} + \tfrac{{S_{C}^{2} }}{{n_{C} }}} }} $$]

 (12.12a)


is approximately Student t distributed with estimated degrees of freedom:[image: $$ d\hat{f} = \frac{{\left( {\tfrac{{S_{E}^{2} }}{{n_{E} }} + \tfrac{{S_{C}^{2} }}{{n_{C} }}} \right)^{2} }}{{\frac{{\left( {\tfrac{{S_{E}^{2} }}{{n_{E} }}} \right)^{2} }}{{n_{E} - 1}} + \frac{{\left( {\tfrac{{S_{C}^{2} }}{{n_{C} }}} \right)^{2} }}{{n_{C} - 1}}}} $$]

 (12.12b)


rounded to the nearest integer (Keppel & Wickens, 2004, Sect. 7.5).
Comparing Eqs. 12.12a and 12.9 shows that they have the same nominator, but differ in their denominators. The denominator of Eq. 12.9 has one estimator (S2) of the homogeneous population variance, whereas Eq. 12.12a has separate estimators (i.e., [image: $$ S_{E}^{2} $$] and [image: $$ S_{C}^{2} $$]) of the two population variances. Moreover, T’ and W differ in their degrees of freedom.
Similarly to T’, the W statistic and Student’s t distribution with degrees of freedom Eq. 12.12b can be used to construct two-sided CIs
 of μE − μC and to test null hypothesis Eq. 12.11. Analogously to the test of the difference between means of paired scores (see the previous section), the T′ and Welch statistics
 can be used to construct CIs of μE − μC. If researchers have prespecified the direction of the difference (i.e., μE > μC or μE < μC), one-sided CIs
 and one-tailed tests of the null hypothesis Eq. 12.11 can be applied.
Both Student’s t test and the Welch test assume that the DV
 scores are normally distributed in the population. In contrast to Student’s t test, the Welch test does not assume that the variances of the E-
 and C-condition scores are homogeneous. Therefore, the Welch test is usually more appropriate for behavioral science data than Student’s t test.
12.2 Overlapping CIs
The previous section discussed the classical CI
 of the difference μE − μC to test the null hypothesis μE = μC. However, separate CIs of μE and μC can also be computed. A common belief in the behavioral sciences is that overlap of the separate CIs of μE and μC implies that the null hypothesis μE = μC is not rejected. This belief only holds for very special cases. For example, Goldstein and Healy (1995) discussed the situation of the estimates of two means that are normally distributed with equal and known standard errors. The null hypothesis that the two means are equal is not rejected at the 5% significance level if the 83% CIs of the two means overlap, and is rejected at the 5% level if these two CIs do not overlap. In general, however, this belief is false (see, for example, Belia, Fidler, Williams and Cumming (2005), and van Belle (2002, Sect. 2.5)). This section demonstrates that the belief is generally not true.
A sample of nE participants is randomly selected from a population, and a DV
 is administered to them. It is assumed that the DV
 scores are normally distributed in the population with mean μE and variance [image: $$ \upsigma_{E}^{2} $$]. Under this assumption, the statistic[image: $$ T_{E} = \frac{{\bar{X}_{E} -\upmu_{E} }}{{S_{E} \sqrt {\tfrac{1}{{n_{E} }}} }} $$]

 (12.13)


is Student t distributed with nE − 1 degrees of freedom.
Equation 12.13 is of the same structure as Eq. 12.4 (replacing [image: $$ \bar{D} $$] of Eq. 12.4 by [image: $$ \bar{X}_{E} $$], μD by μE, SD by SE, and n by nE yields Eq. 12.13). Therefore, the method of Sect. 12.1.1 can be applied to construct CIs of μE. The two-sided 95% CI
 of μE is:[image: $$ \bar{X}_{E} - t_{U} \times S_{E} \times \sqrt {\frac{1}{{n_{E} }}} &lt;\upmu_{E} &lt; \bar{X}_{E} - t_{L} \times S_{E} \times \sqrt {\frac{1}{{n_{E} }}} , $$]

 (12.14)


where tL is the 0.025 quantile of Student’s t distribution with nE − 1 degrees of freedom, and tU is the 0.975 quantile of this distribution.
Analogously, the two-sided 95% CI
 of μC is derived:[image: $$ \bar{X}_{C} - t_{U} \times S_{C} \times \sqrt {\frac{1}{{n_{C} }}} &lt;\upmu_{C} &lt; \bar{X}_{C} - t_{L} \times S_{C} \times \sqrt {\frac{1}{{n_{C} }}} . $$]

 (12.15)




Example 12.2 demonstrates that it is possible that the separate CIs of μE and μC overlap, but the null hypothesis μE = μC is rejected.
Example 12.2 Overlapping CIs of μE and μC and rejecting the null hypothesis μE = μC
The fictitious sample data are:[image: $$ n_{E} = n_{C} = 26,S_{E}^{2} = S_{C}^{2} = 9,\bar{X}_{E} = 6,\,{\text{and}}\,\bar{X}_{C} = 4. $$]





The 0.025 and 0.975 quantiles
 of Student’s t distribution with nE − 1 = nC − 1 = 26 − 1 = 25 degrees of freedom are tL = −2.06 and tU = +2.06, respectively. Using Eq. 12.14, the two-sided 95% CI
 of μE is:[image: $$ 6 \, - 2.06 \times 3 \times \sqrt {\tfrac{1}{26}} = 4.78 &lt;\upmu_{E} &lt; 6 - \left( { - 2.06} \right) \times 3 \times \sqrt {\tfrac{1}{26}} = 7.22. $$]





Using Eq. 12.15, the two-sided 95% CI
 of μC is:[image: $$ 4 - 2.06 \times 3 \times \sqrt {\tfrac{1}{26}} = 2.78 &lt;\upmu_{C} &lt; 4 - \left( { - 2.06} \right) \times 3 \times \sqrt {\tfrac{1}{26}} = 5.22. $$]





The two-sided 95% CI
 of μE − μC is computed using Eq. 12.10. The 0.025 and 0.975 quantiles
 of Student’s t distribution with nE + nC − 2 = 26 + 26 − 2 = 50 degrees of freedom are tL =  −2.01 and tU = +2.01, respectively. The pooled estimate of the population variance (Eq. 12.8) is:[image: $$ S^{2} = \frac{(26 - 1) \times 9 + (26 - 1) \times 9}{26 + 26 - 2} = 9. $$]





Applying Eq. 12.10 yields the two-sided 95% CI
 of μE − μC:[image: $$ 6 - 4 - 2.01 \times \sqrt {\tfrac{9}{26} + \tfrac{9}{26}} = 0.33 &lt;\upmu_{E} -\upmu_{C} &lt; 6 - 4 - \left( { - 2.01} \right) \times \sqrt {\tfrac{9}{26} + \tfrac{9}{26}} = 3.67. $$]





Figure 12.2 shows the two-sided 95% CIs
 of μE, μC, and μE − μC.[image: ../images/459008_1_En_12_Chapter/459008_1_En_12_Fig2_HTML.png]
Fig. 12.2
Two-sided 95% CIs
 of μE, μC, and μE − μC



The figure shows that the CIs of μE and μC overlap. However, the CI
 of μE − μC does not contain zero, which implies that the null hypothesis of equal E-
 and C-condition means (i.e., μE = μC) is rejected at the two-tailed 5% significance level.
This example demonstrates that the null hypothesis Eq. 12.11 (i.e., μE = μC) can be rejected, although the CIs of μE and μC overlap.

12.3 Conditional Null Hypothesis Testing
In general, statistical methods make assumptions. Classical methods, such as Student’s t test and the F test of Analysis of Variance (ANOVA) and Analysis of Covariance (ANCOVA) assume (1) independence of participants’ DV
 scores, (2) random sampling from a normal distribution, and (3) equality of the E-
 and C-group DV
 score variances (van Belle, 2002, Sect. 1.4). The data of the behavioral sciences frequently violate these assumptions.
The independence assumption does not hold when clusters (e.g., families, school classes) are selected from a population instead of individuals (see Sect. 4.​6 of this book). Nowadays, researchers usually know that clusters yield dependent data, and apply multilevel methods. However, other violations of the independence assumption may go unnoticed. For example, when participants are individually assigned to different treatments, but the treatments are applied to groups of participants or the participants of different treatments communicate with each other.
The assumptions of a normal distribution and homogeneous variances are unrealistic. For example, Micceri (1989) studied 440 sample distributions of psychological and educational test scores and other measurements (e.g., difference scores). He found that only 19 (4.3%) of these distributions were approximately normal, whereas the other 421 distributions differed from normality. Ruscio and Roche (2012) studied variance homogeneity. They examined 455 studies that were published in seven journals of different subfields of psychology in the period 2002–2007. They found that the sample variances within studies often differed substantially, which means that the variance homogeneity assumption frequently was violated.
Glass, Peckham, and Sanders (1972) studied the effects of assumption violations on the properties of the F test. They found, among other things, that assumption violations substantially affect the probability of a Type I error. Later studies confirmed their results. For example, van Belle (2002, Sect. 1.2) showed that violation of the independence assumption substantially raised the probability of a Type I error of Students’ t test above the fixed (nominal) 5% significance level. Wilcox (1998) showed that slight violation of the normality assumption can raise the probability of a Type I error of Students’ t test above the nominal 5% level. The violation of the homogeneity of variance assumption raises the probability of a Type I error of Students’ t test above the nominal 5% level when the sample sizes of the two groups are unequal and the smaller of the two groups has the larger variance (i.e., if nE < nC and [image: $$ \upsigma_{E}^{2} &gt;\upsigma_{C}^{2} $$] or nE > nC and [image: $$ \upsigma_{E}^{2} &lt;\upsigma_{C}^{2} $$]) (Hayes & Cai, 2007).
A strategy that seems plausible is a two-step testing procedure. In the first step, a null hypothesis on an assumption is tested, and in the second step a null hypothesis on the substantive hypothesis is tested conditionally on the results of the first step. The test that is applied in the second step depends on the results of the test in the first step. If in the first step, the null hypothesis on the assumption is not rejected, the second step applies a test that makes the assumption. However, if in the first step the null hypothesis on the assumption is rejected, the second step applies a test that does not make the assumption. This 
              conditional null hypothesis procedure
              
             seems plausible, but may fail in practice.
The conditional procedure was studied for the test of the equality of two independent means and the homogeneity of variance assumption. In the first step, the null hypothesis of the homogeneity of the variances (i.e., [image: $$ H_{0} :\upsigma_{E}^{2} =\upsigma_{C}^{2} $$]) is tested. If this null hypothesis is not rejected, Student’s t test is applied to test the null hypothesis of equal means (i.e., [image: $$ H_{0:} \,\upmu_{E} =\upmu_{C} $$]). However, if in the first step the null hypothesis of equal variances is rejected, the second step applies a test for the null hypothesis of equal means that does not make the homogeneity of variance assumption (e.g., the Welch test). Zimmerman (1996, 2004) compared one- and two-step methods for testing the equality of two means using simulated data. He found that the two-step procedure often yields a probability of a Type I error that deviates from the nominal (e.g., 5%) significance level. He concluded that the one-step Welch test, that is, the Welch test without testing the homogeneity of variance assumption, is the best choice. Hayes and Cai (2007) did an extensive simulation study to compare one- and two-step procedures of testing the equality of two means. They also found that the one-step Welch test has to be preferred. Moreover, they found good results for the bootstrap version of the one-step Welch test, which will be discussed in Sect. 12.4.2.
12.4 Bootstrap Methods
As remarked in the previous section, classical statistical methods (e.g., the t and F tests) make strong assumptions that are easily violated in practice. Bootstrap methods are computer-intensive methods for statistical inference that make less stringent assumptions (Efron & Tibshirani, 1993). These methods are viable alternatives for computing CIs and testing null hypotheses.
Bootstrap methods start from a random sample of n participants from a population. As usual, this original sample is randomly selected without replacement, which means that a selected participant cannot be selected again (see Sect. 2.​4 of this book). A bootstrap sample is a sample of n participants who are randomly selected from the original sample with replacement
, which means that each participant of the original sample can be selected once, more than once, or not selected at all. The original and bootstrap samples are both random samples of size n, but they differ in two respects. First, the original sample is randomly selected from a population, whereas a bootstrap sample is randomly selected from the original sample. Second, the original sample is selected without replacement whereas a bootstrap sample is selected with replacement
.
A large number of bootstrap samples is randomly selected from the original sample. A statistic of interest is computed in each of these bootstrap samples. It has been proved that the bootstrap distribution of the statistic can be used to compute CIs and to test null hypotheses (Efron & Tibshirani, 1993).
Two main types of bootstrap methods are distinguished, that is, bootstrap t methods and the percentile bootstrap method (Wilcox, 2010, Chap. 6). Sections 12.4.1 and 12.4.2 describe bootstrap t methods for the tests of the difference of the means of paired and independent scores, respectively, which are the bootstrap alternatives of the classical methods that were described in Sect. 12.1 of this chapter. Section 12.4.3 describes a bootstrap percentile method for the product moment correlation (pmc).
12.4.1 The Bootstrap t Method for Paired DV Score Means
Section 12.1.1 discussed
 the classical test of the null hypothesis of equal means of paired DV
 scores. The difference score (D) is computed for each of the sample participants, and Student’s t distribution is used to construct a CI
 of the population mean of the difference score.
The t test of null hypothesis Eq. 12.3 assumes that D is normally distributed. In practice, this assumption is easily violated. For example, 49 of the 440 distributions that were studied by Micceri (1989) were difference scores. Only 3 (i.e., 6.1%) of these 49 distributions were approximately normal. Bootstrap methods do not make the normality assumption, and they can be applied to construct CIs and to test null hypothesis Eq. 12.3 (Wilcox, 2010, Sect. 6.1).
The bootstrap t method for paired scores has the following steps:

              	(1)A sample of n participants is randomly selected from a population, and the same DV
 is administered to them twice (e.g., at pretest
 and posttest), or a sample of n pairs (e.g., husbands and wives) is randomly selected from a population, and the same DV
 is administered to each member of each pair. Moreover, the difference score (D) is computed for each participant or each pair of participants. The sample mean and standard deviation of the difference scores are [image: $$ \bar{D} $$] and [image: $$ S_{D} $$], respectively. For example, the sample mean and standard deviation of the (fictitious) difference scores of n = 10 participants of Example 12.1 are [image: $$ \bar{D} = 4.1 $$] and [image: $$ S_{D} = 2.6 $$] (see Table 12.1).

 

	(2)A sample of n D scores is randomly selected with replacement
 from the original sample. The mean and standard deviation of this first bootstrap sample are computed, and are denoted by [image: $$ \bar{D}_{I}^{*} $$] and [image: $$ S_{DI}^{*} $$], respectively. Moreover,[image: $$ T_{I}^{*} = \frac{{\bar{D}_{I}^{*} - \bar{D}}}{{S_{DI}^{*} \sqrt {\tfrac{1}{n}} }} $$]

 (12.16)


is computed. The asterisk denotes that [image: $$ \bar{D}_{I}^{*} $$], [image: $$ S_{DI}^{*} $$], and [image: $$ T_{I}^{*} $$] are computed in a bootstrap sample. Note that [image: $$ \bar{D} $$] is the mean difference score of the original sample, and [image: $$ \bar{D}_{I}^{*} $$] and [image: $$ S_{DI}^{*} $$] are the mean and standard deviation, respectively, of the first bootstrap sample. Example 12.3 demonstrates these computations.

 




            
Example 12.3 Computations in the first bootstrap sample
The original sample is the sample of n = 10 participants of Example 12.1. The following bootstrap sample is randomly selected from the 10 D scores of Table 12.1:	Student no.
	
                            D
                          

	1
	2

	3
	8

	6
	3

	9
	1

	10
	6

	9
	1

	7
	7

	4
	5

	6
	3

	6
	3

	Sum:
	39

	Mean [image: $$ \left( {\bar{D}_{I}^{*} } \right) $$]:
	3.9

	Standard deviation [image: $$ \left( {S_{DI}^{*} } \right) $$]:
	2.47





Note that participant no. 6 is selected three times, no. 9 twice, nos 1, 3, 10, 7, and 4 once, and nos 2, 5, and 8 are not selected at all. Applying Eq. 12.16 yields:


              [image: $$ T_{I}^{*} = \frac{3.9 - 4.1}{{2.47\sqrt {\tfrac{1}{10}} }} = - 0.256. $$]




              	(3)Step 2 is repeated B times, which yields B T* values (i.e., [image: $$ T_{1}^{*} ,T_{2}^{*} , \ldots ,T_{B}^{*} $$]). Wilcox (2010, p. 94) recommends to set B = 999 based on results that were reported in the literature.

 

	(4)These T* values are set in ascending order. For B = 999 this order is:

[image: $$ T_{(1)}^{*} \le T_{(2)}^{*} \le \ldots \le T_{(24)}^{*} \le T_{(25)}^{*} \le \ldots \le T_{(974)}^{*} \le T_{(975)}^{*} \le \ldots \le T_{(999)}^{*} , $$]



where the subscript between parentheses denotes the rank number of the T* values: [image: $$ T_{(1)}^{*} $$] is the smallest value, [image: $$ T_{(2)}^{*} $$] the second smallest value, and so on. [image: $$ T_{(1)}^{*} ,T_{(2)}^{*} , \ldots ,T_{(25)}^{*} $$] are the 25 (2.5%) smallest values and [image: $$ T_{(975)}^{*} ,T_{(976)}^{*} , \ldots ,T_{(999)}^{*} $$] the 25 (2.5%) largest values of the bootstrap t distribution.

 

	(5)Compute the bootstrap t two-sided 95% CI
 of [image: $$ \upmu_{D} $$]:

                      [image: $$ \bar{D} - T_{(975)}^{*} \times S_{D} \times \sqrt {\tfrac{1}{n}} &lt;\upmu_{D} &lt; \bar{D} - T_{(25)}^{*} \times S_{D} \times \sqrt {\tfrac{1}{n}} . $$]

 (12.17)



                    
The null hypothesis of equal means (i.e., H0: [image: $$ \upmu_{D} = 0 $$]) is rejected at the two-tailed 5% significance level if zero is outside this bootstrap t CI
.

 




            
Comparing the bootstrap t CI
 of Eq. 12.17 with the classical CI
 of Eq. 12.5 shows that both CIs use the mean [image: $$ \left( {\bar{D}} \right) $$] and standard deviation (SD) of the original sample, but differ in their quantiles
. Equation 12.5 uses the upper and lower quantiles
 of Student’s t distribution with n − 1 degrees of freedom, whereas CI
 Eq. 12.17 uses the upper and lower quantiles
 of the bootstrap t distribution. The quantiles
 of Student’s t distribution are derived under the assumption that D is normally distributed in the population, whereas the bootstrap quantiles
 are derived without making the normality assumption.
12.4.2 The Bootstrap t Method for Independent DV Score Means

Student’s t test
 for the difference of two independent (E-
 and C-
) group means was discussed in Sect. 12.1.2 of this chapter. This test assumes that (1) the DV
 scores are randomly selected from a normal distribution, and (2) the variances of the DV
 scores are homogeneous (i.e., [image: $$ \upsigma_{E}^{2} =\upsigma_{C}^{2} $$]). The Welch test makes the normality assumption, but it does not make the homogeneity of variance assumption. This section describes a bootstrap t method that does neither make the normality assumption nor the homogeneity of variance assumption (Wilcox, 2010, Sect. 6.3).
The bootstrap t method for independent scores has the following steps:	(1)A sample of n participants is randomly selected from a population, nE of them are randomly assigned to the E-condition and the remaining nC to the C-condition. The DV
 is administered to each of the sample participants. The sample mean and standard deviation of the E-group are denoted [image: $$ \bar{X}_{E} $$] and SE, respectively, and the sample mean and standard deviation of the C-group by [image: $$ \bar{X}_{C} $$] and SC, respectively.

 

	(2)A sample of nE DV
 scores is randomly selected with replacement
 from the DV
 scores of the original E-group; the mean and standard deviation of this bootstrap sample are denoted by [image: $$ \bar{X}_{EI}^{*} $$] and [image: $$ S_{EI}^{*} $$], respectively. A sample of nC DV
 scores is randomly selected with replacement
 from the DV
 scores of the original C-group; the mean and standard deviation of this bootstrap sample are denoted by [image: $$ \bar{X}_{CI}^{*} $$] and [image: $$ S_{CI}^{*} $$], respectively. Moreover, the statistic

[image: $$ W_{I}^{*} = \frac{{(\bar{X}_{EI}^{*} - \bar{X}_{CI}^{*} ) - (\bar{X}_{E} - \bar{X}_{C} )}}{{\sqrt {\tfrac{{S_{EI}^{{*^{2} }} }}{{n_{E} }} + \tfrac{{S_{CI}^{{*^{2} }} }}{{n_{C} }}} }} $$]

 (12.18)


is computed. The asterisk indicates that the statistic is computed in a bootstrap sample. Note that [image: $$ \bar{X}_{E} $$] and [image: $$ \bar{X}_{C} $$] are the E-
 and C-group means of the original sample, whereas [image: $$ \bar{X}_{EI}^{*} $$] and [image: $$ \bar{X}_{CI}^{*} $$] are the means of the first bootstrap sample, and [image: $$ S_{EI}^{{*^{2} }} $$] and [image: $$ S_{CI}^{{*^{2} }} $$] are the variances of the first bootstrap sample. As the Welch statistic
 (Eq. 12.12a) [image: $$ W_{I}^{*} $$] has different estimates of the E-
 and C-group variances (i.e., [image: $$ S_{EI}^{{*^{2} }} $$] and [image: $$ S_{CI}^{{*^{2} }} $$]).

 

	(3)Step 2 is repeated B times, which yields B [image: $$ W^{ * } $$] values (i.e. [image: $$ W_{1}^{ * } ,W_{2}^{ * } , \ldots ,W_{B}^{ * } $$]). Wilcox (2010, p. 98) recommends to set B = 999.

 

	(4)These [image: $$ W^{ * } $$] values are put into ascending order. For B = 999 this order is:

                      [image: $$ W_{(1)}^{ * } \le W_{(2)}^{ * } \le \ldots \le W_{(24)}^{ * } \le W_{(25)}^{ * } \le \ldots \le W_{(974)}^{ * } \le W_{(975)}^{ * } \le \ldots \le W_{(999)}^{ * } . $$]




                    
The subscript between parentheses denotes the rank number of the [image: $$ W^{ * } $$] values: [image: $$ W_{(1)}^{ * } $$] is the smallest value, [image: $$ W_{(2)}^{ * } $$] the second smallest value, and so on. [image: $$ W_{(1)}^{ * } ,W_{(2)}^{ * } , \ldots ,W_{(25)}^{ * } $$] are the 25 (2.5%) smallest values, and [image: $$ W_{(975)}^{ * } ,W_{(976)}^{ * } , \ldots ,W_{(999)}^{ * } $$] the 25 (2.5%) largest values of the bootstrap distribution.

 

	(5)Compute the bootstrap t two-sided 95% CI
 of [image: $$ \upmu_{E} -\upmu_{C} $$]:

                      [image: $$ \bar{X}_{E} - \bar{X}_{C} - W_{(975)}^{ * } \times \sqrt {\frac{{S_{E}^{2} }}{{n_{E} }} + \frac{{S_{C}^{2} }}{{n_{C} }}} &lt;\upmu_{E} -\upmu_{C} &lt; \bar{X}_{E} - \bar{X}_{C} - W_{(25)}^{ * } \times \sqrt {\frac{{S_{E}^{2} }}{{n_{E} }} + \frac{{S_{C}^{2} }}{{n_{C} }}} . $$]

 (12.19)



                    

 





The null hypothesis of equal E-
 and C-group means (i.e., [image: $$ H_{0} :\upmu_{E} =\upmu_{C} $$]) is rejected at the two-tailed 5% significance level if zero is outside this bootstrap CI
.
This bootstrap version of the Welch test uses the means and standard deviations of the original E-
 and C-groups, but uses different quantiles
. The Welch test uses the quantiles
 of Student’s t distribution with degrees of freedom Eq. 12.12b, whereas the bootstrap version uses the upper and lower quantiles
 of the bootstrap distribution. The Welch test makes the normality assumption, but it does not make the homogeneity of variance assumption. The bootstrap version does not make the normality and homogeneity of variance assumptions.
12.4.3 The Modified Percentile Bootstrap Method for the Product Moment Correlation
The classical method to derive CIs of the product moment correlation (pmc) are described by, among others, Morrison (1990, Sect. 3.6). This method assumes that two variables are bivariate normally distributed with pmc ρ (lower case Greek letter rho) in a population. A sample of n participants is randomly selected from the population, the two variables are measured in the sample, and their sample pmc is computed. Under these assumptions, CIs of the population pmc are derived.
The assumption of a bivariate normal distribution is very strong, and is easily violated in practice. A bootstrap method is a viable alternative because it does not make the bivariate normality assumption. The previous two sections described bootstrap t methods for means that resemble the classical t (see Eq. 12.17) and Welch (see Eq. 12.19) tests. Wilcox (2010, Sect. 6.5.1) describes a modified percentile bootstrap method for a two-sided CI
 of the population pmc.
This 
                modified percentile bootstrap method for the pmc
                
               has the following steps:	(1)A sample of n participants is randomly selected from a population. Two variables are measured for each of the n participants, and the sample pmc (r) is computed between these two variables.

 

	(2)A bootstrap sample of n participants is randomly selected with replacement
 from the original sample, and the pmc [image: $$ \left( {r_{1}^{ * } } \right) $$] is computed between the two variables. The asterisk denotes that the pmc is computed in a bootstrap sample.

 

	(3)Step 2 is repeated 599 times which yields 599 bootstrap pmcs (i.e., [image: $$ r_{1}^{ * } ,r_{2}^{ * } , \ldots ,r_{599}^{ * } $$]).

 

	(4)These 599 bootstrap pmcs are put into ascending order:

                      [image: $$ r_{(1)}^{ * } \le r_{(2)}^{ * } \le \ldots \le r_{(598)}^{ * } \le r_{(599)}^{ * } . $$]




                    
The subscript between parentheses indicates the rank number of the pmc: [image: $$ r_{(1)}^{ * } $$] is the smallest bootstrap pmc, [image: $$ r_{(2)}^{ * } $$] the second smallest, and so on.

 

	(5)The two-sided 95% CI
 of the population pmc is determined by the sample size
 and the bootstrap distribution of the pmc:

                      [image: $$ \begin{array}{*{20}l} {n &lt; 40:} \hfill &amp; {r_{(7)}^{*} &lt; \rho &lt; r_{(593)}^{*} ;} \hfill \\ {40 \le n &lt; 80:} \hfill &amp; {r_{(8)}^{*} &lt; \rho &lt; r_{(592)}^{*} ;} \hfill \\ {80 \le n &lt; 180:} \hfill &amp; {r_{(11)}^{*} &lt; \rho &lt; r_{(588)}^{*} ;} \hfill \\ {180 \le n &lt; 250:} \hfill &amp; {r_{(14)}^{*} &lt; \rho &lt; r_{(585)}^{*} ;} \hfill \\ {n \ge 250:} \hfill &amp; {r_{(15)}^{*} &lt; \rho &lt; r_{(584)}^{*} .} \hfill \\ \end{array} $$]




                    

 





The null hypothesis that the population pmc is zero (i.e., H0: ρ = 0) is rejected at the two-tailed 5% significance level if zero is outside this 95% CI
.
The method adapts the CI
 depending on the sample size
. Usually, a 95% bootstrap CI
 includes 95% of the bootstrap values. This applies to the 95% bootstrap CI
 of the pmc when the sample size
 is equal to or larger than n = 250. However, for smaller sample sizes the 95% bootstrap CI
 includes more than 95% of the r* values. For example, for sample sizes smaller than n = 40, the 95% bootstrap CI
 includes 599 − 7(i.e., [image: $$ r_{(1)}^{ * } , \ldots ,r_{(7)}^{ * } $$]) − 7(i.e., [image: $$ r_{(593)}^{ * } , \ldots ,r_{(599)}^{ * } $$]) = 585 (i.e., 97.7%) of the r* values.
12.5 Standardized Effect Sizes
The term ‘significant’ suggests that the results of a study are important. However, the term is misleading because ‘statistical significant’ only means that the null hypothesis is rejected, but it does not imply that the results of the study are important. A 
              substantive relevant result
              
             is a study result that is important from a theoretical or practical point of view. Examples of questions on the practical relevance of study results are: ‘Is the effect of a psychotherapy relevant from a clinical point of view?’ and ‘Is the effect of a math program relevant from an educational point of view?’.
The substantive relevance of study results can be evaluated when publications give information on the magnitude of effects. Therefore, the American Psychological Association (APA, 2010, p. 34), and the American Educational Research Association (2006) recommend to include measures of the magnitude of effects in publications.
Different definitions of effect size
 have been given (Kelley & Preacher, 2012). Here, Cohen’s (1988, p. 9) definition is adopted: 
              Effect size
              
             is the ‘degree to which the phenomenon is present in the population’. An 
              effect size measure
              
             is an index for the degree to which the phenomenon is present in the population. These definitions are at the level of the population, and effect size
 measures have to be estimated from sample data.
Two desirable properties of effect size
 measures are interpretability and comparability. Interpretability means that the measures are easy to interpret, and facilitate users to evaluate the substantive relevance of study results. Comparability means that the effect size
 measures are comparable across different studies. This property is important for, for example, meta-analysis studies. A meta-analysis quantitatively summarizes the results of different studies. Therefore, effect size
 measures of studies that are included in a meta-analysis have to be comparable.
A distinction is made between unstandardized and standardized effect size
 measures. An unstandardized effect size measure
 specifies the magnitude of an effect in terms of the original units of the variable, whereas a standardized measure standardizes the magnitude of the effect by its variability.
Usually, standardized effect size
 measures are applied in the context of null hypothesis testing. Therefore, standardized effect size
 measures are briefly introduced in this section. Unstandardized effect size
 measures are not frequently applied in behavioral research, but they can facilitate the evaluation of the substantive relevance of study results. Therefore, unstandardized effect size
 measures are discussed in the next chapter of this book.
A standardized effect size measure
 standardizes the magnitude of an effect by its variability. Overviews of standardized effect size
 measures are given by Keselman, Algina, Lix, Wilcox, and Deering (2008) and Peng and Chen (2014). This section illustrates standardized effect size
 measures by a measure for paired scores and a measure for independent scores.
The classical and bootstrap methods to test the difference of the means of paired scores were discussed in Sects. 12.1.1 and 12.4.1, respectively. Examples of paired scores are the scores of a test that is administered to a student at pretest
 and posttest, and the scores of a questionnaire that is administered to a husband and his wife.
The 
              standardized effect size of the difference of paired scores
              
             is:[image: $$ \Delta_{12} = \frac{{\upmu_{2} -\upmu_{1} }}{\upsigma} $$]

 (12.20)




(Δ is the upper case Greek letter delta), where μ1 and μ2 are the two population means (e.g., μ1 is the pretest
 mean and μ2 is the posttest mean), and σ is the population standard deviation. The difference μ2 − μ1 is standardized by σ, which is called the 
              standardizer
              
             by Keselman et al. (2008).
Δ12 is estimated from a sample of participants. The means are estimated by the sample means (e.g., the pretest
 and posttest sample means). The standard deviation can be estimated in different ways, for example, by the pretest
, posttest, or the pooled pretest
-posttest sample standard deviation. Each of these standard deviation estimates yields different estimates of Δ12, and different interpretations. For example, the estimated effect size
 based on the pretest
 standardizer
 is:[image: $$ \hat{\Delta }_{12} = \frac{{\bar{X}_{2} - \bar{X}_{1} }}{{S_{1} }}, $$]

 (12.21)


where the hat indicates that the standardized effect size
 is estimated, and S1 is the sample standard deviation at pretest
. The interpretation of this effect size measure
 is in terms of the pretest
 standard deviation. For example, the interpretation of [image: $$ \hat{\Delta }_{12} = 1 $$] is that the posttest mean is one pretest
 standard deviation larger than the pretest
 mean. The standardizer
 can also be estimated in other ways, which yields different interpretations. For example, if the standardizer
 is estimated from the sample posttest data, the interpretation is in terms of the posttest standard deviation. For example, [image: $$ \hat{\Delta }_{12} = 1 $$] means that the posttest mean is one posttest standard deviation larger than the pretest
 mean.
The 
              standardized effect size of the difference of independent scores
              
             is:[image: $$ \Delta_{EC} = \frac{{\upmu_{E} -\upmu_{C} }}{\upsigma}, $$]

 (12.22)


where μE and μC are the population means of the E-
 and C-groups, respectively, and σ is the population standard deviation, which is called the standardizer
.
ΔEC is estimated from samples of E-
 and C-condition participants. The E-
 and C-condition means are estimated by the sample means [image: $$ \bar{X}_{E} $$] and [image: $$ \bar{X}_{C} $$], respectively. The standardizer
 can be estimated in different ways. Each of these estimators yields different estimates of ΔEC and different interpretations. For example, Glass (cited in Peng and Chen, 2014) estimated the standardizer
 by the C-group standard deviation:[image: $$ \hat{\Delta }_{EC} = \frac{{\bar{X}_{E} - \bar{X}_{C} }}{{S_{C} }}, $$]

 (12.23)


where SC is the C-group sample standard deviation. The interpretation of this effect size measure
 is in terms of the C-group standard deviation. For example, [image: $$ \hat{\Delta }_{EC} = 1 $$] means that the E-group mean is one C-group standard deviation larger than the C-group mean. The standardizer
 can also be estimated in other ways, which yield different interpretations. For example, if it is assumed that the variances of the E-
 and C-condition are homogeneous (i.e., equal), the standardizer
 is estimated by the pooled standard deviation (square root of Eq. 12.8), and the interpretation is in terms of the homogeneous standard deviation. For example, [image: $$ \hat{\Delta }_{EC} = 1 $$] means that the E-group mean is one (homogeneous) standard deviation larger than the C-group mean.
Standardized effect size
 measures have to be comparable when they are applied in meta-analysis. However, if different estimators of the standardizer
 are used in different studies, comparability is weakened. Standardized effect sizes are only well comparable when the same standardizer
 is used. Therefore, researchers are recommended to make available the statistics
 that can be used to compute different standardized effect sizes, for example, the means, standard deviations, and sample sizes of E-
 and C-condition participants.
The previous chapter discussed coefficients for bivariate relations (see Table 11.​2). Most of these coefficients are standardized in the sense that they have a lower and an upper bound, for example, the pmc is bounded by −1 and +1 (i.e., −1 ≤ ρ ≤ 1). Therefore, these coefficients can be interpreted as standardized effect size
 measures. For example, a pmc of ρ = 0.40 is a standardized effect size measure
 that means that 16% of the variance of one variable is predicted by the other variable using a linear regression function.
12.6 Power
The power of a statistical test is the probability of rejecting the null hypothesis when it is false. If the null hypothesis is false, the parameter of interest has a population value that differs from the value that is specified by the null hypothesis. For example, the null hypothesis Eq. 12.11 specifies that the difference between E-
 and C-condition means is zero (i.e., H0: μE − μC = 0). If this null hypothesis is false, the difference of the E-
 and C-condition means differs from zero (e.g., μE − μC = 0.6 or μE − μC = 0.9).
Power, significance level, effect size
, and sample size
 are related. If three of them are given, the fourth is determined. For example, if the significance level, effect size
, and power are given, the sample size
 is determined. A power analysis considers power, significance level, effect size
, and sample size
 in connection. Three main types of power analysis are applied. They are indicated in the literature by different names. This book keeps the terminology of Sun, Pan, and Wang (2010).
A 
              prospective power analysis
              
             is done in the planning phase of a study. The researcher chooses reasonable values for the significance level, power, and standardized effect size
. For example, the researcher sets the two-tailed significance level at 0.05, the power at 0.80, and the standardized effect of the difference of E-
 and C-condition means at 0.5. Given these specifications, the sample size
 is computed (see Example 12.4).
Example 12.4 A prospective power analysis
A researcher plans a study where the effects of E-
 and C-conditions are compared. He or she wants to analyze the data using Student’s t test, a two-tailed significance level of 0.05, and power of 0.80. He or she thinks that the effect size
 has to be at least 0.5 standard deviation to be of substantive interest. Therefore, he or she sets the standardized effect size
 at ΔEC = 0.5. These specifications imply that the researcher wants to reject the null hypothesis of equal E-
 and C-condition means at significance level 0.05 and power 0.80 if the true standardized effect size
 (Eq. 12.22) is ΔEC = 0.5. Moreover, the researcher plans to use equal number of E-
 and C-condition participants. It follows from these specifications that the sample sizes have to be nE = nC = 64 (Cohen, 1988, Table 2.4.1).

Cohen (1988) published tables and van Belle (2002, Sect. 2.1) reported approximation formulas for doing power analysis. Moreover, computer programs, such as, G*Power (Faul, Erdfelder, Lang, & Buchner, 2007), are available for power analysis.
Usually, a prospective power analysis
 computes sample sizes under strong assumptions, such as normality and variance homogeneity. In practice, these assumptions are often violated, and the derived sample sizes will not exactly meet the specifications of significance level, power, and effect size
. Nevertheless, it is useful to do a prospective power analysis
 because it gives researchers a global impression of the sample size
 that is needed. For example, Example 12.4 derived sample sizes of nE = nC = 64 under the assumption that the DV
 is normally distributed with homogeneous variance
. These sample sizes might not be exact, but they warn the researcher that sample sizes have to be rather large.
A 
              retrospective power analysis
              
             is done after a study has been completed. The sample size
 and significance level that were used in the study are known. The analyst specifies the minimum standardized effect size
 that is of substantive interest. Using the known sample size
 and significance level, and the specification of the standardized effect size
, the power is computed. Cohen (1962) started research on retrospective power of published studies, and his study was followed by studies of, among others, Brewer (1972), Brewer and Owen (1973), Chase and Chase (1976), and Elstrodt and Mellenbergh (1978). The general conclusion of these studies was that the power of t- and F-tests is usually small, and the power of tests of correlations is larger. In 1969 Cohen published the first edition of his book ‘Statistical power analysis for the behavioral sciences’, which gives tables to derive sample sizes given specifications of significance level, power, and standardized effect size
. It was expected that Cohen’s (1969) book would stimulate researchers to design more powerful studiers. This expectation was not confirmed. Sedlmeier and Gigerenzer (1989) replicated Cohen’s (1962) study, and did not find an increase of the power of the statistical tests that were used. Onwuegbuzie and Leech (2004) summarized the results of more recent retrospective power studies, and found that a large part of published studies is underpowered. Hedges and Pigott (2001) studied the retrospective power of statistical tests that were applied in meta-analysis, and found that many meta-analysis studies are underpowered.
An 
              observed power analysis
              
             is also applied to studies that are completed. As for a retrospective power analysis
, the significance level and sample size
 that were used in the study are known. A retrospective power analysis
 specifies a population standardized effect size
 that is of substantive interest. In contrast, an observed power analysis
 estimates the standardized effect size
 from the data of the study. For example, a retrospective study on the power of the t test for the difference of E-
 and C-condition means specifies ΔEC = 0.4, whereas an observed power analysis
 estimates this difference from the data of the study, for example, [image: $$ \hat{\Delta }_{EC} = 0.32 $$]. Using the known significance level and sample size
 and the estimated standardized effect size
, the power is computed. The difference between the retrospective and observed power analysis
 is that the retrospective analysis specifies a standardized effect size
 of substantive interest at the level of the population, whereas the observed power analysis
 estimates the standardized effect size
 from the data of the sample of participants.
It is rather common in the behavioral sciences to believe that a nonsignificant result can be explained by a small observed power. Therefore, it is sometimes recommended to compute the observed power, especially when a null hypothesis is not rejected (see, for example, Onwuegbuzie and Leech, 2004). However, it has been shown that the observed power of a test cannot explain nonsignificant results (Hoenig & Heisey, 2001; O’Keefe, 2007; Sun et al., 2010). First, an observed power analysis
 assumes that the sample effect size
 is equal to the population effect size
. However, the sample effect size
 is an estimate of the population effect size
, and it will vary between different samples of the same population. Moreover, Yuan and Maxwell (2005) found that the observed power is usually a biased estimate of the true power. Second, the observed power adds no information to the information that is already known from the test statistic. Finally, the decision not to reject the null hypothesis is either correct or incorrect. The decision is correct when the null hypothesis is true and it is incorrect when the null hypothesis is false. However, it is impossible to know whether the null hypothesis is true or false, and the observed power yields no information on the truth or falsity of the null hypothesis.
It is useful to apply a prospective power analysis
. The sample size
 will not be exact because the assumptions of the power analysis will usually be violated in practice, but it gives researchers a feeling for the size of the sample that is needed. A retrospective power analysis
 does not add much to a prospective power analysis
, but it can be applied to study the power of tests that are applied in a field or subfield. Finally, it is not recommended to apply observed power analysis
 because it cannot explain why a null hypothesis is not rejected.
12.7 Testing Multiple Null Hypotheses
Null hypothesis testing applies to confirmatory research
, where a null hypothesis is specified and is tested using sample data. In the practice of confirmatory research
, it is rather common that more than one null hypothesis is tested. For example, the null hypothesis of equal population means (i.e., H0: μE = μC) is tested for each of three DVs, and the null hypothesis of zero population pmc (i.e., H0: ρ = 0) is tested for each of six pmcs. A consequence of testing multiple null hypotheses is that the probability of rejecting one or more true null hypotheses is larger than the probability of rejecting one true null hypothesis (see Example 12.5).
Example 12.5 Probability of rejecting at least one null hypothesis out of three true null hypotheses

An E-
 and C-group are compared on three different DVs. The null hypothesis of equal population means (i.e., H0: μE = μC) is tested for each of the DVs at significance level α = 0.05. Suppose that (1) each of the three null hypotheses is true, and (2) the three DVs are independently distributed. The probability of rejecting a single true null hypothesis is 0.05, and the probability of not rejecting this true null hypothesis is 1 − 0.05 = 0.95. Under the assumption of independently distributed DVs, the probability of not rejecting any of the three null hypotheses is 0.95 × 0.95 × 0.95 = 0.857. Therefore, the probability of rejecting at least one (i.e., one, two, or three) of the true null hypotheses is 1 − 0.857 = 0.143, which is much larger than the probability of rejecting a single true null hypothesis (i.e., α = 0.05).

A set of m (m > 1) null hypotheses that are tested is called a family of null hypotheses. Usually, the null hypotheses of a family apply to a coherent study or part of a study, for example, three DVs to compare E-
 and C-conditions, or six pmcs of personality variables. The probability of rejecting at least one null hypothesis out of a family of true null hypotheses is called the 
              familywise error rate
              
             (see, for example, Wilcox, 2010, Sect. 12.5). Usually, the familywise error rate
 is much larger than the probability of rejecting a single true null hypothesis, which was demonstrated by Example 12.5: the probability of rejecting a single true null hypothesis was 0.05, but the familywise error rate
 of three true null hypotheses was 0.143.
The strategy of multiple null hypothesis testing is to specify the familywise error rate
, for example, by setting the familywise error rate
 at 0.05. Subsequently, the significance levels of the separate null hypotheses of the family are adapted such that the familywise error rate
 stays at its fixed value. Examples of multiple testing procedures are the Bonferroni, Hochberg, and Rom methods.
The 
              Bonferroni method
              
             (see, among others, Morrison, 1990, Sect. 1.6) is easy to apply, but it is rather conservative. The familywise error rate
 is set at α, and the significance level of each of the tests of the family is set at α/m. For example, a family of seven (m = 7) null hypotheses is tested and the familywise error rate
 is set at α = 0.05. Using the Bonferroni method
, each of the seven null hypotheses is tested at the Bonferroni-corrected significance level of 0.05/7 = 0.007. The Bonferroni method
 is conservative in the sense that it may have a small power. The power of a statistical test decreases when the significance level decreases, while sample size
 and effect size
 are unchanged. The significance level α is always larger than the Bonferroni-corrected level α/m. Therefore, the power of a test at significance level α/m is always smaller than the power of a test at significance level α, given the same sample size
 and effect size
.
Hochberg (1988) modified the Bonferroni method
 to a method that is less conservative. Rom (2013) improved Hochberg’s method
. His method has slightly more power than Hochberg’s method
, but is a bit harder to apply in practice. Therefore, Hochberg’s method
 is discussed, and for Rom’s method the reader is referred to his article (Rom, 2013).


              Hochberg’s method
              
             uses the p-values of the statistic that is computed in the sample of participants. Note that the term ‘item p-value
‘ is used within the context of classical item
 analysis (see Sect. 7.​3.​4 of this book). However, in this chapter ‘p-value’ applies to a statistic. The p-value of a statistic
 is the probability that the statistic is equal to or more extreme than its sample value, given that the null hypothesis is true. The p-value of a statistic
 is often used to test a null hypothesis: the null hypothesis is rejected if the p-value is smaller than the prespecified significance level α.
As the Bonferroni method
, Hochberg’s (1988) method starts from a family of m null hypotheses, and sets the familywise error rate
 at a fixed value α. A statistic and its p-value are computed for each of the m null hypotheses. These p-values are put into descending order:

[image: $$ p_{\left( 1 \right)} \ge p_{(2)} \ge \ldots \ge p_{(m)} , $$]



where the subscript between parentheses denotes the rank number of the p-values: p(1) is the largest p-value, p(2) is the second largest p-value, and so on. The Hochberg method takes the following steps:	(1)p(1) (i.e., the largest p-value) is compared to α/1 = α. If p(1) is equal to or smaller than α, all m null hypotheses are rejected, and the procedure is ended. If p(1) is larger than α, the procedure goes to the second step.

 

	(2)The second largest p-value (i.e., p(2)) is compared to α/2. If p(2) is equal to or smaller than α/2, the null hypotheses having p-values p(2), p(3),…, p(m) are rejected, and the procedure is ended. If p(2) is larger than α/2, the procedure goes to the third step.

 

	(3)The third largest p-value (i.e., p(3)) is compared to α/3. If p(3) is equal to or smaller than α/3, the null hypotheses having p-values p(3), p(4),…, p(m) are rejected, and the procedure is ended. If p(3) is larger than α/3, the procedure goes to the fourth step.

 





And so on.
In each step of the procedure, the denominator of the Hochberg-corrected significance level is increased by 1 (i.e., α/1, α/2, α/3,…). The procedure stops if a p-value is equal to or smaller than the Hochberg-corrected significance level. Example 12.6 demonstrates Hochberg’s method
 and compares it to the Bonferroni method
.
Example 12.6 The Hochberg and Bonferroni methods applied to seven (fictitious) null hypotheses tests
Seven DVs are administered to E-
 and C-condition participants. For each of these DVs, the null hypothesis of equal population means (i.e., H0: μE = μC) is tested. The familywise error rate
 is set at α = 0.05. The p-values of the seven test statistics
 are computed, and are p1 = 0.015, p2 = 0.150, p3 = 0.010, p4 = 0.014, p5 = 0.004, p6 = 0.080, and p7 = 0.005. The p-values are set in descending order in the second column of Table 12.2.Table 12.2(Fictitious) p-values of seven statistical tests and the results of the Bonferroni and Hochberg methods


	
DV
 no.
	p-value
	Bonferroni
	Hochberg

	Adapted
	Decision
	Adapted
	Decision

	2
	p(1) = 0.150
	0.007
	nr
	0.05/1 = 0.0500
	nr

	6
	p(2) = 0.080
	0.007
	nr
	0.05/2 = 0.0250
	nr

	1
	p(3) = 0.015
	0.007
	nr
	0.05/3 = 0.0167
	r

	4
	p(4) = 0.014
	0.007
	nr
	0.05/4 = 0.0125
	r

	3
	p(5) = 0.010
	0.007
	nr
	0.05/5 = 0.0100
	r

	7
	p(6) = 0.005
	0.007
	r
	0.05/6 = 0.0083
	r

	5
	p(7) = 0.004
	0.007
	r
	0.05/7 = 0.0071
	r


Note r: the null hypothesis is rejected; nr: the null hypothesis is not rejected




The Bonferroni method
 rejects the null hypothesis for DV
’s no. 5 and 7 because their p-values (0.004 and 0.005, respectively) are smaller than the Bonferroni-corrected significance level (0.05/7 = 0.007). The Hochberg method rejects the null hypothesis for DV
 no. 1 because its p-value (0.015) is smaller than the Hochberg-corrected significance level (0.05/3 = 0.0167). The rejection of this null hypothesis implies that the null hypotheses of tests having smaller p-values than DV
 no. 1 (i.e., DVs no. 4, 3, 7, and 5) are also rejected.

The Hochberg method rejects an equal number or more null hypotheses than the Bonferroni method
, which is demonstrated by Example 12.6: The Hochberg method rejects five null hypotheses, while the Bonferroni method
 rejects only two null hypotheses. Both methods control the familywise error rate
, but the Hochberg method is preferred because it is less conservative than the Bonferroni method
.
If no method is applied to control the familywise error rate
, the probability of rejecting one or more null hypotheses can be very large, especially if the number of m tested null hypotheses is large. Therefore, researchers who test multiple null hypotheses and do not control the familywise error rate
 easily get too many significant results.
12.8 Null Hypothesis Testing and Data Exploration
As said before, null hypothesis testing applies to confirmatory research
, but is often applied in exploratory research
. Usually, a large number of null hypotheses is tested, and significant results are reported. This exploratory testing is a misuse of null hypothesis testing.
Data exploration may yield interesting substantive hypotheses, but these hypotheses have to be confirmed using other data. It is recommended to apply a two-stage procedure. In the first (exploratory) stage, substantive hypotheses are derived from the data, and in the second (confirmatory) stage these hypotheses are tested using other data. This two-stage procedure needs two data sets: one for data exploration and the other for null hypothesis testing. Two different study designs can be applied, that is, cross validation and replication.
A cross-validation design uses one sample of participants. The sample is randomly split into two subsamples (A and B). The data of Subsample A are used for exploration, and the data of Subsample B are used in the confirmatory stage. The sizes of the two subsamples need not to be equal because there might be reasons to have a larger sample size
 in the exploratory stage than in the confirmatory stage, or vice versa. Moreover, control of the familywise error rate
 is not needed in the first stage. An adequate strategy is to compute two-sided 90% CIs of parameters
 using the data of Subsample A. At the end of the first stage, substantive hypotheses are derived from these CIs. Moreover, null hypotheses are formulated, and specifications of the testing procedure (type of test, significance level, two- or one-tailed test
, control of familywise error rate
) are made. In the second stage, the data of Subsample B are used to test the null hypotheses that were derived from Subsample A. Example 12.7 demonstrates the cross-validation design.
Example 12.7 A cross-validation design for the difference between two independent means
Researchers study the effects of a new mathematics course compared to the standard course. In general, they expect that the new course will have other effects on students’ mathematics performance and attitudes than the standard course, but they have no specific hypotheses on aspects of mathematics and attitudes that will differ between the two courses. A sample of 100 students participates in the study, 50 of them are randomly assigned to the new course and the other 50 to the standard course. At the end of the courses, three mathematics tests (Arithmetic, Algebra, and Geometry) and two attitude tests (Motivation for mathematics learning and Course satisfaction) are administered to the students. Thirty students are randomly selected from the 50 new course students, and 30 students are randomly selected from the 50 standard course students. The scores of this subsample of 30 + 30 = 60 students are used in the first stage to derive substantive hypotheses. For each of the five (three mathematics and two attitude) DVs the two-sided 90% CI
 of the difference between the means of the new and standard course students’ scores is constructed (see Table 12.3).Table 12.3(Fictitious) two-sided 90% CIs of the difference of the means of three mathematics and two attitude tests


	Test
	End points 90% CI



	 	Lower
	Upper

	Arithmetic
	−6
	+8

	Algebra
	−10
	+4

	Geometry
	+7
	+25

	Motivation
	−2
	+6

	Course satisfaction
	+5
	+10





The CIs of Geometry and Course satisfaction do not include zero. Therefore, the researchers formulate the substantive hypotheses that the new course has positive effects on students’ Geometry performance and satisfaction with mathematics teaching. The corresponding null hypotheses are that the mean Geometry and Course satisfaction scores of new and standard course students are equal. Moreover, the researchers specify that these two null hypotheses are tested in the second stage of the procedure with the two-tailed bootstrap t method at the 5% significance level, and control of the 5% familywise error rate
 by Hochberg’s method
. In the second stage of the procedure, the two null hypotheses are tested with the scores of the 20 + 20 = 40 students, who were not involved in the first stage. The results of the bootstrap t method are: p(1) (Geometry) = 0.07 and p(2) (Course satisfaction) = 0.02. Using Hochberg’s correction p(1) is not significant at the 5%/1 = 5% significance level, and p(2) is significant at the 5%/2 = 2.5% level. The researchers conclude that the new course leads to more satisfaction than the standard course.

A 
              replication design
              
             uses the whole sample of participants for data exploration. The results of the study are substantive hypotheses that have to be tested in a replication of the study. The null hypotheses are formulated, and the testing procedure is completely prespecified. A second sample is selected from the same population, and the study is replicated using the second sample. The replication is as much as possible identical to the first study. The null hypotheses, which were derived from the first study, are tested in the replication under the prespecifications of the test procedure (see Example 12.8).
Example 12.8 A replication design for the study of the difference between two independent means
Instead of the cross-validation design of Example 12.7, a replication design
 is applied to study the effects of a new mathematics course compared to the standard course. The DVs are three mathematic (Arithmetic, Algebra, and Geometry) and two attitude (Motivation for mathematics learning and Course satisfaction) tests. A sample of 60 students is selected, 30 of them are randomly assigned to the new course and the other 30 to the standard course. At the end of the course, the five tests are administered to the students. Per test a two-sided 90% CI
 is computed for the difference between the new and standard course test score means. Substantive hypotheses are derived, and corresponding null hypotheses are formulated. The testing procedure is completely specified: two-tailed bootstrap t method, 5% significance level, and control of the 5% familywise error rate
 by Hochberg’s method
. One year later, a new sample of 40 students is selected, 20 of them are randomly assigned to the new course and the other 20 to the standard course. The study is replicated at the same schools, with the same materials and teachers. The null hypotheses, which were derived from the first study, are tested on the scores of the replication under the prespecifications of the testing procedure.

The cross-validation and replication designs are similar in the sense that both use one data set for exploration and another data set for confirmation. However, the two designs differ because the cross-validation design applies one study and selects one sample, which is randomly split into subsamples, whereas the replication design
 applies two studies and selects two samples. The differences between the exploratory and confirmatory parts of a cross-validation design can only be caused by random errors
. The confirmatory study of a replication design
 is intended to be identical to the exploratory study, and the sample of the confirmatory study is intended to be selected from the same population as the sample of the exploratory study. However, it cannot be prevented that systematic differences between the two studies of the replication design
 arise. For example, the intake of students may have changed from the first study to the second study one year later, the teachers may have become more experienced in teaching the new course, a television program on mathematics may have been broadcasted between the two studies, and so on. Therefore, the cross-validation design is more ‘pure’ than the replication design
 when one data set is used to formulate hypotheses and another data set is used to test them.
12.9 Sequential Null Hypothesis Testing
Data are often not simultaneously collected, but sequentially. For example, a psychotherapy institute studies the effects of a new treatment. The institute takes in new patients every month, and monthly half of them are randomly assigned to the new treatment and the other half to the standard treatment.
In some areas of the behavioral sciences sequential null hypothesis testing procedures are applied that are inadmissible. A sample of participants is selected, and a null hypothesis is tested. For example, a sample of 50 participants is selected, 25 of them are randomly assigned to an E-condition and the other 25 to the C-condition. The null hypothesis of equal DV
-scores means of the two conditions (i.e., H0: μE = μC) is tested at significance level α. The study is ended if the null hypothesis is rejected, but continues if the null hypothesis is not rejected. A second sample of, for example, 50 participants is selected and the experiment is repeated. The data of the two studies are combined, and the null hypothesis is tested again at significance level α using the data of the combined sample of 50 + 50 = 100 participants. The study is ended if the null hypothesis is rejected, but may continue if the null hypothesis is not rejected. A third sample of participants is selected, the data of the third sample are combined with the data of the first two samples, and the null hypothesis is tested again at significance level α using the data of the combined sample. Usually, two or three samples of participants are selected, but the procedure may continue with more than three samples.
This sequential procedure has two serious flaws. First, the familywise error rate
 is not controlled. The null hypothesis is always tested at significance level α, but it may be tested more than once. Second, the tests of the null hypothesis are not independent. For example, if the null hypothesis is not rejected with the first sample of 50 participants, a second sample of 50 participants is selected. The null hypothesis is tested again with the combined sample of 50 + 50 = 100 participants. The two tests are dependent because the 50 participants of the first test are included into the 100 participants of the second test. Simulation studies showed that the familywise error rate
 of the procedure is inflated (Simmons, Nelson, & Simonsohn, 2011). The procedure is frequently applied in behavioral studies, but it is a questionable research practice
 that should be abandoned (see Sect. 20.​3.​1 of this book). Statistics
 developed correct statistical methods for sequentially testing a null hypothesis. These methods are applied in studies where the effects of medical treatments are compared (Piantodosi, 2005, Sect. 14.4).
A correct method for sequentially testing a null hypothesis with different samples is the 
              group sequential testing procedure
              
             (Piantodosi, 2005, Sect. 14.4.5). This procedure applies to the same situations as the inadmissible sequential procedure, but avoids the two flaws of the inadmissible procedure. First, it keeps the familywise error rate at α by prespecifying the maximum number of samples and by adapting the significance level of the separate null hypothesis tests. Second, it combines statistics
 of the data of the different samples instead of the data themselves. Different versions of the group sequential testing procedure
 were developed. This section describes the version where at most three samples are selected, and Pocock’s adapted significance level is used. For at most 2, 4, and 5 samples and two other adapted significance levels, the reader is referred to Piantodosi (2005, Sect. 14.4.5).
The group sequential testing procedure
 has the following steps:	(1)The researchers prespecify the familywise error rate
 of α = 0.05. Moreover, they prespecify to select at most three samples.

 

	(2)A sample of participants is selected, a statistic (Z1) is computed with the data of the first sample to test the null hypothesis. This Z-statistics
 has to be approximately standard normally distributed in the population (i.e., normally distributed with mean 0 and variance 1). A two-tailed test
 is applied at Pocock’s adapted significance level of αp = 0.022 (the 0.011 and 0.989 quantiles
 of the standard normal distribution are −2.289 and +2.289, respectively). The null hypothesis is rejected if

                    [image: $$ Z_{1} &lt; - 2.289\,{\text{or}}\,Z_{1} &gt; + 2.289. $$]




                  
The procedure stops if the null hypothesis is rejected, but it continues if the null hypothesis is not rejected.

 

	(3)If the null hypothesis is not rejected in the previous step, a second sample of participants is selected, data are collected, and the statistic (Z2) is computed with the data of the second sample. Both Z1 and Z2 are approximately normally distributed with means 0 and variances 1. Moreover Z1 and Z2 are independently distributed because they are computed in different samples (i.e., Z1 in the first sample and Z2 in the second sample). It follows from a theorem of statistics
 that

[image: $$ \frac{{Z_{1} + Z_{2} }}{\sqrt 2 } $$]

 (12.24)


is approximately standard normally distributed. A two-tailed test
 is applied at the adapted significance level αp = 0.022. The null hypothesis is rejected if

                    [image: $$ \frac{{Z_{1} + Z_{2} }}{\sqrt 2 } &lt; - 2.289\,{\text{or}}\,\frac{{Z_{1} + Z_{2} }}{\sqrt 2 } &gt; + 2.289. $$]




                  
The procedure stops if the null hypothesis is rejected, but it continues if the null hypothesis is not rejected.

 

	(4)If the null hypothesis is not rejected in the previous step, a third sample of participants is selected, data are collected, and the statistic
 (Z3) is computed with the data of the third sample. The Statistics
 Z1, Z2, and Z3 are independently and approximately standard normally distributed. Therefore,

[image: $$ \frac{{Z_{1} + Z_{2} + Z_{3} }}{\sqrt 3 } $$]

 (12.25)


is approximately standard normally distributed. A two-tailed test
 is applied at the adapted significance level αp = 0.022. The null hypothesis is rejected if[image: $$ \frac{{Z_{1} + Z_{2} + Z_{3} }}{\sqrt 3 } &lt; - 2.289\,{\text{or}}\,\frac{{Z_{1} + Z_{2} + Z_{3} }}{\sqrt 3 } &gt; + 2.289. $$]






 





The procedure stops whether the null hypothesis is rejected or not because it was prespecified that at most three samples will be selected.
The procedure tests the null hypothesis at the 5% significance level. The separate tests are done at αp = 0.022 to keep the overall familywise error rate
 at α = 0.05. Moreover, the data of the different samples are not combined, but the Z-statistics
 of the different samples are combined (i.e., ([image: $$ \left( {Z_{1} + Z_{2} } \right)/\sqrt 2 $$] and [image: $$ (Z_{1} + Z_{2} + Z_{3} )/\sqrt 3 $$]).
Example 12.9 demonstrates the method.
Example 12.9 The group sequential testing procedure (fictitious data)
A psychotherapy institute wants to study whether their intakers can predict patients’ treatment outcomes. The intakers predict the recovery of new patients. The treatment lasts 10–12 weeks, and at the end of the treatment period, the therapists evaluate patients’ recovery. The parameter of interest is the population pmc between intakers’ predictions and therapists’ evaluations. The population pmc (ρ) is estimated by the sample pmc (r). In general, the distribution of the sample pmc is skewed because r is bounded by −1 and +1. Fisher showed that, if the two variables of a pmc are bivariate normally distributed, the transformed pmc[image: $$ \frac{1}{2}ln\frac{1 + r}{1 - r}, $$]

 (12.26a)


where ln denotes the natural logarithm (i.e., logarithm at base e = 2.718…), is normally distributed with variance[image: $$ \frac{1}{n - 3} $$]

 (12.26b)




(Morrison, 1990, Sect. 3.6). Under the null hypothesis that the population pmc is zero:[image: $$ H_{0:} \,\uprho = 0 $$]

 (12.27)


the statistic

[image: $$ Z = \frac{1}{2}\sqrt {n - 3} \, ln\frac{1 + r}{1 - r} $$]

 (12.28)


is standard normally distributed (i.e., normally distributed with mean 0 and variance 1). The institute takes in new patients every quarter. The institute tests null hypothesis Eq. 12.27 sequentially:	(1)The institute prespecifies a familywise error rate
 of α = 0.05. It decides to conduct the study within one year, which means that the institute will select at most three different samples (i.e., one sample per quarter).

 

	(2)The number of patients of the first sample is n1 = 28, and the pmc between predictions and evaluations is r1 = 0.40. It follows from Eq. 12.28 that the Z-statistic is:

                      [image: $$ Z_{1} = \frac{1}{2}\sqrt {28 - 3} \,ln\frac{1 + 0.40}{1 - 0.40} = 2.12. $$]




                    
Z1 is between −2.289 and +2.289. Therefore, null hypothesis Eq. 12.27 is not rejected.

 

	(3)A second sample of n2 = 19 patients is selected. The pmc in this sample is r2 = 0.38. It follows from Eq. 12.28 that the Z-statistic is

                      [image: $$ Z_{2} = \frac{1}{2}\sqrt {19 - 3} \,ln\frac{1 + 0.38}{1 - 0.38} = 1.60. $$]




                    

 





The combined statistic for testing null hypothesis Eq 12.27 is:[image: $$ \frac{{Z_{1} + Z_{2} }}{\sqrt 2 } = \frac{2.12 + 1.60}{\sqrt 2 } = 2.63. $$]





The statistic is larger than +2,289. Therefore, null hypothesis Eq. 12.27 is rejected at the 5% significance level, and the sequential testing procedure is ended.

12.10 Equivalence Testing

The previous
 sections of this chapter discussed situations where researchers want to reject null hypotheses. Rejection of the null hypothesis gives support to the substantive hypothesis of interest, whereas nonrejection does not support the substantive hypothesis. However, sometimes researchers do not want to reject their null hypotheses. Two types of situations where nonrejection is intended are mentioned. First, the substantive hypothesis implies that the null hypothesis has to be true. For example, a substantive hypothesis states that an intervention reduces stress at work, but does not influence work performance. The researchers want to reject the null hypothesis that the intervention has no effect on stress, but they do not want to reject the null hypothesis that the intervention has no effect on work performance. Second, researchers want to know whether different groups of study participants are comparable. For example, a study is planned on the effects of a new arithmetic course compared to the standard course. The new course is implemented in one school, and the arithmetic results of this school are compared to the results of another school where the standard course is used. This comparison is only fair if the students of the two schools do not differ in arithmetic skill, and the teachers of the two schools do not differ in teaching skills. Therefore, at the start of the study, the researchers assess students’ arithmetic skill and teachers’ teaching skill, and they do not want to reject the null hypothesis that the arithmetic and teaching skills of the two schools are equal.


              Equivalence testing
              
             is the testing of null hypotheses that researchers do not want to reject. Usually, researchers apply conventional null hypothesis tests also to test an equivalence hypothesis. However, this strategy fails because a null hypothesis is usually not exactly true, and the power of a statistical test (i.e., the probability of rejecting a null hypothesis when it is false) increases with sample size
. For example, if the population means μE and μC differ slightly, the null hypothesis of equal population means (i.e., H0: μE = μC) will be rejected if the sample size
 is sufficiently large. Bakan demonstrated this phenomenon already in 1966 using psychological and educational test scores of a large sample of test takers.
It is, however, incorrect to conclude that equivalence testing
 should only be applied when samples are small. A large sample yields more precise estimates of population parameters
, and has to be preferred above a small sample. The correct conclusion is that conventional null hypothesis testing should not be applied to testing of equivalence hypotheses, and that other methods have to be used for equivalence testing
. Westlake (1981) described a simple method of equivalence testing
. His method was introduced to behavioral researchers by Rogers, Howard, and Vessey (1993) and Lakens (2017), and to medical researchers by Walker and Nowacki (2010). The method is described below.
As said above, a null hypothesis is usually not exactly true, for example, the population means μE and μC are usually not exactly the same, and the population pmc is usually not exactly equal to zero. To prevent that an exact null hypothesis is rejected when the sample is sufficiently large, researchers have to specify an 
              Equivalence Interval (EI)
              
            , which is an interval that contains values that researchers consider to be trivial from a substantive point of view. The lower bound of this interval is indicated by EIL and the upper bound by EIU. The EI
 of, for example, the difference of E-
 and C-condition means is:[image: $$ EI_{L} &lt;\upmu_{E} -\upmu_{C} &lt; EI_{U} . $$]

 (12.29)




Equation 12.29 indicates that researchers consider differences between EIL and EIU negligible. For example, if researchers consider a difference of 1 point of boys’ and girls’ verbal intelligence test scores trivial, their EI
 is:[image: $$ - 1 &lt;\upmu_{B} -\upmu_{G} &lt; + 1, $$]



where μB and μG are the population means of boys and girls verbal intelligence scores, respectively. This EI
 expresses researchers’ opinion that differences between EIL = −1, where the boys’ mean is 1 point below the girls’ mean, and EIU = +1, where the boys’ mean is 1 point above the girls’ mean, are negligible from a substantive point of view. The EI
 has to be specified by content experts, and depends on the research topic. For example, a one-second reduction of a response time by a training
 may be trivial in most cases, but may be of vital importance for pilots.
The second step is the specification of the significance level α. Subsequently, a two-sided CI
 is computed from the sample data, where the confidence coefficient
 is set at 1-2α. For example, if the significance level is set at α = 0.05, the confidence coefficient
 is set at 1 − 2 × 0.05 = 0.90. Note that a 90% CI
 has to be used for an equivalence test at the 5% significance level. Finally, this CI
 is compared to the EI
. If the 90% CI
 is completely within the EI
 (see Fig. 12.3a), all CI
-values are negligible, and equivalence is supported at the 5% significance level. In all other cases, equivalence is not supported at the 5% level. If the CI
 is completely outside the EI
 (see Fig. 12.3b), none of the CI
-values is negligible, if the CI
 includes the EI
 or the CI
 and EI
 overlap (see Fig. 12.3c), some of the CI
-values are not negligible.[image: ../images/459008_1_En_12_Chapter/459008_1_En_12_Fig3_HTML.png]
Fig. 12.3Possible outcomes of an equivalence testing
 procedure at the 5% significance level: a equivalence is supported, b equivalence is not supported because none of the CI
-values is negligible, c equivalence is not supported because some of the CI
-values are not negligible



Example 12.10 demonstrates equivalence testing
.
Example 12.10 Equivalence of the mean IQs of the students of two schools
Researchers are planning to study the differences between the educational performances of two schools (A and B). They want to ascertain that the two schools do not differ in students’ IQs. They think that a difference of 3 IQ points is trivial. Therefore, their EI
 is:[image: $$ - 3 &lt;\upmu_{A} -\upmu_{B} &lt; + 3, $$]



where μA and μB are the population mean IQs of the two schools. They test this equivalence hypothesis at significance level α = 0.05. The researchers assume that the IQs are normally distributed with homogeneous variance
 in the population of students. The fictitious data are: nA = nB = 450 students per school, mean IQs [image: $$ \overline{IQ}_{A} = 101 $$] and [image: $$ \overline{IQ}_{B} = 100 $$], and variances [image: $$ S_{A}^{2} = 195 $$] and [image: $$ S_{B}^{2} = 255 $$]. It follows from Eq. 12.8 that the pooled sample variance
 is S2 = 225. The 0.05 quantile of Student’s t distribution with 450 + 450 − 2 = 898 degrees of freedom is −1.65 and the 0.95 quantile of this distribution is +1.65. Using Eq. 12.10 the two-sided 90% CI
 of μA − μB is:[image: $$ \begin{aligned} &amp; 101 - 100 - 1.65 \times \sqrt {\frac{225}{450} + \frac{225}{450}} = - 0.65 &lt;\upmu_{A} -\upmu_{B} \\ &amp; &lt; 101 - 100 - ( - 1.65) \times \sqrt {\frac{225}{450} + \frac{225}{450}} = + 2.65 \\ \end{aligned} $$]





This 90% CI
 is completely within the EI
 (see Fig. 12.4). Therefore, the equivalence hypothesis is not rejected at the 5% significance level.[image: ../images/459008_1_En_12_Chapter/459008_1_En_12_Fig4_HTML.png]
Fig. 12.4

                        EI
                        
                       and two-sided 90% CI
 of the difference of the mean IQs of two schools




12.11 Recommendations
This chapter concludes with the following recommendations on null hypothesis testing:	(1)Null hypothesis testing applies to confirmatory research
. Therefore, null hypotheses and the complete testing procedure have to be specified before the data are inspected. Modifying the testing procedure after inspecting the data is an inadmissible practice.

 

	(2)The preferred way of testing a null hypothesis on a parameter is by constructing a confidence interval (CI
) of the statistic. CIs can be constructed for both two-tailed and one-tailed tests.

 

	(3)Usually, researchers intend to reject a null hypothesis. However, if researchers have the intention to accept the null hypothesis, they have to apply equivalence testing
 methods.

 

	(4)In general, null hypothesis testing methods that make weak assumptions (e.g., bootstrap methods) have to be preferred above methods that make strong assumptions.

 

	(5)Conditional null hypothesis methods base the choice of a null hypothesis test on the results of a test on the assumptions. These methods are not recommended. It is preferred to avoid assumption testing.

 

	(6)The overlap of the CIs of two means does not imply that the difference of the two means is not significant. The CI
 of the difference of two means has to be used to test the null hypothesis of equal population means.

 

	(7)Standardized effect size
 measures are used in power analysis. A prospective power analysis
 is recommended to give researchers a feeling for the sample sizes that they need for testing their null hypotheses.

 

	(8)Standardized effect sizes are also needed for meta-analysis. However, different studies may apply different standardization
 procedures. Therefore, researchers are recommended to make available the statistics
 that can be used to compute different standardized effect sizes (e.g., means, standard deviations, and sample sizes of E-
 and C-condition samples).

 

	(9)It is advised against observed power analysis
, where the effect size
 is estimated from the sample data.

 

	(10)It is recommended to protect the familywise error rate
 when multiple null hypotheses are tested.

 

	(11)The exploration of data has to be separated from the testing of hypotheses. A cross-validation design is suited for the detection of hypotheses and testing the corresponding null hypotheses. A sample is randomly split into two subsamples, one subsample is used to derive substantive hypotheses, and the other subsample is used to test null hypotheses that correspond to these substantive hypotheses.

 

	(12)The sequential method that selects a new sample of participants if the null hypothesis is not rejected, and combines the data of the original and new samples to test the null hypothesis again, is inadmissible. It must be replaced by correct sequential statistical methods, such as, the group sequential testing procedure
 or other correct sequential methods.

 

	(13)Unstandardized effect size
 measures are often easier to interpret than standardized effect sizes. Unstandardized effect sizes are discussed in the next chapter.
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Abstract
Standardized effect sizes are frequently used, for example, in sample size
 planning and meta-analysis. However, they are often hard to interpret, and can be estimated in different ways. A measure that is better to interpret than the standardized difference of two means is the probability of superiority. The probability of superiority of paired (e.g., pretest
 and posttest) scores is the probability that of a randomly selected pair of scores the second (e.g., posttest) score is larger than the first (e.g., pretest
) score. The probability of superiority of independent (e.g., E-
 and C-group) scores is the probability that a randomly selected participant from one (e.g., The E-
) group has a larger score than a randomly selected participant from the other (e.g., C-
) group. The interpretability of observed test scores is facilitated by applying linear transformations to the scores. Two transformations are described. The Average Item Score (AIS)
 is the mean of the item
 scores of the test. The Proportion of Maximum Possible
 (POMP) score is the proportion that the observed test score takes of the distance between the minimum and maximum possible scores of the test.
Keywords
Average item score (AIS) transformationProbability of superiorityProportion of maximum possible (POMP) score transformationUnstandardized difference of means
Section 12.​5 of the previous chapter discussed standardized effect sizes. These effect sizes are frequently applied in the behavioral sciences, for example, for sample size
 planning and in meta-analysis. However, standardized effect sizes may be hard to interpret because the effect size
 is in terms of the standardizer
, for example, the population standard deviation. Moreover, the standardizer
 can be estimated in different ways from sample data, for example, the population standard deviation can be estimated by the E-sample, C-sample or the pooled estimator of the standard deviation.
An 
            unstandardized effect size measure
            
           specifies the magnitude of an effect in terms of the original measurement units. Baguley (2009) and Wilkinson and the Task Force on Statistical Inference (1999) prefer unstandardized effect sizes when the scale of the DV
 is meaningful and easy to interpret. Examples of familiar scales that are easy to interpret are seconds, grams, and centimeters, but the familiarity of scales is not restricted to physical scales. An example of a familiar psychological scale is IQ. However, many behavioral science scales, such as, test scores, are hard to interpret. The interpretability of test scores can be facilitated by applying transformations to these scores.
13.1 Differences of Means
As in the previous chapter, paired and independent scores are distinguished. Examples of paired scores are a test that is administered to a student at pretest
 and posttest, and a questionnaire that is administered to a wife and her husband. An example of independent scores is a test that is administered to different groups of E-
 and C-condition participants.
The 
              unstandardized difference of the means of paired scores
              
             is:[image: $$ \updelta_{\mathit{12}} =\upmu_{\mathit{2}} -\upmu_{\mathit{1}} $$]

 (13.1)




(δ is the lower case Greek letter delta), where μ1 and μ2 are the means of the pairs (e.g., the pretest
 and posttest score means). The population means μ1 and μ2 are estimated by the sample means [image: $$ \bar{X}_{\mathit{1}} $$] and [image: $$ \bar{X}_{\mathit{2}} $$], respectively, and the unstandardized effect size
 is estimated by[image: $$ \hat{\updelta}_{\mathit{12}} = \bar{X}_{\mathit{2}} - \bar{X}_{\mathit{1}}, $$]

 (13.2)


where the hat indicates that delta is estimated from sample data. The 
              unstandardized difference of the means of independent scores
              
             is:[image: $$ \updelta_{EC} =\upmu_{E} -\upmu_{C} , $$]

 (13.3)


where μE and μC are the population means of the two (E-
 and C-
) groups, respectively. The population means μE and μC are estimated by the sample means [image: $$ \bar{X}_{E} $$] and [image: $$ \bar{X}_{C} $$], respectively, and the unstandardized effect size
 is estimated by[image: $$ \hat{\updelta}_{EC} = \bar{X}_{E} - \bar{X}_{C} . $$]

 (13.4)




13.2 Probability of Superiority
The unstandardized difference of means is hard to interpret when the scores are unfamiliar or not meaningful. A better to interpret effect size measure
 is the probability of superiority, which is also defined for paired and independent scores (Grissom & Kim, 2012, Chap. 5).
The 
              probability of superiority of paired scores
              
             is the probability that of a randomly selected pair of scores the second member’s score is larger than the first member’s score. For example, the probability that a randomly selected student’s posttest score is larger than his (her) pretest
 score, and the probability that of a randomly selected married couple the husband’s score is larger than his wife’s score.
The probability of superiority of paired scores
 is:[image: $$ PSUP_{I2} = P\left( {X_{2} &gt; X_{1} } \right). $$]

 (13.5)




This probability is estimated from sample data. For each of n randomly selected pairs, the second score of the pair is compared to the first score. For example, a student’s posttest score is compared to his (her) pretest
 score, and a husband’s score is compared to his wife’s score. A ‘win’ occurs when the second score of the pair is larger than the first score, a ‘loss’ when the second score is smaller than the first score, and a ‘tie
‘ when both scores are equal. A simple method of handling ties is to spread them equally across the wins and losses (i.e., half of the number of ties is added to the wins and the other half to the losses). The total number of comparisons is n because one comparison is made for each of the n pairs of scores. The probability of superiority of paired scores
 is estimated by the sample number of wins plus half the number of ties divided by the number of comparisons:[image: $$ \hat{P}\left( {X_{2} &gt; X_{1} } \right) = \frac{ \, number\,of\,wins + 0.5 \times number\,of\,ties}{n} $$]

 (13.6)




(see Example 13.1).
Example 13.1 Estimation of the probability of superiority of paired scores
Table 12.​1 (Example 12.​1 of the previous chapter) reports
 the (fictitious) pretest
 and posttest scores of n = 10 participants. The posttest scores of nine participants are larger than their pretest
 scores (i.e., the number of wins is 9). One participant (no. 8) has equal pretest
 and posttest scores (i.e., the number of ties is 1). Using Eq. 13.6, the estimate of the probability of superiority is:[image: $$ \hat{P}\left( {X_{2} &gt; X_{1} } \right) = \frac{9 + 0.5 \times 1}{10} = 0.95. $$]





The 
                probability of superiority of independent scores
                
               is the probability that a randomly selected participant from one (e.g., the E-
) group has a larger score than a randomly selected participant from the other (e.g., C-
) group.

The probability of superiority of independent scores
 is:[image: $$ PSUP_{EC} = P\left( {X_{E} &gt; X_{C} } \right). $$]

 (13.7)




This probability is estimated from random samples of nE (E-condition) and nC (C-condition) participants. The score of each of the E-condition participants is compared to the score of each of the C-condition participants. A win occurs when an E-participant’s score is larger than a C-condition participant’s score, a loss when an E-condition participant’s score is smaller than a C-condition participant’s score, and a tie
 when both scores are equal. A simple way of handling ties is to spread them equally across wins and losses (i.e., half of the number of ties is added to the wins and the other half to the losses). The total number of comparisons is nE × nC because each of the nE participant scores is compared to each of the nC participant scores. The probability of superiority of independent scores
 is estimated by the sample number of wins plus half the number of ties divided by the number of comparisons:[image: $$ \hat{P}\left( {X_{E} &gt; X_{C} } \right) = \frac{ \, number\,of\,wins + 0.5\,number\,of\,ties}{{n_{E} \times n_{C} }} $$]

 (13.8)




(see Example 13.2).
Example 13.2 Estimation of the probability of superiority of independent scores
A sample of 7 participants is randomly selected from a population. Three of them (nE = 3) are randomly assigned to the E-condition, and the remaining four (nC = 4) to the C-condition. The E-condition participants are denoted E1, E2, and E3, and the C-condition participants C1, C2, C3, and C4. The fictitious DV
 scores of the participants are E1 = 20, E2 = 18, E3 = 24, C1 = 20, C2 = 17, C3 = 18 and C4 = 16. Table 13.1 shows the outcomes of the comparisons of the E-
 and C-condition participants’ scores.Table 13.1Comparison of (fictitious) DV
 scores of 3 E-condition and 4 C-condition participants


	Participant score
	Outcome

	
                          E
                        
	
                          C
                        
	Win
	
                          Tie

                        
	Loss

	E1 = 20
	C1 = 20
C2 = 17
C3 = 18
C4 = 16
	0
1
1
1
	1
0
0
0
	0
0
0
0

	E2 = 18
	C1 = 20
C2 = 17
C3 = 18
C4 = 16
	0
1
0
1
	0
0
1
0
	1
0
0
0

	E3 = 24
	C1 = 20
C2 = 17
C3 = 18
C4 = 16
	1
1
1
1
	0
0
0
0
	0
0
0
0

	Sum:
	 	9
	2
	1





The number of wins is 9, the number of ties is 2, and the number of comparisons is 4 × 3 = 12. Using Eq. 13.8, the estimate of the probability of superiority is:[image: $$ \hat{P}\left( {X_{E} &gt; X_{C} } \right) = \frac{9 + 0.5 \times 2}{12} = 0.83. $$]





Note that the equations for paired (Eq. 13.6) and independent (Eq. 13.8) scores are of similar structure. Both equations take the number of wins plus half the number of ties, but they differ in the number of comparisons. Equation 13.6 of paired scores compares the scores of the two members of each pair (n comparisons), whereas Eq. 13.8 of independent scores compares the score of each E-participant with the score of each C-participant (nE × nC comparisons).

The probability of superiority is easy to interpret. PSUP12 = 1 means that the second member of each pair has a larger score than the first member, and PSUP12 = 0 means that the second member of each pair has a smaller score than the first member. Similarly, PSUPEC = 1 means that every participant of the E-condition outscores every C-condition participant, and PSUPEC = 0 means that every participant of the E-condition is outscored by every C-condition participant.
13.3 Linear Transformations of Observed Test Scores
Unstandardized differences of means (Eqs. 13.1 and 13.3) are hard to interpret when the measurement scales are unfamiliar. The interpretation is sometimes facilitated by transforming an unfamiliar scale to a familiar one. For example, persons who are unfamiliar with Celsius’ temperature scale, but familiar with Fahrenheit’s scale, are helped by transforming Celsius to Fahrenheit:[image: $$ {\text{Fahrenheit}} = 32 + 5/9\,{\text{Celsius}}. $$]





The transformation of Celsius to Fahrenheit is linear. In general, a linear transformation of X values to TX values is:[image: $$ TX = a + bX, $$]

 (13.9)


where X is the original score, TX is the transformed score, and a and b are constants (a is the intercept and b is the slope of the linear transformation, for example, a = 32 and b = 5/9 for the transformation of Celsius (X) to Fahrenheit (TX)).
The interpretation of unstandardized differences of observed test score means is often hard. For example, a 4-point difference of posttest and pretest
 means of an anxiety test is hard to interpret when the scale of the test is unfamiliar. The familiarity of observed score scales is often increased by applying a linear transformation to the observed test score.
Linear functions are attractive for the transformation of observed test scores. First, the results of null hypothesis tests (e.g., Student’s t test and F-test of ANOVA and ANCOVA) are unchanged under linear transformations: significant results remain significant, and nonsignificant results remain nonsignificant. Second, the mean of a transformed score is equal to the linear transformation of the mean of the original score:[image: $$ \overline{TX} = a + b\bar{X}, $$]

 (13.10)


where [image: $$ \overline{TX} $$] is the mean of the transformed scores and [image: $$ \bar{X} $$] is the mean of the original scores. Finally, the product moment correlation (pmc) of the transformed score with another variable (Z) is equal to the pmc of the original score with the other variable (i.e., ρTXZ = ρXZ).
Tests are conventionally scored by assigning integers to item
 responses, for example, by assigning a 1 to a correct answer and 0 to an incorrect answer, and assigning 1 to the first category of a Likert scale, a 2 to the second category, and so on. The conventional observed test score (X) is the sum of the item
 scores (see Sect. 7.​1 of this book). Linear transformations of the observed test scores can facilitate the interpretation of test scores. Two linear transformations of observed test scores are discussed in the remainder of this section.
13.3.1 The Average Item Score (AIS) Transformation
The 
                Average Item Score (AIS)
                
               is the mean of the item
 scores across the k items of a test:[image: $$ AIS = \frac{Sum\,of\,the\,k\,test\,item\,scores}{Number\,of\,items} = \frac{X}{k} = 0 + \frac{1}{k}X. $$]

 (13.11)




The last term of Eq. 13.11 shows that the AIS
 is a linear transformation of the observed test score (the intercept of the linear function is 0 and the slope is 1/k). The AIS
 transforms the observed test score scale to the item
 score scale. Usually, the item
 score scale is easier to interpret than the observed test score.
Example 13.3 illustrates the AIS
 for dichotomously scored items, and Example 13.4 for Likert items.
Example 13.3 AIS-transformation of observed test scores, dichotomously scored items
Example 12.​1 of the previous chapter reports the (fictitious) posttest and pretest
 scores of an arithmetic test that is administered to a sample of 10 students. The test consists of 30 items that are dichotomously scored (1 for a correct answer and 0 for an incorrect answer). Using Eq. 13.2, the estimate of the unstandardized difference of the posttest and pretest
 means is:[image: $$ \hat{\updelta}_{12} = 21.0 - 16.9 = 4.1 $$]





(see Table 12.​1 of the previous chapter). This difference is hard to interpret, but interpretation is facilitated by applying the AIS
 to the test scores. Using Eq. 13.11, the AIS
 of a score of, for example, 24 is 24/30 = 0.80, which means that the student has correctly answered 80% of the test items. It follows from Eq. 13.11 that the AIS
 of the posttest and pretest
 means are 21.0/30 = 0.70 and 16.9/30 = 0.56, respectively. On average, the students have correctly answered 70% of the items at posttest and 56% at pretest
. Therefore, the students have correctly answered 70% − 56% = 14% more items at posttest than at pretest
. The use of the AIS
 translates the unstandardized difference of 4.1 of the means into a gain of 14% correctly answered items.

Example 13.4 AIS-transformation of observed test scores, Likert items
An anxiety test is administered to samples of nE E-condition and nC C-condition participants. The test consists of k = 12 5-point Likert items. The items are conventionally scored (1, 2, 3, 4, and 5), and the observed test score is the sum of the item
 scores. The sample mean of the E-condition participants is [image: $$ \bar{X}_{E} = 42 $$] and the sample mean of the C-condition participants is [image: $$ \bar{X}_{C} = 36 $$]. Using Eq. 13.4, the estimate of the unstandardized difference of the E-
 and C-condition means is:[image: $$ \hat{\updelta}_{EC} = 42 - 36 = 6, $$]



which is hard to interpret. It follows from Eq. 13.11 that the AIS
 of the E-
 and C-condition means are 42/12 = 3.5 and 36/12 = 3.0, respectively. On average, the E-condition participants scored 3.5 at a 5-point scale and the C-condition participants 3.0. Therefore, on average, the E-
 and C-condition participants differ 3.5 − 3.0 = 0.5 point at a 5-point Likert scale.

13.3.2 The Proportion of Maximum Possible (POMP) Score Transformation

The Proportion of Maximum Possible
 (POMP) score is another linear transformation that can facilitate the interpretation of observed test scores. The minimum possible test score is denoted Xmin and the maximum possible score Xmax (see Sect. 2.​4.​2 of this book). The transformation is:[image: $$ POMP = \frac{{X - X_{min} }}{{X_{max} - X_{min} }} = - \frac{{X_{min} }}{{X_{max} - X_{min} }} + \frac{1}{{X_{max} - X_{min} }}X. $$]

 (13.12)




The last term of Eq. 13.12 shows that the POMP-score is a linear transformation of the observed test score (the intercept of the linear function is −Xmin/(Xmax − Xmin) and the slope is 1/(Xmax − Xmin)).
The POMP-score varies between 0 when the observed test score is equal to the minimum possible score (i.e., X = Xmin) and 1 when the observed test score is equal to the maximum possible test score (i.e., X = Xmax). POMP is the proportion that the observed test score takes of the distance between the minimum and maximum possible test scores. For example, POMP = 0.5 means that the observed test score is halfway between the minimum and maximum possible test scores (see Example 13.5).
Example 13.5 POMP-transformation of observed test scores
The anxiety test of Example 13.4 has twelve 5-point Likert items that are scored 1, 2, 3, 4, and 5. The minimum possible score is 12 × 1 = 12 (a participant scored 1 at each of the twelve items), and the maximum possible score is 12 × 5 = 60 (a participant scored 5 at each of the twelve items). The sample means of the E-
 and C-condition participants are [image: $$ \bar{X}_{E} = 42 $$] and [image: $$ \bar{X}_{C} = 36 $$], respectively. It follows from Eq. 13.12 that the mean POMP-scores of the E-
 and C-condition are [image: $$ \overline{POMP}_{E} = \left( {42 - 12} \right)/\left( {60 \, - 12} \right) = 0.63 $$] and [image: $$ \overline{POMP}_{C} = \left( {36 - 12} \right)/\left( {60 - 12} \right) = 0.50 $$], respectively. The unstandardized difference of the POMP-score means is:[image: $$ \overline{POMP}_{EC} = \overline{POMP}_{E} - \overline{POMP}_{C} = 0.63 - 0.50 = 0.13. $$]





The interpretation is that the proportion that the observed test score takes of the distance between the minimum and maximum possible scores is 0.13 more for the E-condition than for the C-condition (see Fig. 13.1).[image: ../images/459008_1_En_13_Chapter/459008_1_En_13_Fig1_HTML.png]
Fig. 13.1Unstandardized POMP-score difference between E-
 and C-conditions




Cohen, Cohen, Aiken, and West (1999) evaluated the conventional observed test score, the standardized observed test score (Z-score, i.e., score with mean 0 and variance 1), the AIS
 and POMP-score against criteria for interpretability. The conventional observed test score and its Z-score are hard to interpret. The AIS
 and the POMP-score meet their interpretability criteria. Cohen et al. (1999) prefer the POMP-score because it better meets their criteria than the AIS
. However, in practice, the AIS
 is often also a suitable transformation that facilitates the interpretation of unstandardized differences of observed test score means.
13.4 Recommendations
Standardized effect sizes are probably the most used effect size
 measures of behavioral research. They are applied for sample size
 planning and in meta-analysis. However, the interpretation of standardized differences of means is usually hard because the interpretation is in terms of the population standard deviation. Moreover, this standard deviation can be estimated in different ways from sample data.
Unstandardized effect size
 measures are easy to interpret when the measurement scale is familiar. However, behavioral measurement scales are frequently unfamiliar. The familiarity of observed test scores is usually increased by applying the POMP-score or AIS
 transformation to these scores.
Researchers are recommended to compute unstandardized effect sizes, even though they use standardized measures. A recommended unstandardized measure for the comparison of means is the probability of superiority. Moreover, the POMP-score and AIS
 transformation are recommended to facilitate the interpretation of the unstandardized difference of observed test score means.
References
	Baguley, T. (2009). Standardized or simple effect size: What should be reported? British Journal of Psychology, 100, 603–617.

	Cohen, P., Cohen, J., Aiken, L. S., & West, S. G. (1999). The problem of units and the circumstance for POMP. Multivariate Behavioral Research, 34, 315–346.

	Grissom, R. J., & Kim, J. J. (2012). Effect sizes for research: Univariate and multivariate applications (2nd ed.). London, England: Routledge.

	Wilkinson, L., & the Task Force on Statistical Inference (1999). Statistical methods in psychology journals. American Psychologist, 54, 594–604.



© Springer Nature Switzerland AG 2019
Gideon J. MellenberghCounteracting Methodological Errors in Behavioral Researchhttps://doi.org/10.1007/978-3-030-12272-0_14

14. Pretest-Posttest Change

Gideon J. Mellenbergh1  
(1)Emeritus Professor Psychological Methods, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

 

 
Gideon J. Mellenbergh
Email: G.J.Mellenbergh@uva.nl



Abstract

Pretest
-posttest change can be studied at the population level and at the individual level. Within-group change is the change of a population parameter, for example, the mean from pretest
 to posttest. Between-groups change is the difference of within-group change between (e.g., E-
 and C-
) groups. In contrast, within-person change is the change of a single person. In general, change at the population level does not apply to single persons. Within-group change is assessed by testing the null hypothesis of equal pretest
 and posttest population means. Between-groups change can be tested with different methods. The test based on posttest-pretest
 difference scores is described. Single-person change is derived from the participant’s observed test scores or his (her) item
 responses. Change methods based on item
 responses depend on the scale of the items. Methods for continuous and dichotomous item
 responses are described. The participant’s observed pretest
 and posttest scores are used to test the null hypothesis of no true score
 change. The same null hypothesis can be tested with the participant’s item
 responses if these responses are at a continuous scale. The method uses the participant’s continuous item
 responses instead of his (her) test scores. An individual change measure is defined for dichotomous item
 responses. This measure is applied to test the null hypothesis of no change of a single person. It is recommended to study pretest
-posttest change at both the population and the individual level because these levels yield different information.
Keywords
Between-groups changeContinuous item response changeDichotomous item response changeObserved test score changePopulation/single-person change fallacyWithin-group changeWithin-person change
The study of change is an important topic of the behavioral sciences. It is the main topic of developmental psychology, and is also important in, for example, clinical and organizational psychology, and education. Since the publication of a volume edited by Harris (1963), psychometric and statistical methods to measure change are important parts of the methodological literature.
Change can be studied at the level of a population and at the level of single persons. The study of population change is on the variability of population parameters
 (e.g., a population mean across time), whereas the study of single-person change is on the variability of a single person’s parameter (e.g., John’s true test score across time). A fallacy is that results of population change are applied to single persons. It has been shown that the results of population change only apply to individuals under very specific conditions that are usually not fulfilled in the behavioral sciences (Molenaar, 2004; Molenaar & Campbell, 2009). Nevertheless, the fallacy is very persistent, and behavioral scientists continue to apply results of population change to single persons. This chapter discusses the fallacy for the special case of change from pretest
 to posttest, and presents methods to assess pretest
-posttest change.
14.1 The Population/Single-Person Fallacy in Pretest-Posttest Studies
A pretest
-posttest study administers a test to participants at one occasion (pretest
) and administers the same test at a second occasion (posttest). Three types of pretest
-posttest change are distinguished. First, within-group pretest-posttest change
, which is the change of a group characteristic (e.g., a mean) from pretest
 to posttest. Second, between-groups pretest-posttest change
, which is the difference in change of a group characteristic between groups (e.g., the difference in change between E-
 and C-group means). Finally, within-person pretest-posttest change
, which is the change of a characteristic of a single person (e.g., the change of a patient’s anxiety).
The within-group and between-groups change are defined at the level of population parameters
. The within-group change is studied by comparing pretest
 and posttest parameters
, for example, the pretest
 and posttest means of one group of participants. The between-groups change is studied by comparing within-group change of different groups, for example, by comparing the difference of pretest
 and posttest means between E-
 and C-groups. These parameters
 are estimated by sample statistics
. In contrast, within-person change is defined at the level of a single participant, for example, the change of Mary’s social anxiety test score from pretest
 to posttest.
Many behavioral scientists belief that change at the group level applies to the single-person level. Using simulated data, Molenaar (1999) demonstrated that this belief is a misconception. Example 14.1 is a simple demonstration of this fallacy.
Example 14.1 Within-group change that does not apply to single participants
A test is administered to four participants at pretest
 and posttest. Table 14.1 reports fictitious pretest
 and posttest scores of the four participants.Table 14.1(Fictitious) posttest, pretest
, and difference scores of four participants


	Participant no.
	Score

	 	Posttest
	
                          Pretest

                        
	Difference

	1
	16
	10
	+6

	2
	18
	12
	+6

	3
	8
	14
	−6

	4
	10
	16
	−6

	Mean:
	13
	13
	0





Table 14.1 shows that the test score of each of the four participants changed from pretest
 to posttest: The scores of the first two participants increased and the scores of the last two participants decreased. However, the pretest
 and posttest means are the same. The means indicate no change at the group level, but the individual scores indicate change at the single-person level.
Example 14.1 demonstrates that results of the group level do not need to apply to the individual level.
Classical statistical methods, such as, Student’s t test, Analysis of Variance (ANOVA), and Analysis of Covariance (ANCOVA) study change at the group level. This type of analysis is population oriented because the focus is on change of population parameters
, such as, means. However, results at the population level apply only to individuals under specific conditions that are usually not fulfilled in the behavioral sciences (Molenaar, 2004; Molenaar & Campbell, 2009).

14.2 Group Change

Pretest
-posttest group change is defined at the level of the population of participants. It is the change of population parameters
 from pretest
 to posttest. These parameters
 are estimated from sample data. The two types of group change are within-group pretest-posttest change
, which is the topic of Sect. 14.2.1, and between-groups pretest-posttest change
, which is discussed in Sect. 14.2.2.
14.2.1 Within-Group Pretest-Posttest Change

A test
 is administered to a sample of n participants at pretest
 and posttest. For each of the n participants pretest
 (X1) and posttest (X2) scores are collected. The difference 
                or gain score
                
               of the ith participant is the difference of his (her) posttest and pretest
 scores, and was given by Eq. 12.1 (Sect. 12.​1.​1 of this book):[image: $$ D_{i} = X_{\mathit{2i}} - X_{\mathit{1i}} , $$]

 (12.1)


where Di is the ith participant’s difference score, and X1i and X2i are his (her) pretest
 and posttest scores, respectively. The difference score indicates the participant’s test score change from pretest
 to posttest. For example, a participant who has a pretest
 score of 10 (X1i = 10) and a posttest score of 15 (X2i = 15) changed Di = 15−10 = 5 test scores from pretest
 to posttest.

The null hypothesis of equal pretest
 and posttest population means (i.e., μ1 = μ2) can be written as[image: $$ H_{\mathit{0}} :\upmu_{\mathit{2}} -\upmu_{\mathit{1}} = 0, $$]

 (12.2)


which is equivalent to the null hypothesis that the population mean of the difference score is zero, which was given by Eq. 12.3 (Sect. 12.​1.​1 of this book):[image: $$ H_{\mathit{0}} :\upmu_{D} = 0. $$]

 (12.3)




Chapter 12 discussed methods to construct CIs of μD and to test null hypothesis Eq. 12.3. Section 12.​1.​1 described Student’s t method and Sect. 12.​4.​1 the bootstrap t method for paired scores to construct CIs and to test null hypothesis Eq. 12.3 Student’s t method assumes that the difference (D-) score is normally distributed in the population, but the bootstrap t method does not make this assumption.
14.2.2 Between-Groups Change
The interest is in the difference in change of population parameters
 between groups. For convenience, the discussion is restricted to two (e.g., E-
 and C-condition) groups, but can be extended to more than two groups. A test is administered to a sample of n participants. The test is administered to each of the participants at pretest
. A subsample of nE participants is assigned to the E-condition and the remaining nC participants are assigned to the C-condition. After the conditions are applied, the same test is administered to each of the participants at posttest. If the participants are randomly assigned to the conditions, the design is called the randomized group comparison pretest
-posttest design, and, if the participants are not randomly assigned to the conditions, the design is called the nonequivalent comparison group pretest-posttest design
 (see Sect. 6.​9 of this book).
The conventional methods to analyze pretest
-posttest data are repeated measurements ANOVA and ANCOVA. This section mentions methods that fit in with between-groups methods that were discussed in Chap. 12 of this book.
Equation 12.1 combines a participant’s pretest
 and posttest scores into one difference (D-) score. The difference score is the DV
 that may differ between (E-
 and C-
) groups. The construction of CIs and testing of null hypotheses between two independent groups were discussed in Sect. 12.​1.​2 of this book. Analogously to Eq. 12.​11, the null hypothesis of equal mean difference scores of the E-
 and C-group is:[image: $$ H_{\mathit{0}} :\upmu_{DE} -\upmu_{DC} = 0, $$]

 (14.1)


where μDE and μDC are the population means of the difference scores of the E-
 and C-group, respectively. These means are estimated by the sample means [image: $$ \bar{X}_{DE} $$] and [image: $$ \bar{X}_{DC} $$] of the E-
 and C-group, respectively. Student’s t method and Welch method (Sect. 12.​1.​2 of this book) can be used to construct CIs of μDE−μDC, and to test null hypothesis Eq. 14.1. Student’s t method assumes that the D-score is normally distributed with homogeneous variance
, whereas the Welch method only assumes that the D-score is normally distributed but does not make the homogeneity of variance assumption.
Student’s t method makes strong assumptions on the D-score (normality and homogeneous variance
) that are usually not fulfilled in behavioral science data. The Welch test only assumes that the D-score is normally distributed, but this assumption is often not fulfilled (Micceri, 1989). The bootstrap t method for independent groups (Sect. 12.​4.​2 of this book) does not make strong assumptions. Therefore, the bootstrap t method is recommended for constructing CIs of μDE−μDC and to test null hypothesis Eq. 14.1.
14.3 Single-Person Change
As said above, change at the group level does not imply that the same change applies to single persons. This section discusses single-person pretest
-posttest change. Single-person change can be based on a person’s observed posttest-pretest
 difference score or his (her) pretest
 and posttest item
 responses.
The observed difference score is the difference of a participant’s observed posttest and pretest
 scores (see Eq. 12.1). Classical Test Theory (CTT)
 developed a single-person change method that is based on the observed difference score (Sect. 14.3.1). This method does not use the participant’s item
 responses. Mellenbergh and van den Brink (1998) described single-person change measures based on a participant’s item
 responses. Section 14.3.2 describes a method for continuous item
 responses, and Sect. 14.3.3 for dichotomous item
 responses.
14.3.1 Single-Person Observed Test Score Change

CTT
 is a statistical theory of observed test scores (Lord & Novick, 1968). It decomposes a test taker’s observed test score into a true score
 and a random error (see Sect. 7.​2 of this book). A test taker’s true score
 is estimated by his (her) observed test score. The precision of this estimate has a within-person and a between-persons aspect. A global measure of the within-person precision of this estimate is the standard 
                error of measurement of the test (Sem(X)).
                
               Sem(X) can be estimated from the test data of a sample of test takers, and is used to construct CIs of single test takers’ true scores.
The difference (D-) score is the difference of a participant’s observed posttest and pretest
 scores (Eq. 12.1). When CTT
 is applied to the pretest
 and posttest scores, it follows that the difference score can be decomposed into a true difference score
 and a random difference error (see Sect. 15.​4.​1 of the next chapter):[image: $$ D_{i} = td_{i} + ED_{i} , $$]

 (14.2)


where tdi and EDi are participant i’s true difference score
 and random difference error, respectively. The participant’s observed difference score is used to estimate his (her) true difference score
. The 
                standard error of measurement of the difference score (Sem(D))
                
               is a global measure of the within-person precision of this estimate. Sem(D) is used to construct approximate CIs of a participant’s true difference score
 and to test null hypotheses on this score.
Under the assumptions of CTT
, the standard error of measurement of the difference score
 can be expressed in terms of the standard error of measurement of the test
 (Lord & Novick, 1968, Sect. 7.4):[image: $$ Sem(D) = Sem(X)\sqrt 2 . $$]

 (14.3)




Sem(D) is estimated by inserting an estimate of Sem(X) into Eq. 14.3.
Equation 14.3 is used to construct approximate CIs of a single participant’s true difference score
. Under the assumption that participant i’s random difference error is normally distributed, the statistic[image: $$ \frac{{D_{i} - td_{i} }}{Sem(X)\sqrt 2 } $$]

 (14.4)


is approximately normally distributed with mean zero and variance one. In practice, Sem(X) is estimated from the data of a sample of test takers. The 0.025 and 0.975 quantiles
 of the standard normal distribution are −1.96 and +1.96, respectively. Using the same method as described in Sect. 12.​1 of this book, it follows that the two-sided 95% CI
 of tdi is approximately:[image: $$ D_{i} - 1.96\,S\hat{e}m(X)\sqrt 2 &lt; td_{i} &lt; D_{i} + 1.96\,S\hat{e}m(X)\sqrt 2 , $$]

 (14.5)


where the hat indicates that the standard error of measurement
 is estimated from a sample of test takers. The 0.05 and 0.95 quantiles
 of the standard normal distribution are −1.65 and +1.65, respectively. Therefore, the lower end-point 95% CI
 of tdi is approximately:[image: $$ td_{i} &gt; D_{i} - 1.65\,S\hat{e}m(X)\sqrt 2 , $$]

 (14.6)


and the upper end-point 95% CI
 is approximately:[image: $$ td_{i} &lt; D_{i} + 1.65\,S\hat{e}m(X)\sqrt 2 . $$]

 (14.7)




A participant has not changed from pretest
 to posttest if his (her) true difference score
 is zero. Equations 14.5, 14.6, or 14.7 are used to test the null hypothesis of no true score
 change:[image: $$ H_{0} :td_{i} = 0 $$]

 (14.8)


at the 5% significance level. Equation 14.5 is applied for a two-tailed test
 of this null hypothesis. The null hypothesis is rejected if zero is outside CI
 Eq. 14.5, and is not rejected if zero is within this CI
. Equation 14.6 is applied for a one-tailed test
 of null hypothesis Eq. 14.8 against the alternative that participant i’s true difference score
 is larger than zero. The null hypothesis is rejected if zero is outside CI
 Eq. 14.6, and is not rejected if zero is within this CI
. Equation 14.7 is applied for a one-tailed test
 of null hypothesis Eq. 14.8 against the alternative that participant i’s true difference score
 is smaller than zero. The null hypothesis is rejected if zero is outside CI
 Eq. 14.7, and is not rejected if zero is within this CI.
Example 14.2 demonstrates the testing of a single participant’s true difference score
 change.
Example 14.2 A single-child’s true difference score change
The SASC is a 46-item
 test to measure children’s social anxiety (see Example 7.2, Sect. 7.​2 of this book). The items are dichotomously scored (1 for an answer that indicates the presence of social anxiety, and 0 for the absence of social anxiety). A child’s observed test score is the child’s number of endorsed items. The test was administered to a sample of Dutch children to norm the test scores. The standard error of measurement
 was estimated separately for boys and girls. The estimate of the standard error of measurement
 of the test in a sample of 1039 girls is [image: $$ S\hat{e}m(X) = 2.6 $$] (Dekking, 1983). Meijers (1978) administered the SASC to a group of girls before (pretest
) and after (posttest) an intervention to reduce social anxiety. One girl (i) had a pretest
 score X1i = 8 and a posttest score X2i = 2. Therefore, her difference score is:[image: $$ D_{i} = X_{2i} - X_{1i} = 2 - 8 = - 6. $$]





The therapists expect that the intervention will reduce the girl’s true social anxiety. Therefore, a one-tailed test
 of the null hypothesis of no true score
 change (Eq. 14.8) against the alternative that the true difference score
 is smaller than zero is applied. The one-sided CI
 Eq. 14.7 is:[image: $$ td_{i} &lt; - 6 + 1.65 \times 2.6 \times \sqrt 2 = 0.07. $$]





Zero is within this interval. Therefore, the null hypothesis of no true anxiety score change is not rejected at the one-tailed 5% significance level.
Sijtsma and Emons (2011) studied the power of the tests of null hypothesis Eq. 14.8. Their results show that relatively long tests are needed for an adequate test of this null hypothesis. It is recommended that tests should have at least 15 or 20 items when they are applied to test null hypothesis Eq. 14.8.

14.3.2 Single-Person Continuous Item Response Change
The previous section based a person’s change on his (her) observed test scores. A test consists of a number of items, and the information from a person’s item
 responses can be used to assess a person’s pretest
-posttest change. This section describes a change measure based on responses to continuous items.
A test consists of k items that have a continuous item
 response scale (e.g., a reaction time or continuous line scale). The test is administered to a participant at pretest
 and posttest. The ith participant’s pretest
 score at the jth item
 is denoted by X1ij and his (her) posttest score by X2ij. The jth 
                item difference score
                
               of the ith participant is:[image: $$ D_{ij} = X_{2ij} - X_{1ij} . $$]

 (14.9)




The observed test score of the ith participant is the sum of his (her) continuous item
 scores. The ith participant’s observed pretest
 score is X1i, his (her) observed posttest score X2i, and his (her) difference score Di. The standard deviation of participant i’s difference scores is denoted by Si. Table 14.2 clarifies this notation.Table 14.2Notation participant i’s scores


	
Item
 no.
	Participant i’s item
 score

	 	Posttest
	
                          Pretest

                        
	Differences

	1
	
                          X
                          
                          2i1
                        
	
                          X
                          
                          1i1
                        
	
                          D
                          
                          i1
                        

	.
	.
	.
	.

	.
	.
	.
	.

	.
	.
	.
	.

	
                          j
                        
	
                          X
                          
                          2ij
                        
	
                          X
                          
                          1ij
                        
	
                          D
                          
                          ij
                        

	.
	.
	.
	.

	.
	.
	.
	.

	.
	.
	.
	.

	
                          k
                        
	
                          X
                          
                          2ik
                        
	
                          X
                          
                          1ik
                        
	
                          D
                          
                          ik
                        

	Sum:
	
                          X
                          
                          2i
                        
	
                          X
                          
                          1i
                        
	
                          D
                          
                          i
                        

	Standard deviation Di−scores
	 	 	
                          S
                          
                          i
                        





It is assumed that participant i’s item
 difference (Di−) scores are normally distributed with mean tdi/k (i.e., the mean of participant i’s true difference scores) and variance [image: $$ \sigma_{i}^{2} $$]. Under these assumptions, the statistic[image: $$ T_{i} = \frac{{\tfrac{{D_{i} }}{k} - \tfrac{{td_{i} }}{k}}}{{S_{i} \sqrt {\tfrac{1}{k}} }} = \frac{{D_{i} - td_{i} }}{{S_{i} \sqrt k }} $$]

 (14.10)


has Student’s t distribution with k–1 degrees of freedom. Using the same methods as in Sect. 12.​1.​1, it follows that the two-sided 95% CI
 of tdi is:[image: $$ D_{i} - t_{U} \times S_{i} \times \sqrt k &lt; td_{i} &lt; D_{i} - t_{L} \times S_{i} \times \sqrt k , $$]

 (14.11)


where tL is the 0.025 quantile of Student’s t distribution with k–1 degrees of freedom, and tU the 0.975 quantile of this distribution. The null hypothesis of no true score
 change (Eq. 14.8) is rejected at the two-tailed 5% significance level if zero is outside this CI
, and is not rejected if zero is within this CI
. One-tailed tests of null hypothesis Eq. 14.8 are made using one-sided CIs
. The lower end-point 95% CI
 of tdi is:[image: $$ td_{i} &gt; D_{i} - t_{U}^{*} \times S_{i} \times \sqrt k , $$]

 (14.12)


where [image: $$ t_{U}^{*} $$] is the 0.95 quantile of Student’s t distribution with k–1 degrees of freedom. Null hypothesis Eq. 14.8 is rejected at the one-tailed 5% significance level against the alternative that participant i’s true difference is larger than zero if zero is outside this CI
. The upper end-point 95% CI
 of tdi is:[image: $$ td_{i} &lt; D_{i} - t_{L}^{*} \times S_{i} \times \sqrt k , $$]

 (14.13)


where [image: $$ t_{L}^{*} $$] is the 0.05 quantile of Student’s t distribution with k−1 degrees of freedom. Null hypothesis Eq. 14.8 is rejected at the one-tailed 5% significance level against the alternative that participant i’s true difference is smaller than zero if zero is outside this CI
.
Student’s t method assumes that participant i’s item
 difference scores are normally distributed. The bootstrap t method for paired scores does not make this assumption. The bootstrap t method is applied in the same way as described in Sect. 12.​4.​1 of this book. A sample of size k is randomly selected with replacement
 from participant i’s k observed item
 scores. Equation 12.​16 (Sect. 12.​4.​1) is replaced by[image: $$ T_{i1}^{*} = \frac{{D_{i1}^{*} - D_{i} }}{{S_{i1}^{*} \sqrt k }}, $$]

 (14.14)


where [image: $$ D_{i1}^{*} $$] and [image: $$ S_{i1}^{*} $$] are the sum and standard deviation, respectively, of participant i’s item
 scores of the first bootstrap sample. Note that [image: $$ D_{i1}^{*} $$] and [image: $$ S_{i1}^{*} $$] are computed in the bootstrap sample, whereas Di is computed in the original set of observed item
 scores. Continuing with the same steps as described in Sect. 12.​4.​1 yields the bootstrap t two-sided 95% CI
 of participant i’s true difference score
:[image: $$ D_{i} - T_{i(\mathit{975})}^{*} \times S_{i} \times \sqrt k &lt; td_{i} &lt; D_{i} - T_{i(\mathit{25})}^{*} \times S_{i} \times \sqrt k . $$]

 (14.15)




The single-person CIs based on observed scores of the previous section (Eqs. 14.5, 14.6, and 14.7) depend on participant i only via his (her) difference (Di-) score, which varies between participants. The single-person CIs based on continuous item
 scores of this section (Eqs. 14.11, 14.12, 14.13, and 14.15) depend on participant i not only via his (her) difference (Di-) score, but also via the standard deviation (Si) of his (her) item
 difference scores, which varies between participants. A consequence is that the width of two-sided CIs
 is based on observed scores does not depend on the participant, whereas the width of two-sided CIs
 based on continuous item
 scores depends on the participant. For example, the width of CI
 Eq. 14.5 is the difference of the upper and lower end points of this CI
:[image: $$ D_{i} + 1.96\,S\hat{e}m(X)\sqrt 2 - (D_{i} - 1.96\,S\hat{e}m(X)\sqrt 2 ) = 3.92\,S\hat{e}m(X)\sqrt 2 , $$]

 (14.16)


which is the same for each of the participants because [image: $$ S\hat{e}m(X) $$] does not vary between participants. The width of CI
 Eq. 14.11 is:[image: $$ D_{i} - t_{L} \times S_{i} \times \sqrt k - (D_{i} - t_{U} \times S_{i} \times \sqrt k ) = (t_{U} - t_{L} ) \times S_{i} \times \sqrt k , $$]

 (14.17)


which depends on the participant because Si varies between participants.
14.3.3 Single-Person Dichotomous Item Response Change
A test consists of k items that are dichotomously scored: 1 for a correct answer to a cognitive item
 or an agree answer to an attitude or personality item
, and 0 for an incorrect (don’t agree) answer. A participant responds to each of the items at both pretest
 and posttest. A participant can have four different pretest
-posttest item
 response patterns:	(1)incorrect (don’t agree) answer to the item
 at pretest
 and posttest (pattern: (0,0));

 

	(2)correct (agree) answer to the item
 at pretest
 and posttest (pattern: (1,1));

 

	(3)incorrect (don’t agree) answer to the item
 at pretest
 and correct (agree) answer at posttest (pattern: (0,1));

 

	(4)correct (agree) answer to the item
 at pretest
 and incorrect (don’t agree) answer at posttest (pattern: (1,0)).

 





Participant i’s frequencies of these patterns are: fi (0,0), fi (1,1), fi (0,1), and fi (1,0), respectively. These frequencies are estimated from participant i’s pretest
 and posttest data. Table 14.3 shows the scores of a participant to 10 educational test items, at pretest
 and posttest.Table 14.3Participant i’s fictitious pretest
 and posttest responses and frequencies of pretest
-posttest item
 response patterns, 10-item
 test


	
Item
 no
	
Item
 score
	Pattern

	 	
                          Pretest

                        
	Posttest
	(0,0)
	(1,1)
	(0,1)
	(1,0)

	1
	1
	1
	 	x
	 	 
	2
	0
	1
	 	 	x
	 
	3
	0
	0
	x
	 	 	 
	4
	0
	0
	x
	 	 	 
	5
	1
	0
	 	 	 	x

	6
	0
	1
	 	 	x
	 
	7
	0
	1
	 	 	x
	 
	8
	0
	0
	x
	 	 	 
	9
	0
	1
	 	 	x
	 
	10
	1
	1
	 	x
	 	 
	[image: $$ \hat{f}_{i} $$] (0,0):
	 	 	3
	 	 	 
	[image: $$ \hat{f}_{i} $$] (1,1):
	 	 	 	2
	 	 
	[image: $$ \hat{f}_{i} $$] (0,1):
	 	 	 	 	4
	 
	[image: $$ \hat{f}_{i} $$] (1,0):
	 	 	 	 	 	1


Note A cross indicates the pretest
-posttest item response pattern






A participant’s patterns (0,0) and (1,1) do not indicate change from pretest
 to posttest because the participant’s response to the item
 is the same at pretest
 and posttest. The patterns (0,1) and (1,0) show change: pattern (0,1) indicates that the participant’s incorrect (don’t agree) answer at pretest
 changed to a correct (agree) answer at posttest, whereas pattern (1,0) indicates that the participant’s correct (agree) answer at pretest
 changed to an incorrect (don’t agree) answer at posttest. If participant i’s frequency of the (0,1) pattern is larger than his (her) frequency of the (1,0) pattern, the change is in the direction of more correct (agree) answers at posttest than at pretest
, and if participant i’s frequency of the (0,1) pattern is smaller than the frequency of his (her) (1,0) pattern, the change is in the direction of less correct (agree) answers at posttest than at pretest
. For example, the participant of Table 14.3 changed four incorrect answers at pretest
 to correct answers at posttest [image: $$ \left( {\hat{f}_{i} \left( {0,1} \right) = 4} \right) $$] and one correct answer at pretest
 to an incorrect answer at posttest [image: $$ \left( {\hat{f}_{i} \left( {1,0} \right) = 1} \right) $$]. Therefore, he or she changed in the direction of more correct answers at posttest than at pretest
: [image: $$ \hat{f}_{i} \left( {0,1} \right) &gt; \hat{f}_{i} \left( {1,0} \right) $$].
A change parameter can be based on the ratio of fi (0,1) and fi (1,0). A 
                dichotomous item change parameter (Chd)
                
               is the natural logarithm (i.e., logarithm at base e = 2.718…) of the ratio of the frequencies of the (0,1) and (1,0) patterns (Mellenbergh & van den Brink, 1998). The frequencies of participant i’s (0,1) and (1,0) patterns are estimated by his (her) responses to the k items. The estimate of participant i’s dichotomous item
 change parameter is:[image: $$ C\hat{h}d_{i} = ln\frac{{\hat{f}_{i} (0,1)}}{{\hat{f}_{i} (1,0)}}, $$]

 (14.18)


where ln is the natural logarithm. If [image: $$ C\hat{h}d_{i} $$] is positive the ith participant changed into the direction of more correct (agree) answers, if [image: $$ C\hat{h}d_{i} $$] is zero, participant i did not change, and, if [image: $$ C\hat{h}d_{i} $$] is negative, participant i changed into the direction of less correct (agree) answers. The variance of the change parameter Eq. 14.18 is estimated by:[image: $$ S^{2} (C\hat{h}d_{i} ) = \frac{{\hat{f}_{i} (0,1) + \hat{f}_{i} (1,0)}}{{\hat{f}_{i} (0,1) \times \hat{f}_{i} (1,0)}}. $$]

 (14.19)




A problem of Eqs. 14.18 and 14.19 is that they are undefined if [image: $$ \hat{f}_{i} \left( {0,1} \right) = 0 $$] or [image: $$ \hat{f}_{i} \left( {1,0} \right) = 0 $$]. A practical solution is to replace a zero by 0.5.
The statistic[image: $$ \frac{{C\hat{h}d_{i} - Chd_{i} }}{{S(C\hat{h}d)_{i} }} $$]

 (14.20)


is approximately normally distributed with mean zero and variance one. Therefore, the two-sided 95% CI
 of [image: $$ Chd_{i} $$] is approximately:[image: $$ C\hat{h}d_{i} - 1.96S(C\hat{h}d)_{i} &lt; Chd_{i} &lt; C\hat{h}d_{i} + 1.96S(C\hat{h}d)_{i} . $$]

 (14.21)




The null hypothesis that participant i has not changed from pretest
 to posttest is that his (her) change parameter is zero:[image: $$ H_{0} :Chd_{i} = 0. $$]

 (14.22)




This null hypothesis is rejected at the two-tailed 5% significance level if zero is outside CI
 Eq. 14.21, and it is not rejected if zero is within this CI
. The lower end-point 95% CI
 of Chdi is approximately:[image: $$ Chd_{i} &gt; C\hat{h}d_{i} - 1.65S(C\hat{h}d)_{i} . $$]

 (14.23)





This CI
 is used to test the null hypothesis of no change (Eq. 14.22) against the alternative that participant i’s change is larger than zero. Null hypothesis Eq. 14.22 is rejected at the one-tailed 5% significance level if zero is outside CI
 Eq. 14.23. The upper end-point 95% CI
 of Chdi is approximately:[image: $$ Chd_{i} &lt; C\hat{h}d_{i} + 1.65S(C\hat{h}d)_{i} . $$]

 (14.24)





This CI
 is used to test the null hypothesis of no change (Eq. 14.22) against the alternative that participant i’s change is smaller than zero. Null hypothesis Eq. 14.22 is rejected at the one-tailed 5% significance level if zero is outside CI
 Eq. 14.24.
Example 14.3 demonstrates single-person dichotomous item
 response change.
Example 14.3 A single-child dichotomous item response change
The girl of Example 14.2 responded to the k = 46 items of the SASC at pretest
 and posttest. The items of the test are scored 1 for a yes-answer and 0 for a no-answer, where a yes-answer refers to a social anxious response. The frequency of her (1, 0) pattern (change from a social anxious to a not social anxious response) is [image: $$ \hat{f}_{i} \left( {1,0} \right) = 6 $$], and the frequency of her (0, 1) pattern (change from a not social anxious to a social anxious response) is [image: $$ \hat{f}_{i} \left( {0,1} \right) = 0 $$]. It follows from Eq. 14.18 that the estimate of her change parameter is:[image: $$ C\hat{h}d_{i} = ln\frac{0.5}{6} = - 2.48, $$]



where the zero frequency [image: $$ \left( {\hat{f}_{i} \left( {0,1} \right) = 0} \right) $$] is replaced by 0.5. It follows from Eq. 14.19 that the estimated variance of the estimate of the girl’s change parameter is:[image: $$ S^{2} (C\hat{h}d)_{i} = \frac{0.5 + 6}{0.5 \times 6} = 2.17. $$]





The therapists expect that the intervention will decrease the girl’s social anxiety. Therefore the one-sided CI
 Eq. 14.24 is used:[image: $$ Chd_{i} &lt; - 2.48 + 1.65\sqrt {2.17} = - 0.05. $$]





Zero is outside this interval. Therefore, it is likely that the girl changed into the direction of less social anxious answers.

14.4 Comments
In general, results of population change do not need to apply to individual members of the population. The dominant strategy of the behavioral sciences is to study pretest
-posttest change at the population level. In some areas, such as, clinical and educational intervention research, predominantly single-person change is studied. For example, researchers study whether a patient’s depressive mood decreased after psychotherapy, or whether a student’s reading comprehension improved after a reading course. However, a combination of population and single-person strategies is often more appropriate than the application of only one of these two strategies. A group method is applied to assess population change. The absence and presence of population change can be caused by different patterns of single-person change. The reason of the absence of population change can be that most of the participants did not change, or that some participants changed in the positive direction and others in the negative direction (see Example 14.1). The reason of the presence of population change can be that most of the participants changed moderately into the same direction, or that a small part of the participants changed considerably into the same direction. Single-person methods will show which participants are responsible for the absence or presence of population change.
The observed score change method (Sect. 14.3.1) uses only information of the observed test score (i.e., Sem(X)), whereas the item
 response methods use information of the continuous (Sect. 14.3.2) or dichotomous (Sect. 14.3.3) item
 responses. It follows that the width of a two-sided CI
 of the observed score method is the same for each of the participants, whereas it differs between persons for the item
 response methods (cf. Eqs. 14.16 and 14.17). This difference might be the reason for the different decisions on the null hypothesis of no change of a girl’s social anxiety: The observed score method did not reject the null hypothesis (Example 14.2), whereas the item
 response method rejected the null hypothesis (Example 14.3). The item
 response methods seem to be more ‘person-oriented’ than the observed score method. However, it is not known whether the item
 response methods are generally more powerful than the observed score methods.
This chapter described methods for continuous and dichotomous items, but not for ordinal-categorical items, such as, Likert scale items. The methods for continuous and dichotomous items of this chapter are compatible with Item Response Theory (IRT)
. Other single-person change methods were derived under IRT
. For example, Embretson (1991) developed pretest
-posttest change methods for dichotomous items under the Rasch model. Moreover, Fischer (2001) developed pretest
-posttest change methods for ordinal-categorical items under Masters’ (1982) partial credit model.
14.5 Recommendations
In general, change at the level of a group of participants does not apply to each of the single participants. Therefore, it is recommended to complement the study of group change with the study of single-person change. Classical observed score and modern item
 response methods are suited to study single-person change from pretest
 to posttest. The classical observed score method needs tests of at least 15 or 20 items. The observed score method yields confidence intervals (CIs) of the same width for each of the persons, whereas the item
 response methods yield CIs that differ in width.
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Abstract
The measurement precision
 of test scores has within-person and between-persons aspects. The standard error of measurement
 assesses the precision of the measurement of a single test taker, and reliability
 the differentiation of test takers of a population. Reliability
 applies to the observed test score, the difference of two (e.g., pretest
 and posttest) scores, and item
 responses model estimates of a latent trait value. Classical Test Theory (CTT)
 developed two theoretical and one operational definition of reliability
. Theoretically, the reliability
 of the observed test score is the squared product moment correlation (pmc) between observed and true test scores in a population of test takers. Under the assumptions of CTT
, it was derived that this squared pmc is equal to the ratio of the between-persons true and observed test score variances in a population of test takers. These two definitions cannot be used to compute the reliability
 coefficient. Under the assumptions of CTT
, the theoretical definitions are equal to the pmc between two parallel tests
. This operational definition is used to compute the reliability
 coefficient. Similar theoretical definitions are given of the difference score and the latent trait estimate. Operational definitions are not needed because parallel tests
 are not needed to compute the reliability
 of the difference score and the latent trait estimate. Some counterintuitive properties of reliability
 are discussed. First, high reliability
 of the observed test score does not guarantee that the test is unidimensional. Second, less reliability
 does not imply less estimation precision
 of test taker parameters
 (i.e., his (her) true score
, true difference score
 and latent trait value), and population parameters
 (i.e., test score, difference score, and latent trait estimate means). Third, less reliability
 does not imply less power of tests of the null hypothesis of equal mean scores of two (e.g., E-
 and C-
) groups. Fourth, reliability
 applies to continuous latent variables (latent traits), but has to be adapted to discrete latent variables (latent classes): Accuracy and consistency of test score classification (e.g., masters and nonmasters of a skill) are comparable to the theoretical and operational definitions of reliability
, respectively, but consistency cannot be used to assess accuracy. Reliability
 is a between-persons concept. It is relevant within the context of the measurement of individual differences, but does not apply to other situations.
Keywords
Classical test theory (CTT)Classification accuracyClassification consistencyDifference scoreLatent classesLatent traitMeasurement precisionOperational definition of reliabilityStandard error of measurementTheoretical definitions of reliability
The measurement precision
 of a test has a within-person and a between-persons aspect (see Sect. 7.​2 of this book). 
            Classical Test Theory (CTT)
            
           defined these two aspects for the observed test score. The standard error of measurement
 is the within-person aspect and reliability
 the between-persons aspect. The statistical foundations of CTT
 and the two aspects of reliability
 are given by Lord and Novick (1968), and a comprehensive review of reliability
 is given by Haertel (2006).

CTT
 defined reliability
 for the observed test score, and extended it to the difference of observed test scores, for example, the difference of posttest and pretest
 scores. Item Response Theory (IRT)
 focused on the within-person aspect of measurement precision
, but reliability
 also applies to latent trait estimates of item
 response models. This chapter discusses the reliability
 of observed test scores, difference scores, and latent trait estimates. The focus is on properties that are counterintuitive and relatively unknown. For example, a reliable test is not always unidimensional, and the difference score is not always unreliable.
15.1 The Classical Model of Observed Test Scores

CTT
 decomposes a test taker’s observed test score into a true score
 and a random error. The classical model of test taker i’s observed test score is:[image: $$ X_{i} = t_{i} + E_{i} , $$]

 (15.1)


where Xi is test taker i’s observed test score, ti his (her) true score
, and Ei his (her) random measurement error
. The test taker’s true score
 (ti) has to be defined. Lord and Novick (1968, p. 29) applied Lazarsfeld’s thought experiment to define the true score
. It is assumed that the test is repeatedly administered to test taker i. The test taker is brainwashed after each administration such that he or she cannot remember anything of previous test administrations. Moreover, it is assumed that the test taker does not change from one test administration to the other. The result is an infinite series of the test taker’s observed test scores, which vary over test administrations because of random error. The true score
 (ti) is the mean (more precisely: the expected value) of this series of observed test scores:
Definition 
              true score
              
            : Test taker i’s true score
 (ti) is the expected value (mean) of his (her) observed test scores over (hypothetical) independent administrations of the same test to the test taker.
Table 15.1 shows test taker i’s (fictitious) observed test scores at (hypothetical) repeated administrations of the test to the test taker.Table 15.1Test taker i’s (fictitious) observed test scores at an infinite number of test administrations, the expected value (mean) and variance of these scores


	Measurement occasion
	Mean
	Variance

	1
	2
	3
	4
	……….
	(ti)
	([image: $$ \upsigma_{{X_{i} }}^{2} $$])

	40
	42
	39
	37
	……….
	39.3
	1.21





Test taker i’s true score
 is the mean of this infinite series of observed test scores (ti = 39.3).
The thought experiment cannot be done in reality because test takers remember previous test administrations and may change from test administration to test administration. The function of the thought experiment is only to define the true score
 (Borsboom, Mellenbergh, & van Heerden, 2002). According to the thought experiment, test taker i’s observed test scores vary over test administration, but the test taker’s true score
 is a constant that does not vary over test administrations. The notation of Eq. 15.1 shows this difference between true score
 on one side and observed score and error on the other side: A small letter is used to denote the constant true score
 (ti) and capitals to denote variables (Xi and Ei).
The observed test score varies within a test taker because of random error. It follows from Eq. 15.1 that the within-person variance
 of test taker i’s observed test scores over (hypothetical) test administrations (i.e., [image: $$ \upsigma_{{X_{i} }}^{2} $$]) is equal to the within-person error variance
:[image: $$ \upsigma_{{X_{i} }}^{2} =\upsigma_{{E_{i} }}^{2} $$]

 (15.2)


because ti is a constant that does not vary within test taker i. For example, the within-person variance
 of the test taker of Table 15.1 is[image: $$ \upsigma_{{E_{i} }}^{2} =\upsigma_{{X_{i} }}^{2} = 1.21 $$]



because the true score
 ti = 39.3 is a constant that does not vary over the (hypothetical) test administrations.

The CTT
 model Eq. 15.1 is extended to a population of test takers. Equations 15.1 and 15.2 and the definition of the true score
 are applied to each of the persons of a population. The model Eq. 15.1 is extended to a population by formulating it for a test taker who is randomly selected from a population:
[image: $$ X = T + E. $$]

 (15.3)




The subscript i of Eq. 15.1 is deleted because model Eq. 15.3 applies to a randomly selected test taker instead of a given test taker i. The true score
 is a constant for a given test taker i, but it varies between test takers of the population. The true score
 is indicated by a capital T to show that it is a variable instead of a constant. The observed test score (X) and the measurement error (E) vary both within and between test takers of the population, but the true score
 (T) only varies between test takers. Table 15.2 shows the fictitious test scores of a population of N test takers.Table 15.2A population of test takers’ (fictitious) observed test scores at an infinite number of test administrations, the expected values (means) and variances and mean variance of these scores


	Test taker no.
	Measurement occasion
	Mean
	Variance

	 	1
	2
	3
	4
	……….
	(ti)
	([image: $$ \upsigma_{{E_{i} }}^{2} $$])

	1
2
.
.
.

                        i
                      
.
.
.

                        N
                      
	25
35
.
.
.
40
.
.
.
43
	27
36
.
.
.
42
.
.
.
42
	22
33
.
.
.
39
.
.
.
45
	24
31
.
.
.
37
.
.
.
44
	……….
	24.5
34.7
.
.
.
39.3
.
.
.
43.9
	1.25
1.27
.
.
.
1.21
.
.
.
1.20

	 	Mean ([image: $$ \upsigma_{E}^{2} $$]): 1.24





It follows from Eq. 15.3 and the definition of the true score
 that the population variance of the observed test scores ([image: $$ \upsigma_{X}^{2} $$]) is equal to the sum of the population variances of the true score
 ([image: $$ \upsigma_{T}^{2} $$]) and the error ([image: $$ \upsigma_{E}^{2} $$]):[image: $$ \upsigma_{X}^{2} =\upsigma_{T}^{2} +\upsigma_{E}^{2} . $$]

 (15.4)




Moreover, under the assumptions of CTT
, the error variance is equal to the mean of the within-person error variances over persons of the population (Lord & Novick, 1968, Sect. 15.2.6):[image: $$ \upsigma_{E}^{2} = \frac{{\sum\limits_{i = 1}^{N} {\upsigma_{{E_{i} }}^{2} } }}{N}, $$]

 (15.5)


where N is the number of persons of the population. The mean of the last column of Table 15.2 shows the error variance of the fictitious data.
15.2 Measurement Precision

A test
 taker’s true score
 is estimated by his (her) observed test score. This estimate has two aspects of measurement precision
 (Mellenbergh, 1996), which were already mentioned in Sect. 7.​2. The within-person aspect is assessed by the standard error of measurement
 (Sect. 15.2.1) and the between-persons aspect by the reliability
 (Sect. 15.2.2).
15.2.1 Standard Error of Measurement

Test
 taker i’s true score
 is estimated by his (her) observed test score. The precision of this estimate is assessed by the variance of i’s errors over (hypothetical) test administration (i.e., [image: $$ \upsigma_{{E_{i} }}^{2} $$] of Eq. 15.2 and shown in Table 15.2). In practice, it is usually impossible to estimate this within-person variance
 because a test cannot repeatedly be administered to the same test taker. However, it is possible to estimate the population mean of the within-person error variances (i.e., the [image: $$ \upsigma_{E}^{2} $$] of Eq. 15.5 and shown in Table 15.2) from the data of a sample of test takers. The square root of the error variance is the standard error of measurement
 of the observed test score:[image: $$ Sem(X) = \sqrt {\upsigma_{E}^{2} } =\upsigma_{E} . $$]

 (15.6)




Sem(X) is a global measure of the within-person aspect of measurement precision
 because it is based on the mean of the individual error variances (see Eq. 15.5 and Table 15.2). Sem(X) is used to construct approximate confidence intervals (CIs)
 of a single test taker’s true score
 (see Example 15.1).
Example 15.1 Constructing a CI of a test taker’s true test score
A sample is randomly selected from the population of Table 15.2. The observed test score of the ith test taker is Xi = 40. His (her) true score
 and variance are not known. Test taker i’s true score
 is estimated by his (her) observed score. His (her) error variance cannot be estimated because the test cannot be repeatedly administered to the test taker. However, test taker i’s error variance is approximated by an estimate of the population mean of the error variance [image: $$ \left( {\upsigma_{E}^{2} } \right) $$]. The estimate is [image: $$ \widehat{\upsigma}_{E}^{2} = 1.30 $$]. Under the assumption that test taker i’s test score are normally distributed over repeated test administration, the 95% CI
 of his (her) true score
 is approximately from 40-1.96 [image: $$ \sqrt {1.30} $$] = 37.8 to 40 + 1.96 [image: $$ \sqrt {1.30} $$] = 42.2, that is, [image: $$ 37.8 &lt; t_{i} &lt; 42.2. $$]







The CI
 is an approximation of the test taker’s CI
 because it is based on an estimate of the population mean of the error variances and not on an estimate of the single test taker’s error variance.
15.2.2 Reliability

Reliability
 is the between-persons aspect of measurement precision
. It assesses the degree a test can distinguish between the true scores of different persons of a population. Three definitions of reliability
 are given in the psychometric literature (Lord & Novick, 1968, Sect. 13.4). Two of these definitions are theoretical and one is an operational definition (Mellenbergh, 2011, Sect. 15.1.2).
The first theoretical definition is:
Theoretical definition of 
                the reliability
                
               of the observed test score: The reliability
 of the observed test score is the squared product moment correlation (pmc) between observed and true test scores in a population of test takers:[image: $$ Rel(X) =\uprho_{XT}^{2} , $$]

 (15.7)


where Rel denotes ‘reliability
‘, and [image: $$ \uprho_{XT} $$] ([image: $$ \uprho $$] is the lower case Greek letter rho) is the pmc between observed and true test scores in a population.
The reliability
 is between zero and one (i.e., 0 ≤ Rel(X) ≤ 1) because it is a squared pmc. Rel(X) = 0 means that the test cannot discriminate between the true scores of the persons of the population, and Rel(X) = 1 means that the test perfectly discriminates between these true scores. The true scores can be predicted from the observed test scores using linear regression. The reliability
 is the proportion of the true score
 variance that is ‘explained’ by the observed test score using linear regression because it is the squared pmc between observed and true test scores.
Under the assumptions of CTT
, a second theoretical definition has been derived from the first one:
Derived theoretical definition of 
                the reliability
                
               of the observed test score: The reliability
 of the observed test score is the ratio of the between-persons true and observed test score variances in a population of test takers:[image: $$ Rel(X) = \frac{{\upsigma_{T}^{2} }}{{\upsigma_{X}^{2} }}. $$]

 (15.8)




These two definitions are theoretical. The true score
 is an unobserved variable, which means that its variance and pmc with the observed test score cannot directly be computed. Therefore, CTT
 has developed an operational definition that is used to compute the reliability
.
Operational definition of 
                the reliability
                
               of the observed test score: The reliability
 of the observed test score is the pmc between two parallel tests
 in a population of test takers:[image: $$ Rel(X) =\uprho_{{XX^{\prime}}} , $$]

 (15.9)


where X and X’ are the observed scores at two 
                parallel tests
                
              .
Under the assumption of CTT
, the three definitions are equivalent:[image: $$ Rel(X) =\uprho_{XT}^{2} = \frac{{\upsigma_{T}^{2} }}{{\upsigma_{X}^{2} }} =\uprho_{{XX^{\prime}}} . $$]

 (15.10)




The theoretical definitions (Eqs. 15.7 and 15.8) are used for the theoretical derivations, but cannot be used to compute the reliability
. The operational definition (Eq. 15.9) is applied to estimate the reliability
 of the observed test score. Lord and Novick (1968, Sect. 2.13) give a precise definition of parallel tests
. In practice, test developers apply a practical method to construct parallel tests
. They construct two tests that measure the same construct and have approximately equal observed test score means and variances. The reliability
 of the observed test score is the pmc between the observed scores of the two parallel tests
. The construction of parallel tests
 is often avoided by computing a lower bound of the reliability
. The most popular lower bound of the reliability
 is 
                Cronbach’s coefficient alpha
                
              , which is computed from the data of a single test without constructing parallel tests
. A large lower bound implies that the reliability
 has to be large. For example, if Cronbach’s alpha is 0.90, the reliability
 is equal to or larger than 0.90. Although Cronbach’s alpha is mostly used, greater lower bounds of the reliability
 exist (ten Berge & Zegers, 1978). The greatest lower bound (i.e., the lower bound that is closest to the reliability
) was derived by Jackson and Agunwamba (1977). Sijtsma (2009) showed that alpha can be substantially smaller than this greatest lower bound. Researchers are familiar with Cornbach’s alpha, but other lower bounds are closer to the reliability
 of a test. Therefore, Sijtsma (2009) recommended to report both alpha and a greater lower bound of a test.
The reliability
 and standard error of measurement
 should not be confused because they assess completely different aspects of measurement precision
. The reliability
 is a between-persons concept that applies to a population of test takers. It assesses the degree the observed test scores can distinguish between the true scores of different test takers of a population. The standard error of measurement
 is a within-person concept that applies to a single test taker. It assesses the precision of the estimation of a given test taker’s true score
. The theoretical definitions of reliability
 imply that reliability
 is undefined for a single test taker. Reliability
 is defined as the squared pmc between observed and true test scores (Eq. 15.7), but a pmc is not defined for a single pair of scores (i.e., one pair of an observed and a true test score). The derived theoretical definition (Eq. 15.8) defines reliability
 as the ratio of true and observed test score variances (i.e., [image: $$ \upsigma_{T}^{2} /\upsigma_{X}^{2} $$]). The variance of a single true test score is zero (i.e., [image: $$ \upsigma_{T}^{2} = 0 $$]), and the variance of a single observed test score is also zero (i.e., [image: $$ \upsigma_{X}^{2} = 0 $$]). Therefore, the ratio of these two variances is undefined (i.e., [image: $$ \upsigma_{T}^{2} /\upsigma_{X}^{2} = 0/0 $$]).
15.3 Counter-Intuitive Properties of the Reliability of the Observed Test Score
A reliable test score is able to distinguish between the true scores of different test takers of a population. Intuitively, it is plausible that sufficient reliability
 is a prerequisite for sound applications of test scores. However, situations exist where the reliability
 of the observed test score is large, but the interpretation of the test scores is ambiguous because the test is multidimensional (see Sect. 15.3.1). Additionally, situations exist where the 
              estimation precision
              
             is not affected by low reliability
 (see Sects. 15.3.2 and 15.3.3).
15.3.1 Reliability of the Observed Test Score and Unidimensionality
An intuitive notion is that a reliable test is unidimensional. Section 10.​2 of this book discussed that a high reliability
 of the observed test score does not guarantee that the test is measuring only one construct (Green, Lissitz, & Mulaik, 1977; Sijtsma, 2009). It is reiterated in this section: A reliable test is not necessarily unidimensional. Green et al. showed this by artificially constructing multidimensional tests that have high reliabilities. For example, they constructed a test that measures five dimensions (see Fig. 10.​4 of Sect. 10.2) but has a Cronbach’s alpha coefficient of 0.81.
15.3.2 Reliability and True Score Estimation Precision

A test
 taker’s true score
 is estimated by his (her) observed test score. CTT
 assesses the precision of this estimate by the standard error of measurement
 of the test score (see Sect. 15.2.1 of this chapter). An intuitive notion is that an unreliable test will yield imprecise estimates of test takers’ true scores. This section shows that this intuitive notion does not need to be true.
It follows from Eqs. 15.4 and 15.8 that the reliability
 of the test score can be written as:[image: $$ Rel(X) = \frac{{\upsigma_{T}^{2} }}{{\upsigma_{X}^{2} }} = \frac{{\upsigma_{T}^{2} }}{{\upsigma_{T}^{2} +\upsigma_{E}^{2} }} = \frac{{\upsigma_{T}^{2} /\upsigma_{T}^{2} }}{{(\upsigma_{T}^{2} +\upsigma_{E}^{2} )/\upsigma_{T}^{2} }} = \frac{1}{{1 + (\upsigma_{E}^{2} /\upsigma_{T}^{2} )}}. $$]

 (15.11)




The last term of Eq. 15.1 shows that the reliability
 depends on the ratio of error and true score
 variances [image: $$ \left( {\upsigma_{E}^{2} /\upsigma_{T}^{2} } \right) $$]. The test score is reliable if this ratio is small, and it is unreliable if this ratio is large.
The nominator [image: $$ \left( {\upsigma_{E}^{2} } \right) $$] of the ratio [image: $$ \upsigma_{E}^{2} /\upsigma_{T}^{2} $$] determines the precision of the true score
 estimation because the standard error of measurement of the test score
 is the square root of the error variance (cf. Eq. 15.6). However, the ratio [image: $$ \upsigma_{E}^{2} /\upsigma_{T}^{2} $$] does not only depend on the error variance but also on the true score
 variance. Therefore, different combinations of reliability
 and true score
 estimation precision
 are possible. Example 15.2 describes a test that has equal true score
 estimation precision
 in two subpopulations, but has lower reliability
 in one subpopulation than in the other one.
Example 15.2 Equal true score estimation precision but different reliabilities in two subpopulations (constructed data)
An arithmetic test is administered to a population of students. The population consists of two subpopulations: A group of students who were referred to remedial arithmetic teaching by their teachers (R group), and a group of students who were not referred to remedial teaching (NR group). The error variances of both groups are the same: [image: $$ \upsigma_{E}^{2} ({\text{R}}) =\upsigma_{E}^{2} ({\text{NR}}) = 4 $$], which means that the true score
 estimation precision
 is the same in both groups. However, the true score
 variances widely differ between the two groups: [image: $$ \upsigma_{T}^{2} \left( {\text{R}} \right) = 4 $$] and [image: $$ \upsigma_{T}^{2} \left( {\text{NR}} \right) = 16 $$]. The reason for this difference is that nearly all R group students are bad in arithmetic, whereas the arithmetic skill of the NR group students varies from weak to excellent. It follows from Eq. 15.11 that the reliability
 of the arithmetic test score is


[image: $$ Rel(X) = \frac{1}{1 + (4/4)} = 0.50 $$]



in the R group, and[image: $$ Rel(X) = \frac{1}{1 + (4/16)} = 0.80 $$]



in the NR group. The reliability
 is lower in the R group (Rel(X) = 0.50) than in the NR group (Rel(X) = 0.80), but the true score
 estimation precision
 is the same in both groups ([image: $$ Sem(X) = \sqrt 4 = 2 $$]).
Example 15.2 counteracts the intuitive notion that less reliability
 always implies less true score
 estimation precision
.
15.3.3 Reliability and Mean Test Score Estimation Precision

The
 mean
 test score is of interest in many studies. Examples are international assessment studies, where mean scores of educational tests are compared among different countries. An intuitive notion is that reliable tests have to be used because unreliable tests will yield imprecise estimates of the population mean of test scores.
The population mean of the scores of a test is indicated by [image: $$ \upmu_{X} $$] and the population variance of the test scores by [image: $$ \upsigma_{X}^{2} $$]. The population mean is estimated from sample data. The situation is discussed where a simple random sample of n participants is selected from a population. In practice, often more advanced sampling methods, such as, stratified random sampling, are used, but simple random sampling
 simplifies the discussion without changing the conclusions of this section. The test is administered to the sample of participants. The sample mean of the test scores ([image: $$ \bar{X} $$]) estimates the population mean ([image: $$ \upmu_{X} $$]). If the sample size
 (n) is sufficiently large, the sample mean ([image: $$ \bar{X} $$]) is approximately normally distributed with mean [image: $$ \upmu_{X} $$] and variance [image: $$ \upsigma_{{\bar{X}}}^{2} =\upsigma_{X}^{2} /n $$]. The square root of [image: $$ \upsigma_{{\bar{X}}}^{2} $$] determines the width of CIs of the population mean. Therefore, the variance (or, equivalently, the standard deviation) of the sample mean is a measure for the estimation precision
 of the population mean: a small variance means that the estimate is precise, and a large variance that the estimate is imprecise (see Sect. 2.​4.​2 of this book).
It follows from Eq. 15.4 and the assumptions of CTT
 that the variance of the sample mean can be written as:[image: $$ \upsigma_{{\bar{X}}}^{2} = \frac{{\upsigma_{X}^{2} }}{n} = \frac{{\upsigma_{T}^{2} +\upsigma_{E}^{2} }}{n}. $$]

 (15.12)




Equation 15.12 shows that for a fixed sample size
 (n), the estimate of the population mean is more precise if the sum of true score
 and error variances [image: $$ \left( {\upsigma_{T}^{2} +\upsigma_{E}^{2} } \right) $$] is small, and less precise if this sum is large. Equation 15.11 shows that the reliability
 of the test score is determined by the ratio of error and true scores variances [image: $$ \left( {\upsigma_{E}^{2} /\upsigma_{T}^{2} } \right) $$], while Eq. 15.12 shows that the mean score estimation precision
 is determined by the sum of these two variances [image: $$ \left( {\upsigma_{T}^{2} +\upsigma_{E}^{2} } \right) $$]. Therefore, different combinations of reliability
 and mean score estimation precision
 are possible. Example 15.3 shows that the mean score estimation precision
 of the arithmetic test of Example 15.2 is larger in the R group of students than in the NR group, although the reliability
 of the test scores is lower in the R group than in the NR group.
Example 15.3 Less reliability but more precise mean test score estimation (constructed data of Example 15.2)
The reliability
 of the arithmetic test scores of Example 15.2 is lower in the R group (Rel(X) = 0.50) than in the NR group (Rel(X) = 0.80). A sample of 100 students is randomly selected from the R group and another sample of 100 students is randomly selected from the NR group. The arithmetic test is administered to the students of the two samples, and the sample means are computed for each of the two samples. It follows from Eq. 15.12 that the variance of the sample mean of the R group is:[image: $$ \upsigma_{{\bar{X}}}^{2} (R) = \frac{4 + 4}{100} = 0.08, $$]



and for the NR group:[image: $$ \upsigma_{{\bar{X}}}^{2} (NR) = \frac{16 + 4}{100} = 0.20. $$]






The precision of the estimate of the mean test score is larger in the R group than in the NR group because the variance of the mean is smaller in the R sample [image: $$ \left( {\upsigma_{{\bar{X}}}^{2} (R) = 0.08} \right) $$] than in the NR sample [image: $$ \left( {\upsigma_{{\bar{X}}}^{2} (NR) = 0.20} \right) $$]. The example shows that the mean score estimation precision
 is larger in the R group than in the NR group, although the reliability
 is smaller in the R group (Rel(X) = 0.50) than in the NR group (Rel(X) = 0.80).
Example 15.3 counteracts the intuitive notion that less reliability
 always implies less mean test score estimation precision
.
Equation 15.12 shows that for a fixed sum of true and error score variances [image: $$ \left( {\upsigma_{T}^{2} +\upsigma_{E}^{2} } \right) $$], the variance of the sample mean decreases if the sample size
 increases. Therefore, even if the sum of the true score
 and error variances is large, the mean score estimation precision
 will be large if the sample size
 is sufficiently large.
15.3.4 Reliability and Estimating the Difference of Two Independent Test Score Means

Comparison
 of independent test score means is often done in behavioral research. An example is the comparison of the means of a psychological or educational test
 of treated and untreated groups of participants. An intuitive notion is that a reliable test has to be used because an unreliable test will yield an imprecise estimate of the difference of two independent means. This notion seems plausible, but is not always correct.
The situation is considered where a sample of n participants is selected from a population, nE of them are randomly assigned to an E-condition and the other nC to a C-condition. At the end of the study, a test is administered to each of the participants. The test score population means of the E-
 and C-condition participants are μE and μC, respectively, and the population variances of the E-
 and C-condition participants are [image: $$ \upsigma_{E}^{2} $$] and [image: $$ \upsigma_{C}^{2} $$], respectively. The sample means of the E-
 and C-conditions are [image: $$ \bar{X}_{E} $$] and [image: $$ \bar{X}_{C} $$], respectively. The difference of the population means (μE − μC) is estimated by the difference of the sample means [image: $$ \left( {\bar{X}_{E} - \bar{X}_{C} } \right) $$]. If the sample sizes (nE and nC) are sufficiently large, the difference of the sample means [image: $$ \left( {\bar{X}_{E} - \bar{X}_{C} } \right) $$] is approximately normally distributed with mean μE − μC and variance[image: $$ \upsigma_{{\bar{X}_{E} - \bar{X}_{C} }}^{2} = \frac{{\upsigma_{E}^{2} }}{{n_{E} }} + \frac{{\upsigma_{C}^{2} }}{{n_{C} }}. $$]

 (15.13)




This variance determines the width of CIs of the difference of the population means. Therefore, the variance (or, equivalently, the standard deviation) is a measure for the estimation precision
 of the difference of the population means. A small variance (standard deviation) means that the estimate [image: $$ \left( {\bar{X}_{E} - \bar{X}_{C} } \right) $$] is precise, and a large variance (standard deviation) that this estimate is imprecise.
Applying Eq. 15.4 and the assumptions of CTT
 to each of the two terms of Eq. 15.13 yields:[image: $$ \upsigma_{{\bar{X}_{E} - \bar{X}_{C} }}^{2} = \frac{{\upsigma_{E}^{2} }}{{n_{E} }} + \frac{{\upsigma_{C}^{2} }}{{n_{C} }} = \frac{{\upsigma_{TE}^{2} +\upsigma_{EE}^{2} }}{{n_{E} }} + \frac{{\upsigma_{TC}^{2} +\upsigma_{EC}^{2} }}{{n_{C} }}, $$]

 (15.14)


where [image: $$ \upsigma_{TE}^{2} $$] and [image: $$ \upsigma_{EE}^{2} $$] are the true score
 and error variances, respectively, in the E-condition, and [image: $$ \upsigma_{TC}^{2} $$] and [image: $$ \upsigma_{EC}^{2} $$] the true score
 and error variances, respectively, in the C-condition.
The previous section demonstrated that the estimate of the mean test score can be more precise in a (sub)population where the test score is less reliable than in a (sub)population where the test score is more reliable. Equation 15.14 is the sum of two terms, and the demonstration applies to each of these two terms. Therefore, the precision of the estimate of the difference of the two test scores means can be more precise in (sub)populations where the test score is less reliable than in (sub)populations where the test score is more reliable. This counteracts the intuitive notion that less reliability
 always implies less estimation precision
 of the difference of two test score means.
15.3.5 Reliability and Testing the Null Hypothesis of Equal Independent Test Score Means
Chapter 12 of
 this book described tests for the null hypothesis of independent means. The null hypothesis of equal independent E-
 and C-condition test score means is given by Eq. 12.11 (Sect. 12.​1.​2 of this book):[image: $$ H_{0:}\,\upmu_{E} -\upmu_{C} = 0. $$]

 (12.11)




An estimate of the standard deviation of the difference of two independent means is used to construct CIs of the difference of two independent population means, and these CIs are used to test null hypothesis Eq. 12.11. In general, the power of these tests increases if the standard deviation of the difference of the two means (i.e., square root of Eq. 15.13) decreases because a smaller standard deviation yields a smaller CI
 (i.e., a more precise estimate) of the difference of the means. The previous section demonstrated that less reliability
 of the test score not always leads to less precision of the estimate of the difference of two test score means. Therefore, situations exist where a less reliable test score yields a more powerful test of null hypothesis Eq. 12.11.
15.4 Reliability of the Difference Score

Reliability
 is not a property of the test, but it is a property of scores that are derived from a test. Section 15.2.2 of this chapter defined the reliability
 of the observed test score. The reliability
 can also be defined for other scores that are based on a test. This section discusses the reliability
 of the difference score.
The difference score is the difference of two test scores, where the tests are administered to the same person. A well-known example is the within-person pretest-posttest change
 score (i.e., the difference of a person’s posttest and pretest
 scores), which was discussed in Sect. 14.​1 of this book. The difference score is sometimes also used to measure specific constructs, for example, learning potential and self satisfaction. A student’s learning potential is assessed by administering an educational test before (pretest
) and after (posttest) a short course, which is representative for the complete course. The difference of a student’s posttest and pretest
 scores is a measure of his (her) potential to learn the content of the course. Self satisfaction is measured by administering a satisfaction questionnaire twice to the same person. First, the person is asked to answer the questions as he or she really is (self image), and, second, to answer the questions as he or she would like to be (ideal image). The difference of the ideal-image and self-image scores is a measure of the satisfaction of the person with him or her self.
Equation 12.1 (Sect. 12.​1.​1. of this book) is the equation of the ith person’s difference score:[image: $$ D_{i} = X_{2i} - X_{1i} , $$]

 (12.1)


where X1i is the ith person’s first observed test score and X2i his (her) second observed test score. The first and second scores are often a person’s pretest
 and posttest scores, but can be other types of scores, for example, self-image and ideal-image scores. For convenience, however, X1i and X2i will be called person i’s pretest
 and posttest scores.
It has been known for a long time that the difference score can be unreliable, even if the pretest
 and posttest scores are reliable (Gulliksen, 1950, Chap. 20). Cronbach and Furby (1970) questioned whether the difference score should be used at all. Since their publication a large number of articles were published on the psychometric properties of the difference score by, among others, Collins (1996), Mellenbergh (1999), Overall and Woodward (1975), Rogosa and Willett (1983), Williams and Zimmerman (1996), and Zimmerman, Williams, and Zumbo (1993). These publications resulted into a more nuanced view on the reliability
 of the difference score, which is expressed by, for example, Haertel (2006, Sect. 2.5.7).
15.4.1 The Classical Model of the Difference Score
The classical model of the difference score is obtained from the CTT
 model for both the pretest
 and the posttest score. Applying Eq. 15.1 to participant i’s pretest
 and posttest scores yields the CTT
 model of the difference score:[image: $$ D_{i} = X_{2i} - X_{1i} = t_{2i} + E_{2i} - \left( {t_{1i} + E_{1i} } \right) = \left( {t_{2i} - t_{1i} } \right) + \left( {E_{2i} - E_{1i} } \right) = td_{i} + ED_{i} , $$]

 (15.15)


where t1i and t2i are participant i’s true pretest
 and posttest scores, respectively, E1i and E2i his (her) random errors
, respectively, tdi = t2i − t1i his (her) 
                true difference score
                
              , and EDi = E2i − E1i his (her) random 
                error difference
                
              .
Equation 15.15 is of similar structure as Eq. 15.1: both equations decompose an observed (difference) score into a true (difference) score and random error (difference). Therefore, the last term of Eq. 15.15 is the CTT
 model for participant i’s difference score. Corresponding to Eq. 15.2, the within-person variance
 of i’s observed difference score is equal to his (her) random error difference
 variance because his (her) true difference score
 is a constant:[image: $$ \upsigma_{{D_{i} }}^{2} =\upsigma_{{ED_{i} }}^{2} . $$]

 (15.16)




Model Eq. 15.15 of a person’s difference score is extended to a population of persons. Analogously to Eq. 15.3, the CTT
 model of the observed difference score of a person who is randomly selected from a population is:[image: $$ D = TD + ED. $$]

 (15.17)




The subscript i of Eq. 15.15 is deleted because Eq. 15.17 is the model for a randomly selected person instead of a given person i. The true difference score
 TD is written with capitals to indicate that it is a variable that varies between persons of the population. The random error difference
 ED varies between the persons of the population and within each person of the population. Analogously to the variance of the observed test score (Eq. 15.4), the population variance of the difference score is equal to the sum of the true difference score
 and error difference
 score variances:[image: $$ \upsigma_{D}^{2} =\upsigma_{TD}^{2} +\upsigma_{ED}^{2} , $$]

 (15.18)


and the error difference
 variance is equal to the average of the within-person error difference
 variances:[image: $$ \upsigma_{ED}^{2} = \frac{{\sum\limits_{i = 1}^{N} {\upsigma_{{ED_{i} }}^{2} } }}{N}, $$]

 (15.19)


where N is the number of persons of the population. Finally, the standard error of measurement of the difference score
 is the square root of the random error difference
 variance (cf. Eq. 15.6):[image: $$ Sem(D) = \sqrt {\upsigma_{ED}^{2} } =\upsigma_{ED} . $$]

 (15.20)




As for the reliability
 of the observed test score (see Sect. 15.2.2 of this chapter), two theoretical definitions of the reliability
 of the difference score are given. Analogously to definition Eq. 15.7, the theoretical definition of the reliability
 of the difference score is:
Theoretical definition of the reliability of the difference score: The reliability
 of the difference score is the squared pmc between observed and true difference scores in a population of persons:[image: $$ Rel(D) =\uprho_{DTD}^{2} . $$]

 (15.21)




The reliability
 is between zero and one (i.e., 0 ≤ Rel(D) ≤ 1) because it is a squared pmc. Rel(D) = 0 means that the observed difference score cannot discriminate between the true difference scores of the persons of the population, and Rel(D) = 1 means that the observed difference score perfectly discriminates between the true difference scores of the persons of the population. The true difference scores can be predicted from the observed difference scores using linear regression. The reliability
 is the proportion of the true difference score
 variance that is ‘explained’ by the observed difference score because it is the squared pmc between observed and true difference scores.
Analogously to the derived theoretical definition of test score reliability
 (Eq. 15.8), the derived theoretical definition of the reliability
 of the difference score is:
Derived theoretical definition of the reliability of the difference score: The reliability
 of the difference score is the ratio of the between-persons true and observed difference score variances in a population of persons:[image: $$ Rel(D) = \frac{{\upsigma_{TD}^{2} }}{{\upsigma_{D}^{2} }}. $$]

 (15.22)





Under the CTT
 assumptions, the two theoretical definitions are equivalent:[image: $$ Rel(D) =\uprho_{DTD}^{2} = \frac{{\upsigma_{TD}^{2} }}{{\upsigma_{D}^{2} }}. $$]

 (15.23)





CTT
 needs an operational definition to compute the reliability
 of the observed test score (Eq. 15.9). However, an operational definition of the reliability
 of the difference score is not needed because the reliability
 of the difference score can be expressed in terms of pretest
 and posttest parameters
:[image: $$ Rel(D) = \frac{{Rel(X_{1} )\upsigma_{{X_{1} }}^{2} + Rel(X_{2} )\upsigma_{{X_{2} }}^{2} - 2\uprho_{{X_{1} X_{2} }}\upsigma_{{X_{1} }}\upsigma_{{X_{2} }} }}{{\upsigma_{{X_{1} }}^{2} +\upsigma_{{X_{2} }}^{2} - 2\uprho_{{X_{1} X_{2} }}\upsigma_{{X_{1} }}\upsigma_{{X_{2} }} }}, $$]

 (15.24)


where [image: $$ Rel(X_{1} ) $$] and [image: $$ Rel(X_{2} ) $$] are the reliabilities of the pretest
 and posttest scores, respectively, [image: $$ \upsigma_{{X_{1} }}^{2} $$] and [image: $$ \upsigma_{{X_{2} }}^{2} $$] the pretest
 and posttest score variances, respectively, and [image: $$ \uprho_{{X_{1} X_{2} }} $$] is the pmc between pretest
 and posttest scores. Equation 15.24 contains parameters
 of the pretest
 and posttest, but no parameters
 of the difference score. Therefore, the reliability
 of the difference score can be estimated by administering the pretest
 and posttest to a sample of participants. The pretest
 and posttest reliabilities and variances and the pmc between pretest
 and posttest are estimated by the sample statistics
. The reliability
 of the difference score is estimated by inserting these estimates into Eq. 15.24.
15.4.2 Unreliable and Reliable Difference Scores
It is often thought that the difference score is inherently unreliable. Usually, the reliability
 of the difference score is low if the pmc between pretest
 and posttest scores is large (see Example 15.4). However, the reliability
 of the difference score is not inherently low because it can be sufficiently high (see Example 15.5).
Example 15.4 An unreliable difference score (constructed data)
The reliability
 and variance of the observed pretest
 score are [image: $$ Rel(X_{1} ) = 0.80 $$] and [image: $$ \upsigma_{{X_{1} }}^{2} = 81 $$], respectively. The reliability
 and variance of the observed posttest scores are [image: $$ Rel(X_{2} ) = 0.90 $$] and [image: $$ \upsigma_{{X_{2} }}^{2} = 100 $$], respectively, and the pmc between pretest
 and posttest scores is [image: $$ \uprho_{{X_{1} X_{2} }} = 0.80 $$]. It follows from Eq. 15.24 that the reliability
 of the difference score is:[image: $$ Rel(D) = \frac{0.80 \times 81 + 0.90 \times 100 - 2 \times 0.80 \times 9 \times 10}{81 + 100 - 2 \times 0.80 \times 9 \times 10} = 0.29. $$]





The pretest
 and posttest scores are sufficiently reliable (0.80 and 0.90, respectively), but the difference score is unreliable (0.29).

Example 15.5 A reliable difference score (constructed data)
The reliabilities and variances of the pretest
 and posttest scores are the same as in Example 15.4: [image: $$ Rel(X_{1} ) = 0.80 $$], [image: $$ \upsigma_{{X_{1} }}^{2} = 81 $$], [image: $$ Rel(X_{2} ) = 0.90 $$] and [image: $$ \upsigma_{{X_{2} }}^{2} = 100 $$], but the pmc between pretest
 and posttest score is much lower: [image: $$ \uprho_{{X_{1} X_{2} }} = 0.20 $$]. It follows from Eq. 15.24 that the reliability
 of the difference score is:[image: $$ Rel(D) = \frac{0.80 \times 81 + 0.90 \times 100 - 2 \times 0.20 \times 9 \times 10}{81 + 100 - 2 \times 0.20 \times 9 \times 10} = 0.82. $$]






Example 15.5 demonstrates that the difference score is not inherently unreliable. The reliability
 of the difference score of Example 15.5 is much higher than the reliability
 of the difference score of Example 15.4 (0.82 vs. 0.29) because the pmc between pretest
 and posttest scores of Example 15.5 is much smaller than the pmc of Example 15.4 (0.20 vs. 0.80). The pmc between pretest
 and posttest scores is often large, which causes that the difference score is unreliable. However, the pmc between pretest
 and posttest scores can be small, for example, because an intervention causes that the scores of some participants increase from pretest
 to posttest, while the scores of others decrease. It is impossible to tell in advance whether the difference score will be unreliable or reliable. Therefore, it is recommended to assess the reliability
 of the difference score in empirical studies. If the difference score is sufficiently reliable, it can be used to distinguish between the true difference scores of the persons of a population, but, if it is unreliable, it cannot be used for that purpose.
15.4.3 Reliability of the Difference Score and Estimation Precision of the True Difference Score
It is often believed that the estimation of true difference scores will be imprecise if the reliability
 of the difference score is low. As for the estimation precision
 of the true score
 (see the previous Sect. 15.3.2), the estimation precision
 of the true difference score
 is not necessarily imprecise if the difference score is unreliable.
Similarly to the derivation of Eq. 15.11, it follows from Eqs. 15.22 and 15.18 that the reliability
 of the difference score can be written as:[image: $$ Rel(D) = \frac{{\upsigma_{TD}^{2} }}{{\upsigma_{D}^{2} }} = \frac{{\upsigma_{TD}^{2} }}{{\upsigma_{TD}^{2} +\upsigma_{ED}^{2} }} = \frac{{\upsigma_{TD}^{2} /\upsigma_{TD}^{2} }}{{(\upsigma_{TD}^{2} +\upsigma_{ED}^{2} )/\upsigma_{TD}^{2} }} = \frac{1}{{1 + (\upsigma_{ED}^{2} /\upsigma_{TD}^{2} )}}. $$]

 (15.25)




Equation 15.25 shows that the reliability
 of the difference score depends on the ratio of the error difference
 and true difference score
 variances [image: $$ \left( {\upsigma_{ED}^{2} /\upsigma_{TD}^{2} } \right) $$]. The difference score is unreliable if this ratio is large, and it is reliable if this ratio is small.
The nominator [image: $$ \left( {\upsigma_{ED}^{2} } \right) $$] of the ratio [image: $$ \upsigma_{ED}^{2} /\upsigma_{TD}^{2} $$] determines the precision of test takers’ true difference score
 estimates. The standard error of measurement of the difference score
 is the square root of the error variance (cf. Eq. 15.20). Sem(D) is a global measure of the precision of the true difference score
 estimates, and is used to construct CIs of the true difference score
. The true difference score
 estimates are precise if [image: $$ \upsigma_{ED}^{2} $$] is small, and imprecise if [image: $$ \upsigma_{ED}^{2} $$] is large. However, an unreliable difference score does not need to imply that the true difference score
 estimates are imprecise: Example 15.6 shows constructed data where the difference score is unreliable, but the estimates of test takers’ true difference scores are sufficiently precise.
Example 15.6 An unreliable difference score and sufficiently precise true difference score estimation (constructed data)
A 60-item
 achievement test is administered to a population of eight students. The items are dichotomously scored (1 for a correct answer and 0 for an incorrect answer), and the observed test score is the sum of the item
 scores. Table 15.3 reports the (fictitious) true scores, errors and observed pretest
 and posttest scores, error differences, and observed difference scores of the students, and 95% CIs of students’ true difference scores.Table 15.3Fictitious true scores, errors, and observed pretest
 and posttest scores, and true difference scores, error differences, and observed difference scores, and 95% CIs of eight students


	Student no.
	Posttest
	 	
                            Pretest

                          
	 	Difference
	 	95% CI



	 	
                            t
                            
                            2
                          
	
                            E
                            
                            2
                          
	
                            X
                            
                            2
                          
	
                            t
                            
                            1
                          
	
                            E
                            
                            1
                          
	
                            X
                            
                            1
                          
	
                            td
                          
	
                            ED
                          
	
                            D
                          
	
                            L
                          
	
                            U
                          

	1
2
3
4
5
6
7
8
	49
39
31
27
52
40
30
25
	+1
+1
+1
+1
−1
−1
−1
−1
	50
40
32
28
51
39
29
24
	44
34
26
22
47
35
25
20
	+1
−1
+1
−1
+1
−1
+1
−1
	45
33
27
21
48
34
26
19
	5
5
5
5
5
5
5
5
	0
2
0
2
−2
0
−2
0
	5
7
5
7
3
5
3
5
	2.23
4.23
2.23
4.23
0.23
2.23
0.23
2.23
	7.77
9.77
7.77
9.77
5.77
7.77
5.77
7.77

	Mean:
	 	0
	 	 	0
	 	5
	0
	 	 	 
	Variance:
	 	1
	 	 	1
	 	0
	2
	 	 	 

Note L: Lower endpoint of the 95% CI
; U: Upper endpoint of the 95% CI







The rows of the table report the data per student. For example, the first row gives the data of the first student. His (her) posttest, pretest
, and difference scores are[image: $$ X_{21} = 50,\;X_{11} = 45,\,{\text{and}}\;D_{1} = 50 - 45 = 5, $$]



respectively, his (her) true posttest, true pretest
, and true difference score
 are[image: $$ t_{21} = 49,t_{11} = 44,\,{\text{and}}\,td_{1} = 49 - 44 = 5, $$]



respectively, and his (her) posttest and pretest
 errors and difference error are[image: $$ E_{21} = + 1,\,E_{11} = + 1,\,{\text{and}}\;ED_{1} = 1 - 1 = 0, $$]



respectively. The data were constructed such that they comply with CTT
 (i.e., the means of the pretest
 and posttest errors and the error difference
 are zero, and the covariance of the pretest
 and posttest errors is zero). Moreover, the data were constructed such that the true difference score
 is the same for each of the students (i.e., tdi = 5, i = 1,2,…, 8). Therefore, the variance of the true difference score
 is zero (i.e., [image: $$ \upsigma_{TD}^{2} = 0 $$]). It follows from Eq. 15.23 that the reliability
 of the difference score is zero:[image: $$ Rel(D) = \frac{{\upsigma_{TD}^{2} }}{{\upsigma_{D}^{2} }} = \frac{0}{2} = 0. $$]





A global measure of the precision of the students’ true difference score
 estimates is the standard error of measurement of the difference score
 (Eq. 15.20):[image: $$ Sem(D) = \sqrt {\upsigma_{ED}^{2} } = \sqrt 2 = 1.41. $$]





This standard error
 is used to construct approximate CIs of a student’s true difference score
. For example, the lower endpoint of the first student’s 95% CI
 of his (her) true difference score
 is approximately[image: $$ D_{1} - 1.96\;Sem(D) = 5 - 1.96\sqrt 2 = 2.23, $$]



and the upper endpoint of his (her) 95% CI
 is approximately[image: $$ D_{1} + 1.96\,Sem(D) = 5 + 1.96\sqrt 2 = 7.77. $$]





The last two columns of Table 15.3 report the lower and upper endpoints of the 95% CIs of each of the students. CIs can be used to test null hypotheses. A student did not change from pretest
 to posttest if his (her) true difference score
 is zero. The null hypothesis of no pretest
 to posttest change of the ith student is given by Eq. 14.8 (Sect. 14.​3.​1 of this book):[image: $$ H_{0} :td_{i} = 0. $$]

 (14.8)




Null hypothesis Eq. 14.8 is rejected at the 5% significance level if zero is outside the 95% CI
 of the true difference score
. None of the eight 95% CIs of Table 15.3 includes zero, which means that the null hypothesis of no pretest
 to posttest change is rejected at the 5% significance level for each of the eight students. The reliability
 of the difference score is zero, but the true difference score
 estimates are sufficiently precise to reject the null hypothesis of no pretest
 to posttest change for each of the students.
Example 15.6 is artificial, and will not occur in practice. However, it demonstrates that a completely unreliable difference score can yield sufficiently precise estimates of true difference scores.
15.4.4 Reliability of the Difference Score and Estimation Precision of the Mean Difference Score
Section 15.3.3 of
 this
 chapter demonstrated that an unreliable test score can yield a precise estimate of the mean test score. The same applies to the difference score: an unreliable difference score can yield a precise estimate of the mean difference score.
The population mean of the difference score is indicated by [image: $$ \upmu_{D} $$] and the variance by [image: $$ \upsigma_{D}^{2} $$]. The population mean is estimated from a simple random sample of n participants. The sample mean of the difference score ([image: $$ \bar{D} $$]) estimates the population mean ([image: $$ \upmu_{D} $$]). If the sample size
 (n) is sufficiently large, the sample mean is approximately normally distributed with mean [image: $$ \upmu_{D} $$] and variance [image: $$ \upsigma_{{\bar{D}}}^{2} =\upsigma_{D}^{2} /n $$]. The variance determines the width of CIs of the population mean, and is a measure for the estimation precision
 of the population mean: a small variance means that the estimate is precise, and a large variance means that the estimate is imprecise.
Analogously to Eq. 15.12, it follows from Eq. 15.18 and the assumptions of CTT
 that the variance of the sample mean of the difference score is:[image: $$ \upsigma_{{\bar{D}}}^{2} = \frac{{\upsigma_{D}^{2} }}{n} = \frac{{\upsigma_{TD}^{2} +\upsigma_{ED}^{2} }}{n}. $$]

 (15.26)




Equation 15.26 shows that for a given sample size
 (n), the estimate of the mean difference score is more precise if the sum of the true difference score
 and error difference
 variance is small, and less precise if this sum is large. Example 15.7 is constructed to demonstrate that a difference score can be less reliable and at the same time yield a more precise estimate of the mean difference score in one (sub)population than in an other (sub)population.
Example 15.7 A difference score that is less reliable but gives a more precise mean difference score estimate in one subpopulation than in an other subpopulation (constructed data)
Self satisfaction is studied in a population of persons. A distinction is made between a subpopulation of psychiatric (P) patients and a subpopulation of nonpsychiatric (NP) persons. Self satisfaction is assessed with a satisfaction questionnaire. The questionnaire is administered to the participants twice. First, with the direction to answer the questions how he or she really is (self image) and, second, with the direction how he or she would like to be (ideal image). The difference of a participant’s ideal-image and self-image scores is a measure of his (her) self satisfaction. This self satisfaction is a difference score, which is indicated by D. In practice, it will not be the case, but for sake of the argument it is assumed that the true difference score
 and error difference
 variances of the two subpopulations are known. The true difference score
 variance is much smaller in the P subpopulation ([image: $$ \upsigma_{TD}^{2} (P) = 4 $$]) than in the NP subpopulation ([image: $$ \upsigma_{TD}^{2} (NP) = 20 $$]) because most of the psychiatric patients are not satisfied with themselves, whereas the self satisfaction of nonpsychiatric participants varies from very low to very high. The error difference
 variance is the same in both subpopulations ([image: $$ \upsigma_{ED}^{2} (P) =\upsigma_{ED}^{2} (NP) = 5 $$]). It follows from Eq. 15.25 that the reliability
 of the difference (self satisfaction) score is


[image: $$ Rel(D) = \frac{1}{1 + (5/4)} = 0.44 $$]



in the P subpopulation, and[image: $$ Rel(D) = \frac{1}{1 + (5/20)} = \, 0.80 $$]



in the NP subpopulation. A sample of 100 patients is randomly selected from the P subpopulation and a sample of 100 persons is randomly selected from the NP subpopulation. The self satisfaction score is computed for each of the participants, and the sample mean of the self satisfaction scores is computed in each of the two samples. It follows from Eq. 15.26 that the variance of the mean self satisfaction (difference) score is[image: $$ \upsigma_{{\bar{D}}}^{2} (P) = \frac{4 + 5}{100} = 0.09 $$]



in the P subpopulation, and[image: $$ \upsigma_{{\bar{D}}}^{2} (NP) = \frac{20 + 5}{100} = 0.25 $$]



in the NP subpopulation. The variance of the mean difference score estimate is smaller in the P subpopulation than in the NP subpopulation (0.09 vs. 0.25), which means that the estimate is more precise in the P subpopulation than in the NP subpopulation. Therefore, the reliability
 of the self satisfaction (difference) score is lower in the P subpopulation than in the NP subpopulation (0.44 vs. 0.80), but the estimate of the mean score is more precise in the P subpopulation than in the NP subpopulation.
15.4.5 Reliability of the Difference Score and Testing the Null Hypothesis of Equal Means of Paired Test Scores
Chapter 12 of
 this book described tests for the equality of the means of paired test scores, such as, participants’ mean pretest
 and posttest scores. The null hypothesis of equal means of paired test scores is equivalent to the null hypothesis that the mean difference score is equal to zero. This null hypothesis is given by Eq. 12.3 (Sect. 12.​1.​1 of this book):[image: $$ H_{0:}\,\upmu_{D} = 0. $$]

 (12.3)




An estimate of the standard deviation of the mean of the difference score is used to construct CIs of the population mean, and these CIs are used to test null hypothesis Eq. 12.3. In general, the power of the test increases if the standard deviation of the mean difference score (i.e., Eq. 15.26) decreases because a smaller standard deviation yields a smaller CI
 (i.e., a more precise estimate) of the mean difference score. The previous section demonstrated that less reliability
 of the difference score not necessarily leads to less precision of the mean difference score estimate. Therefore, situations exist where a less reliable difference score yields a more powerful test of null hypothesis Eq. 12.3, which was shown by Overall and Woodward (1975) and Zimmerman et al. (1993).
15.5 Reliability of Latent Variables

CTT
 is
 a theory of observed test scores. It applies to test scores, but not to test takers’ responses to the items of a test. In contrast, modern 
              Item Response Theory (IRT)
              
             applies to test takers’ item
 responses. Item
 response models assume that an unobserved latent variable causally influences test takers’ item
 responses. For example, logistic item
 response models for dichotomously scored arithmetic items assume that a latent arithmetic skill causes students’ answers to the items (see Sect. 7.​3.​5 of this book): a student who has a higher latent arithmetic skill has a higher probability of giving the correct answer to an arithmetic item
 than a student who has a lower latent arithmetic skill. A test taker’s responses to the test items are used to estimate his (her) value of the latent variable.
Two types of latent variables are distinguished. First, a continuous latent variable, for example, a continuous latent arithmetic skill. A continuous latent variable is called a latent trait. Second, a discrete latent variable. For example, a subtest
 of an arithmetic test measures the skill to multiply one- and two-digit numbers. It is assumed that two latent classes affect students’ item
 responses: A latent class of students who master this skill have a large probability of giving the correct answers to the items of this subtest
, whereas a latent class of students who do not master this skill have a small probability of giving correct answers to the items of this subtest
. A discrete latent variable is called a 
              latent class variable
              
            .

Usually, IRT
 focuses on the estimation precision
 of test takers’ latent variable values. However, the reliability
 concept is also used within IRT
. The classical reliability
 concept applies to latent trait estimates (see Sect. 15.5.1), but not to latent class assignments (see Sect. 15.5.2).
15.5.1 Reliability of Latent Trait Estimates

Latent
 trait item
 response models assume that a continuous latent trait causally influences test takers’ item
 responses. A test taker’s latent trait value is estimated from his (her) responses to the items under an item
 response model. This section discusses the reliability
 of these latent trait estimates.
Test taker i’s latent trait value is indicated by [image: $$ \uptheta_{i} $$] and the estimate of this value by [image: $$ \widehat{\uptheta}_{i} $$] (θ is the lower case Greek letter theta). Test taker i’s latent trait estimate is written as the sum of his (her) latent trait value ([image: $$ \uptheta_{i} $$]) and a random error ([image: $$ \displaystyle\upvarepsilon_{i} $$]):[image: $$ \widehat{\uptheta}_{i} =\uptheta_{i} +\displaystyle{\upvarepsilon}_{i} $$]

 (15.27)




([image: $$ \displaystyle{\upvarepsilon} $$] is the upper case Greek letter epsilon). Lazarsfeld’s thought experiment (see Sect. 15.1 of this chapter) is applied again. It is assumed that test taker i’s latent trait value ([image: $$ \uptheta_{i} $$]) is a constant that does not vary over (hypothetical) repeated administrations of the same test to test taker i, but that [image: $$ \displaystyle{\upvarepsilon}_{i} $$] varies over these repeated test administrations.
An estimate of a parameter is unbiased if the population mean (more precisely: the expected value) of the estimate is equal to the parameter. The latent trait estimate ([image: $$ \widehat{\uptheta}_{i} $$]) is unbiased if the mean of the latent trait estimates over the population of (hypothetical) repeated test administrations is equal to the latent trait ([image: $$ \uptheta_{i} $$]). The maximum likelihood estimate of the latent trait value is often approximately unbiased, which means that the latent trait estimate is approximately equal to the latent trait value if the number of test items is large,
Model Eq. 15.27 is of a similar structure as the CTT
 model Eq. 15.1. Both models decompose an estimate ([image: $$ \widehat{\uptheta}_{i} $$] of Eq. 15.27 and Xi of Eq. 15.1) into the sum of a fixed test taker parameter ([image: $$ \uptheta_{i} $$] and ti, respectively) and a random error ([image: $$ \displaystyle{\upvarepsilon}_{i} $$] and Ei, respectively). The mean of the observed test score over (hypothetical) repeated test administrations is by definition equal to the true score
 (see true score definition
, Sect. 15.1), and the mean of the maximum likelihood estimate of the latent trait value is (approximately) equal to the latent trait value. Because of this similarity of Eqs. 15.1 and 15.27, the results of CTT
 apply to (approximately) unbiased estimates of latent trait values.

Analogously to the CTT
 model, Eq. 15.27 is extended to a population of test takers. The model is formulated for a test taker who is randomly selected from a population:[image: $$ \widehat{\Theta } =\Theta  +\displaystyle{\upvarepsilon} $$]

 (15.28)




([image: $$ \Theta $$] is the upper case Greek letter theta). The subscript i of Eq. 15.27 is deleted because model Eq. 15.28 is for a randomly selected test taker instead of a given test taker i. The latent trait value is a constant for a given test taker, but it varies between test takers of the population. The latent trait is indicated by a capital [image: $$ \Theta $$] to indicate that it is a variable in the population of test takers. The estimate of the latent trait ([image: $$ \widehat{\Theta } $$]) and the error ([image: $$ \displaystyle{\upvarepsilon} $$]) are variables that vary both within and between test takers.

Analogously to CTT
 (see Sect. 15.2.2 of this chapter), two theoretical definitions of the reliability
 of the latent trait estimate are given. The first theoretical definition is:
Theoretical definition of the reliability of the latent trait estimate: The reliability
 of an unbiased latent trait estimate is the squared product moment correlation (pmc) between the latent trait estimates and the latent trait values in a population of test takers:[image: $$ Rel(\widehat{\Theta }) = \rho_{{\widehat{\Theta }\Theta }}^{2} . $$]

 (15.29)




The derived theoretical definition is:
Derived theoretical definition of the reliability of the latent trait estimate: The reliability
 of an unbiased latent trait estimate is the ratio of the between-persons latent trait value and latent trait estimate variances in a population of test takers:[image: $$ Rel(\widehat{\Theta }) = \frac{{\upsigma_{{{\Theta }}}^{2} }}{{\upsigma_{{\widehat{\Theta }}}^{2} }}. $$]

 (15.30)




These two definitions are equivalent. An operational definition is not needed because the reliability
 of the latent trait estimate can be estimated under most of the customary item
 response models.
Section 15.3.2 demonstrated that lower reliability
 of the observed test score not necessarily implies lower estimation precision
 of test takers true scores, and Sect. 15.3.3 demonstrated that lower reliability
 of the observed test score not necessarily implies lower estimation precision
 of the population mean of the test scores. Because of the similarity of models Eqs. 15.3 and 15.28 the same can be demonstrated for the reliability
 of the latent trait estimate. Lower reliability
 of the latent trait estimate not necessarily implies lower estimation precision
 of individual test takers’ latent trait values, and lower reliability
 of the latent trait estimate not necessarily implies lower estimation precision
 of the population mean of the latent trait values.
The reliability
 of latent trait estimates has been defined analogously to the reliability
 of the observed test score. The reliability
 of the latent trait estimates has similar properties as the reliability
 of the observed test score if the latent trait estimates are unbiased. In general, maximum likelihood estimates of latent trait values are approximately unbiased. Therefore, the properties of the reliability
 of the observed test score approximately apply to the reliability
 of the latent trait estimates as well.
15.5.2 Reliability and Discrete Latent Variables

A
 discrete latent variable consists of two or more distinct unobserved categories, which are called latent classes. A test is used to divide test takers into distinct groups who are classified as different latent classes. An example is mastery testing. A test is used to classify a group of students as masters of a skill (e.g., multiplication of one- and two-digit numbers) and another group as nonmasters of this skill. Another example is from Piaget’s theory of cognitive development: A test is used to classify children into different latent classes of cognitive development (Jansen & van der Maas, 1997).
A strategy that seems plausible is to apply the concepts of CTT
 to the situation of classifying test takers into latent classes. The true and observed scores of CTT
 are replaced by discrete variables. The continuous true score
 of CTT
 is replaced by a discrete latent variable that indicates the ‘true state’ of the test taker. The observed score of CTT
 is replaced by the discrete variable that classifies test takers into different latent classes. For example, the classification of students as masters or nonmasters of the multiplication of one- and two-digit numbers. A test is administered to the students, and a cutting score (c) is specified on the observed test score. Students having test scores equal to or larger than the cutting score (i.e., X ≥ c) are classified as masters, and students having test scores smaller than the cutting score (i.e., X < c) are classified as nonmasters. The true state of a student is that he or she is a master or a nonmaster of the skill, and he or she is classified as a master or nonmaster by the test. The combination of the dichotomous latent variable (true masters/true nonmasters) and the dichotomous observed variable (master/nonmaster classification) yields a 2 × 2 table (see Table 15.4).Table 15.4Classification of students into masters and nonmasters


[image: ../images/459008_1_En_15_Chapter/459008_1_En_15_Tab4_HTML.png]



The classification of the students is correct or incorrect. Two types of classifications are correct: (1) a student who is classified as a master is truly a master, and (2) a student who is classified as a nonmaster is truly a nonmaster. Also, two types of incorrect classifications are made: (1) a student who is classified as a master is truly a nonmaster, and (2) a student who is classified as a nonmaster is truly a master.
The reliability
 of the test score is the relation between the observed and true test scores, and is assessed by the squared pmc between observed and true test scores (Eq. 15.7, Sect. 15.2.2). The true state and classification variables are discrete, for example, the dichotomous true state variable of master and nonmaster, and the dichotomous classification variable (see Table 15.4). Analogously to the reliability
 of the test score, the accuracy of the classification variable has been defined as the relation between the discrete true state and classification variables, and is assessed by, for example, Cohen’s coefficient kappa
 (Sects. 11.​4.​2 and 11.​4.​5 of this book) or Loevinger’s homogeneity
 (H) coefficient (see Sect. 10.​3.​3 of this book). These coefficients can be computed under the beta-binomial model for dichotomous item
 responses (Lord & Novick, 1968, Chap. 23).
A plausible reasoning is that the accuracy of classifications can be assessed by the consistency of parallel test classifications. For example, two parallel tests
 are administered to a group of students, and the same cutting score (c) is specified for each of the parallel tests
. Students are classified as masters by the first parallel test if their scores are equal to or larger than the cutting score (X ≥ c) and as nonmasters if their scores are smaller than the cutting score (X < c). The classification is also done by the second parallel test. Students are classified as masters if their scores are equal to or larger than the cutting score (X’ ≥ c) and as nonmasters if their scores are smaller than the cutting score (X’ < c). The combination of these two classifications yields the following 2 × 2 table:
Two types of classifications are consistent: (1) a student’s parallel test scores are both equal to or larger than the cutting score (i.e., X ≥ c and X’ ≥ c), and (2) a student’s parallel test scores are both smaller than the cutting score (i.e., X < c and X’ < c). Also two types of classifications are inconsistent: (1) a student’s first parallel test score is equal to or larger than the cutting score but his (her) second parallel test score is smaller than the cutting score (i.e., X ≥ c and X’ < c), and (2) a student’s first parallel test score is smaller than the cutting score but his (her) second parallel test score is equal to or larger than the cutting score (i.e., X < c and X’ ≥ c). The consistency of the classifications is assessed by, for example, Cohen’s coefficient kappa
 or Loevinger’s homogeneity
 coefficient. Finally, the parallel test consistency is used to assess the accuracy of the classifications, for example, Cohen’s kappa of Table 15.5 is used as a measure for the accuracy of the classifications of Table 15.4.Table 15.5Parallel test classifications of students


[image: ../images/459008_1_En_15_Chapter/459008_1_En_15_Tab5_HTML.png]



This type of reasoning seems plausible but is flawed. The applicability of the operational definition of reliability
 rests on the equivalence of the operational and theoretical definitions of reliability
 (Eq. 15.10, Sect. 15.2.2). The pmc between parallel tests
 can be used to assess test score reliability
 because it is equal to the squared pmc between observed and true test scores. However, the same type of relation does not hold for parallel test consistency and classification accuracy
 (Mellenbergh & van der Linden, 1979). Example 15.8 demonstrates that parallel test consistency and classification accuracy
 are not equivalent.
Example 15.8 Nonequivalence of parallel test consistency and classification accuracy (constructed data)
A group of six students consists of students who master the skill to multiply one- and two-digit numbers and students who do not master this skill. Three of these students are masters and three are nonmasters. These true states are not known and have to be assessed by a multiplication test. The consistency of the classifications is studied by administering two parallel tests
 to the students. The same cutting score is used to classify students as master or nonmaster. The results are given in Table 15.6.Table 15.6True states and parallel test classifications of six students


	Student no.
	True state
	Parallel test classification

	 	Test 1
	Test 2

	1
	M
	M
	M

	2
	M
	M
	M

	3
	M
	M
	M

	4
	NM
	M
	M

	5
	NM
	NM
	NM

	6
	NM
	NM
	NM


Note M: Master; NM: Nonmaster





The accuracy of the classification is the agreement of the parallel test classifications and the true states of the students, and the consistency is the agreement of the two parallel test classifications. The consistency is perfect: both parallel tests
 classify the same students as master (Students no. 1, 2, 3, and 4) and the same students as nonmaster (Students no. 5 and 6). However, the accuracy is not perfect: Student no. 4 is a nonmaster but is classified as a master by both parallel tests
. Therefore, high classification consistency does not guarantee high accuracy.
The example demonstrates that the relation between operational and theoretical definitions of test score reliability
 breaks down for classification consistency and accuracy. Classification accuracy
 has to be assessed under psychometric models (e.g., the beta-binomial model for dichotomous item
 responses, Lord & Novick, 1968, Chap. 23), but cannot be derived from parallel test consistency. The operational definition of test score reliability
 is useful because it is equivalent to the theoretical definitions, but a similar relation does not exist between parallel test consistency and classification accuracy
. The operational definition of test score reliability
 is useful because it can be applied to assess the theoretical reliability
, but classification consistency cannot be applied to assess classification accuracy
.
15.6 Relevance of the Reliability Concept
The previous sections may have made the impression that test score reliability
 is not an important concept. A high reliability
 does not guarantee that a test is unidimensional, and a low reliability
 does not imply imprecise parameter estimation. However, reliability
 is an important concept when it is applied in the appropriate context. Reliability
 is a between-persons concept, and is relevant within the context of the measurement of individual differences. Reliability
 is relevant in the context of selection of, for example, applicants for a job, students for remedial teaching, and patients for psychotherapy. Moreover, reliability
 is relevant in correlational studies, where a test is correlated with other variables.
The pmc of a test with other variables is constrained by the reliabilities of the variables. It follows from the CTT
 assumptions that the pmc between two variables, say Y and Z, is constrained (Lord & Novick, 1968, Sect. 3.9):[image: $$ \uprho_{YZ} \le \sqrt {Rel(Y)Rel(Z)} $$]

 (15.31)




(see Example 15.9).
Example 15.9 Reliability constraint on the pmc between two variables
Two tests are administered to a population of test takers. The reliabilities of the test scores Y and Z are:[image: $$ Rel\left( Y \right) = 0.64\;{\text{and}}\;Rel(Z) = 0.81, $$]



respectively. It follows from Eq. 15.31 that the pmc between Y and Z is constrained:[image: $$ \uprho_{YZ} \le \sqrt {\text{0}\text{.64} \times \text{0}\text{.81}} = 0.72. $$]





The pmc between the test scores Y and Z cannot be larger than 0.72.

Prediction studies apply test scores (Y) to predict criterion scores (Z), for example, Scholastic Aptitude Test scores (Y) to predict students’ future Grade Point Averages (Z). The 
              validity coefficient
              
             of a test is defined as the absolute value of the pmc between test and criterion scores (Lord & Novick, 1968, Sect. 3.5). It is often believed that the validity coefficient
 of a test cannot be larger than its reliability
. However, it follows from Eq. 15.31 that the validity coefficient
 can be larger than the reliability
 of the test. The term at the right side of inequality Eq. 15.31 contains the reliability
 of both the test scores and the criterion scores. For a given value of the reliability
 of the test scores (Rel(Y)), the bound at the right side of Eq. 15.31 reaches its maximum if the reliability
 of the criterion score is maximum. The reliability
 cannot be larger than one. Substituting the maximum of the reliability
 of the criterion score (i.e., Rel(Z) = 1) into Eq. 15.31 yields:[image: $$ \uprho_{YZ} \le \sqrt {Rel(Y) \times 1} = \sqrt {Rel(Y)} . $$]

 (15.32)




Equation 15.32 shows that the validity coefficient
 cannot be larger than the square root of the reliability
 of the test. The square root of the reliability
 is larger than the reliability
 itself because the reliability
 is between 0 and 1. For example, if the reliability
 of a test is Rel(Y) = 0.49, the square root of the reliability
 is [image: $$ \sqrt {0.49} = 0.70 $$]. Therefore, the validity coefficient
 cannot be larger than 0.70 (i.e., [image: $$ \uprho_{YZ} \le 0.70 $$]), which is a larger bound than the reliability
 (0.49).
Equations 15.31 and 15.32 hold when CTT
 applies to the variables Y and Z, for example, Y and Z are observed test scores, observed difference scores, criterion performance scores, unbiased latent trait estimates, and so on. However, these equations do not need to hold when CTT
 does not apply to the variables, for example, when the variables are latent class variables.
15.7 Recommendations

Reliability
 is probably the most-used concept of psychometrics. The term ‘unreliable’ has a negative connotation, and most behavioral scientists think that unreliable tests should not be used in research and practice. This chapter described some misconceptions on reliability
, and ends with some guidelines on the application of reliability
 in different situations.
It is common to speak of ‘test reliability
‘. However, this term is misleading. Reliability
 is not a property of a test, but of scores that are derived from test data, such as, the observed test score, the difference score, and the latent trait estimate. Moreover, reliability
 is a between-persons concept that applies to a population or subpopulation. The reliability
 can be high in one (sub)population and low in another (sub)population. The expression of the reliability
 has to specify the score and (sub)population, for example, ‘observed test score reliability
 in the subpopulation of psychology freshmen’.
Tests are used for different purposes. First, for the study of individual differences and the comparison of test takers. For example, tests to select applicants for jobs, educational programs, and psychotherapies, and tests to study correlations between personality variables. Second, tests are used to estimate parameters
. Parameter estimation is done at the individual and group level. An example of estimation of individual parameters
 is the estimation of an individual patient’s true depression test score. An example of estimation at the group level is the estimation of the mean depression test score of treated and untreated patients. Reliability
 is a between-persons concept that applies to a given population or subpopulation. Therefore, reliability
 is relevant for the assessment of individual differences and the comparison of persons. An unreliable test cannot differentiate between test takers. However, reliability
 is less relevant for the estimation of parameters
. The precision of parameter estimates is assessed by CIs, and reliability
 is not directly related to CIs. It is recommended to focus on reliability
 when individual differences are studied, and on CIs when parameters
 are estimated, and null hypotheses are tested. This recommendation runs against the common opinion that reliability
 should be high when a test is used in individual diagnostics. However, the estimation of an individual parameter (e.g., a patient’s true depression score) can be equally or more precise in a (sub)population where the test score is unreliable than in a (sub)population where it is reliable.
The difference score is often unreliable, but it is not inherently unreliable. The reliability
 of the difference score can be estimated when the variances and reliabilities of the two tests (e.g., pretest
 and posttest) and their pmc are estimated. It is recommended to estimate the reliability
 of the difference score. An unreliable difference score cannot be used to assess individual differences, but is suited for estimation purposes if the CIs of true difference scores are sufficiently small.
The equality of the theoretical and operational definitions of reliability
 holds for continuous latent traits, but it breaks down for discrete latent classes. Therefore, the accuracy of test classifications cannot be derived from parallel test consistency, but has to be assessed under specific psychometric models.
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Abstract
The data of empirical studies often are incomplete: selected persons do not participate, variables are skipped, and items are omitted. The missingness can be Missing Completely at Random (MCAR)
, Missing at Random (MAR)
, or Missing Not at Random (MNAR)
. The type of missingness is studied by constructing missingness variables. These variables also may be of interest of their own. Persons, variables, and items are accidentally or nonaccidentally missing. It is plausible that accidental missingness
 is MCAR
 or MAR
, but nonaccidental missingness
 is MNAR
. Missingness is counteracted by guidelines to increase the participation rate, re-approaching participants who omitted variables or items, and using the randomized response method
 to ask sensitive questions. The sample is maintained at its planned size by completing the sample with new participants or oversampling
 of persons, but these procedures can bias parameter estimates. Naive methods to handle missing variables are listwise and pairwise deletion of participants, and carrying forward a participant’s last observation. These methods can cause bias of parameter estimates. Another naive method is mean imputation of variable and item
 scores. This method can bias parameters
 and reduces the variance of these estimates. If participants or variables are MCAR
 or MAR
, it is adequately handled under statistical models. The preferred methods are maximum likelihood missing data
 and Bayesian multiple imputation methods. If participants or variables are MNAR
, a worst-case strategy is recommended. This strategy imputes values that are least favorable to the research hypothesis. Usually, a worst-case strategy is appropriate for missing maximum performance items. The Two-Way with Error (TW-E) method
 is suitable to impute typical response items of different missingness types.
Keywords
Bayesian multiple imputationMaximum likelihood missing data methodsMissingness variableNaive missing data methodsRandomized response methodTwo-way with error methodWorst-case imputation
It is rather common in behavioral research that data are missing. Missingness can occur at three different levels. First, at the level of the unit or participant, for example, a participant (‘unit’) who is assigned to an experimental condition but does not show up. Second, at the level of a variable, for example, a test taker who does not answer a questionnaire on criminal behavior. Note that, if all of a participant’s variables are missing, the missingness is at the level of the participant. Finally, at the level of the item
. Some variables, such as, gender and age, are measured with single items. Missingness of these items is at the level of the variable (e.g., gender or age). However, tests and questionnaires
 consist of more than one item
. Missingness of test and questionnaire items is at the level of the item
, for example, a student who omits an item
 of an arithmetic test. Note that, if all items of a test or questionnaire are missing, the missingness is at the level of the variable that the test or questionnaire is measuring.
Missingness is seldom mentioned in publications. Missingness can be handled by naive and nonnaive methods. Naive methods seriously affect study results. It is conjectured that missingness is often handled by naive methods.
The handling of missing data may differ between the situations where it occurs. For example, the handling of missing item
 responses may differ when a test is applied in a research study and when it is used to select applicants of a job. This chapter only discusses the handling of missing data in research situations.
16.1 Missingness Types
Rubin (1976) distinguished three types of missingness (MCAR
, MAR
, and MNAR
). These types were mentioned within the context of sampling (Sect. 2.​5 of this book) and random assignment (Sect. 4.​7 of this book). These concepts are not limited to these two contexts, but apply to all situations were data are missing. The concepts were formally defined by Rubin. This section informally describes the MCAR
, MAR
, and MNAR
 concepts.

Missing Completely at Random (MCAR)
 means that the missing data are a simple random subsample of the data. At the participant level, MCAR
 means that missing participants are a simple random subsample of the sample of participants, at the variable level, it means that the missing variable values are a simple random subsample of all values of the variable, and at the item
 level, it means that the missing item
 responses are a simple random subsample of all responses to the items of the test or questionnaire.

Missing at Random (MAR)
 is a weaker type of missingness than MCAR
. MAR
 means that the missingness depends on variables that are observed and not on other variables. The missing data are a simple random subsample given the values of the observed variables. Example 16.1 demonstrates MAR
 at the level of the participant.
Example 16.1 MAR at the participant level
An intelligence test is administered to a large sample of children. The age and sex of each of the children is known, but other characteristics of the children are not measured. The intelligence test scores of two 12-year old boys and three 11-year old girls are missing. The missingness is MAR
 if it depends on the children’s known age and sex, but not on other unobserved variables. Therefore, the missingness is MAR
 if the two boys are a simple random subsample of the 12-year old boys, and the three girls are a simple random subsample of the 11-year old girls.


MAR
 is a weaker type of missingness than MCAR
. For example, the missing children of Example 16.1 are MAR
 because they are random given the age and sex of the children. The five children are only MCAR
 if they are a simple random subsample of all children. The data are Missing Not at Random (MNAR)
 if they are not MCAR
 or MAR
. For example, if the intelligence test scores of the five children of Example 16.1 are missing because the intelligence of these children was too low to complete the test, the scores are MNAR
. The missingness does not depend on their known age and sex, but on their unknown intelligence.
The missingness of behavioral science data comes from the persons who are selected for a study or from persons who are conducting the study (e.g., researchers, assistants, test administrators, etc.). Missingness is accidental or nonaccidental. The missingness is accidental if it unintentionally comes from the persons selected for the study or from the persons conducting the study. The missingness is nonaccidental if it is intentionally caused. An example of accidental missingness
 is a student who assigns for a study, but does not participate because of an unexpected illness. An example of nonaccidental missingness
 is a test taker who omits a test item
 because he or she does not know the answer. Accidental missingness
 is usually MCAR
 or MAR
, but nonaccidental missingness
 is MNAR
.
16.2 Missingness Variables
Missingness may vary between persons. Therefore, missingness is a variable that may be of interest in a study. A missingness variable can be defined at each of the three levels of missingness (i.e., participant, variable, and item
).
In general, a missingness variable is defined as the amount of missingness at a given level. 
              Participant missingness
              
             is defined at the level of the participant: the number of persons of a sample that is missing. 
              Variable missingness
              
             is defined at the level of the variable: the number of variables that a person is missing. 
              Item missingness
              
             is defined at the level of the items of a test or questionnaire: the number of items that a person omitted at a given test or questionnaire. Item missingness
 was illustrated in Sect. 8.​7 of this book. Example 16.2 demonstrates participant and variable missingness
.
Example 16.2 Missingness variables (constructed data)
A sample of seven persons was selected for a study. One person refused to participate. Three tests were administered to the six participants. The (fictitious) test scores are reported in Table 16.1.Table 16.1Fictitious test and missingness scores of a sample of seven persons, three tests


	Person no.
	Score

	Test 1
	Test 2
	Test 3
	
                          Variable missingness

                        

	1
	20
	22
	18
	0

	2
	–
	23
	16
	1

	3
	25
	27
	22
	0

	4
	24
	–
	21
	1

	5
	–
	19
	–
	2

	6
	26
	24
	21
	0

	7
	–
	–
	–
	3

	Mean:
	23.75
	23.00
	19.60
	 

Note A dash indicates a missing score. The means are computed over the nonmissing scores





The variable missing scores are: 0 (none of the scores is missing), 1 (one of the scores is missing), 2 (two of the scores are missing), and 3 (each of the three scores is missing). Person no. 7 refused to participate in the study. Therefore, the participant missing score is 1. He or she has no score on each of the three tests. Therefore, his (her) variable missing score is 3.
Missingness variables are included into studies for different reasons. For example, a missingness variable is used to study the type of missingness, or to study the effects of independent variables on persons’ willingness to participate in a study.
The type of missingness is studied by relating missingness variables to other variables. For example, if participant missingness
 is larger for males than females, the missingness cannot be completely at random (MCAR
) because missingness is related to persons’ gender. However, this relation does not tell whether the missingness is MAR
 or MNAR
. The missingness is MAR
 if it is only related to variables that are observed (e.g., gender), and it is MNAR
 if it is related to variables that are not observed.
Missingness variables can also be of interest as dependent variables (DVs) of a study. For example, if participant missingness
 differs between E-
 and C-condition persons, these conditions differentially affect persons’ willingness to participate in the study, and, if missingness of an aggression test differs between conditions, the conditions affect participants’ behavior to respond to aggression test items.
16.3 Data Collection Methods to Reduce Missingness
A number of methods were developed to prevent or reduce missingness during data collection. This section mentions methods to reduce participant, variable, and item missingness
.

Participant missingness
 is reduced by applying specific guidelines for data collection. Section 2.​7 of this book mentioned the following guidelines to increase participation in studies: sending reminders of postal and e-mail contacts that include all relevant materials (e.g., a questionnaire), making at least four recalls in data collection by telephone at days and times that differ from the first call, personalizing without overdoing the correspondence with persons, mentioning the topic of the study and the organization that is doing the study, expressing researchers’ appreciation for participating in the study, and giving rewards, preferably monetary rewards, but lottery tickets may also be effective.
Variable and item missingness
 of participants is reduced by re-approaching them as soon as possible. Participants are asked still to give information on omitted variables and to answer omitted questions (see Sect. 8.​6 of this book). If they refuse to give the information or to answer questions, they are asked for the reason of their refusal.
Participants of a study may feel judged and evaluated by researchers, and they may be hesitant to report personal information. Therefore, they may refuse to answer sensitive questions, such as, questions on criminal, aggressive, and sexual behavior, or underreport theses behaviors. Warner (1965) proposed the 
              randomized response method
              
             to reduce refusal and underreporting of sensitive information. The method presents two questions to the participant: one question is sensitive (e.g., committing tax fraud) and the other question is the negation of this sensitive question. The general form of the presented questions is:
Question 1: Do you have sensitive attribute A? Yes/No.
Question 2: Do you not have sensitive attribute A? Yes/No.
A participant is supplied with a device (e.g., a dice or cards) that randomly selects one of the two questions with a fixed probability. For example, the device randomly selects sensitive Question 1 (e.g., committing tax fraud) with probability 0.3, and the nonsensitive Question 2 (e.g., not committing tax fraud) with probability 1 − 0.3 = 0.7. The randomly selected question is presented to the participant, and he or she answers the selected question. However, the test administrator does not know which of the two questions was presented to the participant, that is, the test administrator does not know whether the participant answered sensitive Question 1 or nonsensitive Question 2. The population proportion of persons having the sensitive attribute (e.g., committing tax fraud) can be estimated from the proportion of yes-answers in a sample of participants and the fixed probability of presenting the sensitive question (e.g., 0.3) to a participant.
A critical evaluation of the randomized response method
 was given by Umesh and Peterson (1991). Simmons proposed a more efficient but more complex version of the method (Greenberg, Abul-Ella, Simmons, & Horvitz, 1969). Lensvelt-Mulders, Hox, van der Heijden, and Maas (2005) did two meta-analyses on the performance of the randomized response method
. In general, they found that the method underestimates the endorsement of sensitive questions, but that this underestimation is less than for conventional methods of asking sensitive questions.
16.4 Sample Size Maintenance Procedures

Missingness
 of participants reduces the size of the sample. For example, if a sample of 100 participants is planned but 20 of them do not participate in the study, the sample size
 is reduced from 100 to 100 − 20 = 80. A smaller sample causes less precise parameter estimates and less power of statistical tests. The sample size
 is maintained at its planned size by sample completion
 and oversampling
.


              Sample completion
              
             is the adding of new participants to the reduced sample till the planned size is reached. For example, if a sample of 100 participants is planned but 20 of them do not participate, other persons are selected and added to the 80 participants till the sample of 100 participants is completed.


              Oversampling
              
             means that a larger sample is selected than is planned for the study such that missingness of participants will approximately lead to the planned sample size
. For example, a sample of 100 participants is planned and it is expected that about 20% of the selected persons will not participate in the study. A sample of 125 persons is selected. If about 20% of the selected persons, for example 24 persons, do not participate, the number of participants will approximately be equal to the planned sample size
 (i.e., 125 − 24 = 101).

Sample completion
 and oversampling
 maintain the sample at its planned size. However, these methods do not correct for possible bias of parameter estimates because of missingness. For example, if a sample of 125 persons is selected and 24 of them do not participate, the missing persons may cause bias in the estimates of, for example, means and variances.
16.5 Naive Missing Data Methods

If researchers
 apply statistical methods to analyze their data, they have to cope with missingness. Presumably, many researchers apply naive methods to handle missing data. This section describes some of these naive methods. In general, naive methods are not recommended because they can seriously distort conclusions of a statistical analysis. The next sections discuss nonnaive methods that are preferred above the naive methods.
Deletion, mean variable imputation, and last observation carried forward are naive methods to handle variable missingness
. Listwise deletion means that all participants who have one or more missing variables are deleted, for example, Persons 2, 4, 5, and 7 of Table 16.1 (Sect. 16.2) are deleted. Pairwise deletion is applied when pairs of variables are involved in the data analysis, for example, when correlations are computed between pairs of variables. A participant who has a missing value on one or both variables of the pair is deleted. For example, to compute a correlation between Tests 1 and 3 of Table 16.1, Persons 2, 5, and 7 are deleted. Mean variable substitution is the imputation of the sample mean of a variable for a missing value of the variable, where the mean is computed over the nonmissing values. For example, the mean Test 1 score of the four persons of Table 16.1 who have Test 1 scores (i.e., Persons 1, 3, 4, and 6) is 23.75. This mean is imputed for the missing Test 1 scores of Persons 2 and 5. Usually, Person 7 is deleted because all of his (her) test scores are missing. Last observation carried forward is a naive method that is applied when a study has more than one measurement occasion, and at each of these occasions the same measurement instrument is administered to the participants. Some participants drop out of the study. They have observations (e.g., test scores) before drop out, but missing observations after drop out. For example, a psychotherapy study administers a depression test before treatment (pretest
), immediately after treatment (posttest), one year after treatment (first follow-up), and three years after treatment (second follow-up). A patient has a pretest
 depression test score 20, a posttest score 15, drops out of the study, and has missing scores at the first and second follow-up. The posttest score 15 is imputed for each of the two follow-up scores.
Person mean imputation is a naive method to handle missing responses to test and questionnaire items. A missing item
 score is imputed by the test taker’s mean item
 score computed over the nonmissing item
 scores. For example, a test taker’s scores on the items of a 5-item attitude questionnaire are: 4 (Item 1), 3 (Item 2), 3 (Item 3), missing (Item 4), and 4 (Item 5). The mean of the four nonmissing item
 scores is (4 + 3 + 3 + 4)/4 = 3.5, and this mean is imputed for the test taker’s missing score of Item
 4.
Naive methods have serious disadvantages. They easily bias estimates of means and often reduce the sample variance. Example 16.3 demonstrates the bias of the estimate of a mean, and Example 16.4 the reduction of the sample variance.
Example 16.3 Bias of mean estimation by participant deletion and mean variable imputation
An intelligence test is administered to a sample of children to estimate the mean IQ of a population of children. The test was not administered to some children because their intelligence was too low to administer the test. The missingness of these children is MNAR
 because it depends on their unknown intelligence. Deletion of the not-tested children yields an overestimate of the population mean IQ because the intelligence of the deleted children will be lower than the intelligence of the tested children. For the same reason, imputation of the IQs of not-tested children by the mean IQ of the tested children yields an overestimate of the population mean IQ.

Example 16.4 Variance reduction by mean variable imputation (constructed data)
The IQs of a sample of five children are: 120, 110, 110, 110, and 110. The sample variance of these five IQs is 20. For some reason, the IQ of the first child (120) is missing. The mean IQ of the remaining four children is: (110 +110 +110 + 110)/4 = 110. Imputing this mean IQ for the missing IQ of the first child yields the following five IQs: (110), 110, 110, 110, and 110, where the imputed IQ of the first child is between parentheses. The sample variance of this five IQs is 0. The mean IQ imputation of the first child reduces the sample variance from 20 to 0.

A problem that is specific to pairwise deletion is that correlations are based on different sample sizes. For example, pairwise deletion of persons of Table 16.1 yields a sample of 3 (Persons 1, 3, and 6) for the correlation between Tests 1 and 2, and a sample of 4 (Persons 1, 3, 4, and 6) for the correlation between Tests 1 and 3. Different sample sizes of correlations may yield technical problems when multivariate statistical methods, such as, factor
 analysis are applied to the correlation matrix.

Naive missing data methods
 are easy to apply, but they have serious flaws. These methods are only admissible in two situations. First, the number of missing data is relatively small, and missing data methods have negligible effects on the statistical analysis of the data. Second, the statistical analysis of the data is exploratory. The objective of an exploratory analysis is to detect interesting substantive hypotheses that have to be tested on other data. Naive missing data methods
 can be applied in data exploration, but they are not appropriate in confirmatory studies where hypotheses are tested.
In general, naive missing data methods
 are not recommended. The preferred methods are introduced in the next sections.
16.6 Nonnaive Missing Variable Methods

This section
 discusses the nonnaive handling of missing variables. Two types of nonnaive methods are described: Model-based methods that assume a statistical model for the data (Sect. 16.6.1), and worst-case analysis that assumes that the missing data are least favorable to the research hypothesis (Sects. 16.6.2 and 16.6.3). The model-based methods apply when the missingness is MCAR
 or MAR
. Worst-case analysis also applies when the missingness is MNAR
, but it is a very crude missing data strategy.
16.6.1 Statistical Methods
Statistical missing data methods apply to participants and variable values that are MCAR
 or MAR
. It is plausible that accidentally missing data are MCAR
 or MAR
. Therefore, statistical methods are recommended to handle accidentally missing participants and variables. An overview of these methods for behavioral researchers is given by Schafer and Graham (2002). They recommended the maximum likelihood and Bayesian multiple imputation methods.
The 
                maximum likelihood missing data method
                
               computes the likelihood function, ignoring the missing data. The likelihood is based on the nonmissing data of a sample, and the parameters
 of interest (e.g., mean, variance, etc.) are estimated from this likelihood. The method uses the likelihood function and does not impute missing data. In contrast, the 
                Bayesian multiple imputation method
                
               imputes values for the missing data. The method randomly selects values from a distribution that is derived under a Bayesian model, and these values are imputed for the missing data. Subsequently, the parameters
 (e.g., mean, variance, etc.) are estimated from the complete data. The imputed values are randomly selected from a distribution, which means that another selected value will yield another imputation value. Therefore, the procedure is repeated multiple times, and each time the parameters
 are estimated again. Finally, the different parameter estimates (e.g., the different estimates of the mean) are combined into a single estimate (e.g., one estimate of the mean).
16.6.2 Worst-Case Imputation of Missing Paired Scores
Scores are paired if the same variable is measured for pairs. For example, a test is administered to a participant before (pretest
) and after (posttest) a treatment, and a questionnaire is administered to a wife and her husband. The difference (e.g., posttest-pretest
) score is computed for each of the pairs, and a statistical test is applied to the difference scores. Classical methods to test null hypotheses on the difference score were discussed in Sect. 12.​1.​1 of this book, and bootstrap methods in Sect. 12.​4.​1.
A worst-case strategy is feasible if the missingness is MNAR
. The missing values are imputed by values that are least favorable to the research hypothesis. Example 16.5 demonstrates worst-case analysis.
Example 16.5 Worst-case imputation of a missing difference score
An attitude questionnaire is administered to a sample of participants before (pretest
) and after (posttest) a treatment. The questionnaire has ten 5-point Likert items that are conventionally scored (i.e., 1, 2, 3, 4, and 5), and the observed score is the sum of the item
 scores. The null hypothesis is that the population means of the pretest
 and posttest scores are equal, which is equivalent to the null hypothesis that the population mean of the difference score is equal to zero (Eq. 12.3, Sect. 12.1.1):


              [image: $$ H_{0} :{\upmu }_{D} = 0. $$]

 (12.3)



            
The fourth participant of the sample dropped out of the study. His (her) pretest
 score is X14 = 19, but his (her) posttest score (X24) is missing, which implies that his (her) difference score is also missing. The missingness is not at random because he or she was not satisfied with the treatment. Therefore, the researchers decide to apply a worst-case analysis. The researchers expect that the treatment has a positive effect on participants’ questionnaire score, that is, that the scores increase from pretest
 to posttest and the mean difference score is positive. The least favorable to this hypothesis is that the sample mean of the difference score is as small as possible. The sample mean becomes smallest if the smallest possible difference score is imputed for the missing difference score. The smallest possible attitude score is Xmin = 10 × 1 = 10 (a score of 1 at each of the ten items). The pretest
 score of the missing participant is X14 = 19. Therefore, his (her) posttest-pretest
 difference score is smallest if his (her) posttest score is equal to the smallest possible attitude score (i.e., X24 = Xmin):[image: $$ D_{{\min}4} = X_{\min} - X_{14} = 10 - 19 = - 9. $$]





Imputing −9 for the fourth participant’s missing difference score yields the smallest possible mean difference score, which is least favorable to researchers’ hypothesis that the mean difference score is positive.
The imputation has to be different when the researchers expect that the treatment decreases the scores from pretest
 to posttest. This situation is described in the continuation of Example 16.5.
Example 16.5 Continued
The situation is described where the researchers of Example 16.5 expect that the treatment will decrease participants’ questionnaire scores from pretest
 to posttest, which means that the mean difference score is negative. The least favorable to this hypothesis is that the sample mean of the difference score is as large as possible. The sample mean becomes largest if the largest possible difference score is imputed for the missing difference score. The largest possible attitude score is Xmax = 10 × 5 = 50 (a score of 5 at each of the ten items). The pretest
 score of the missing participant is X14 = 19. Therefore, his (her) posttest-pretest
 difference score is largest if his (her) posttest score is equal to the largest possible attitude score (i.e., X24 = Xmax):


              [image: $$ D_{\hbox{max} 4} = X_{\hbox{max} } - X_{14} = 50 - 19 = 31. $$]




            
Imputing 31 for the fourth participant’s missing difference score yields the largest possible mean difference score, which is least favorable to researchers’ hypothesis that the mean difference score is negative.
Example 16.5 described the situation of one missing difference score. The same worst-case strategy
 is applied when more than one difference score is missing. For each of the missing difference scores, the least favorable difference score is computed, and these scores are imputed for the missing difference scores.
16.6.3 Worst-Case Imputation of Missing Independent Scores

Independent scores
 are scores from distinct groups of participants, for example, groups of experimental (E-) condition
 and control (C-) condition
 participants. Statistical tests are applied to compare the mean scores of the different groups. Section 12.​1.​2 of this book discussed conventional tests to compare the means of two distinct groups, and Sect. 12.​4.​2 bootstrap methods.
A worst-case analysis is feasible if the missingness is MNAR
. As for paired scores, the missing scores are imputed by values that are least favorable to the research hypothesis (see Example 16.6).
Example 16.6 Worst-case imputation of missing independent scores
A sample of participants is selected for a study. Half of them are randomly assigned to the E-condition and the other half to the C-condition. The DV
 is a 30-item
 cognitive test. The items of the test are three-choice items, where the participant has to choose one option out of three (one correct and two incorrect) options. A participant’s observed test score is the sum of his (her) correctly answered items. The null hypothesis is that the test score means of the two groups are equal, which is equivalent to null hypothesis Eq. 12.11 (see Sect. 12.​1.​2):


              [image: $$ H_{0} :{\upmu }_{E} - {\upmu }_{C} = 0. $$]

 (12.11)



            
One E-condition and one C-condition participant dropped out of the study, and have missing test scores. The dropout is not at random because they were not satisfied with their treatments. Therefore, the researchers decide to apply a worst-case analysis. The researchers expect that the mean test score will be larger in the E-condition than in the C-condition. The least favorable to this hypothesis is that the difference of the sample means of the E-
 and C-condition means is minimum. This difference is smallest if the missing E-condition score is as small as possible and the missing C-condition score is as large as possible. The largest possible test score is Xmax = 30 (each of the 30 items is correctly answered). Therefore, 30 is imputed for the missing C-condition test score. The smallest possible test score is Xmin = 0 (none of the items is correctly answered). However, a test score of 0 is very unlikely because a participant has a probability of 1/3 of choosing the correct option by randomly guessing. The observed test score of a participant who randomly guesses an option at each of the 30 items is binomially distributed with mean 1/3 × 30 = 10. Therefore, a reasonable choice of a small test score is 10, and 10 is imputed for the missing E-condition score. An alternative of imputing a score of 10, is to randomly select a score from a binomial distribution with parameters
 1/3 and 30, and to impute this score for the missing E-condition score.
The imputation has to be different when the researchers expect that the E-condition mean is smaller than the C-condition mean (see the continuation of Example 16.6).
Example 16.6 Continued
The researchers expect that the E-condition mean is smaller than the C-condition mean. The least favorable to this hypothesis is that the difference of the sample means of the E-
 and C-conditions is maximum. This difference is large if the missing E-condition score is as large as possible, and the missing C-condition score is reasonably small. Therefore, 30 is imputed for the missing E-condition score, and 10 (or a randomly selected score from a binomial distribution with parameters
 1/3 and 30) is imputed for the missing C-condition score.

Example 16.6 discussed the situation of one missing score per condition. The same strategy is applied when more than one score of a condition is missing. For example, if the researchers expect that the mean score of the E-condition is larger than the mean score of the C-condition and two C-condition scores are missing, the score 30 is imputed for each of the two missing C-condition scores.
16.7 Nonnaive Missing Item Methods

This section
 discusses nonnaive methods to handle missing item
 responses. As for missing variables two types of methods are mentioned: Model-based methods that assume a psychometric model to impute item
 responses, and worst-case methods that impute unfavorable item
 responses.
Cronbach (1990, Chap. 2) distinguished between maximum performance and typical response tests (see Sect. 7.1 of this book). A maximum performance test
 item
 asks test takers to give the correct or best answer to a question, whereas a typical response test
 item
 asks the test takers to give an answer that is characteristic to them. Worst-case imputation is usually the preferred method for maximum performance items, and model-based methods for typical response items. Section 16.7.1 describes the imputation of missing maximum performance items, and Sect. 16.7.2 the imputation of missing typical response items.
16.7.1 Imputing Missing Maximum Performance Items
Maximum performance items ask a test taker to give the correct or best answer to a question. Two types of maximum performance items are distinguished (see Sect. 7.1 of this book). A constructed-response item
 asks the test taker to formulate his (her) own answer, whereas a selected-response (multiple-choice) item
 asks the test taker to choose an option from a number of options. The answers to a constructed-response item
 are rated at a response scale. A dichotomous scale rates answers into two categories (e.g., correct/incorrect), and an ordinal-polytomous scale rates answers into more than two ordered categories (e.g., correct/partly correct/incorrect).
Maximum performance items are usually omitted for two different reasons. First, the test taker omitted the item
 because he or she did not know the answer. The missingness is MNAR
 because it depends on the test taker’s knowledge of the item
 content. Second, the test taker omitted the item
 because he or she lacked time to reach the item
. It is plausible that the missingness is MCAR
 or MAR
 because the test taker did no attempt to answer the item
. The omitted items of a test taker who lacked time are the last items of the test. However, omission of the last items of a test does not automatically imply that the missingness is caused by a lack of time. The last items of a test are often the most difficult ones. Therefore, it is possible that a test taker who omitted the last items of a test did not know the answers to these items. A conservative strategy is to assume that the missingness is MNAR
, except when it is evident that the test taker lacked time to reach the item
.
A worst-case strategy is usually applied when it is assumed that the missingness is MNAR
. It is recommended to make different imputations for omitted constructed-response and multiple-choice items. An omitted constructed-response item
 is imputed by an incorrect answer. A multiple-choice item
 asks a test taker to choose an option from a number of options. A test taker who omitted a multiple-choice item
 could have chosen the correct option by randomly selecting an option. Therefore, it is recommended to impute a randomly selected option. For example, if a test taker omitted a three-choice item
, one of the three options is randomly selected. If the correct option is selected, a correct answer is imputed (e.g., a score of 1), and, if one of the two incorrect options is selected, an incorrect answer is imputed (e.g., a score of 0).
It might be evident that a test taker could not answer an item
. For example, a test administrator forgot to present an item
 to a child, or a test administrator observed that a test taker did not reach the last two items of a test. It is plausible that this type of missingness is MCAR
 or MAR
, and it is recommended to apply an imputation method that is based on a psychometric model. The next section introduces model-based imputation methods for missing typical response items, but these methods are also appropriate when the missingness of maximum performance items is MCAR
 or MAR
.
16.7.2 Imputing Missing Typical Response Items
A typical response item
 has no correct or best answer. It asks test takers to give a response that is typical for them. Test takers omit typical response items for two main reasons. First, the test taker is not able to answer the question, for example, because he or she does not understand the question, or the question does not apply to him or her. Second, the test taker is not willing to answer the question, for example, because he or she thinks that the question is too sensitive or personal (e.g., questions on aggressive behavior, income). It is plausible that the missingness is MCAR
 or MAR
 if the test taker is not able to answer the question, but it is MNAR
 if the test taker is not willing to answer. Worst-case and model-based methods for the imputation of missing typical item
 responses are discussed.
A worst-case strategy is appropriate when the missingness is MNAR
. A worst-case strategy imputes a least favorable answer. However, this strategy is not applicable when the question or statement has no least favorable answer. For example, the least favorable answer to the statement ‘I am aggressive’ (answer categories: very weakly, weakly, moderately, strongly, and very strongly applicable to me) is ‘very strongly’, but none of these categories is least favorable to the statement ‘I am outgoing’.
Model-based strategies impute answers under item
 response models. For example, Huisman and Molenaar (2001) described imputation of responses under Mokken’s (1971, 1997) nonparametric and Verhelst and Glas’ (1995) one-parameter logistic (OPLM) models. In general, imputation overestimated Cronbach’s alpha (see Sect. 7.​3.​3 of this book) and Loevinger’s H (see Sect. 10.​3.​3 of this book). Bernaards and Sijtsma (2000) studied the effects of different imputation methods on factor
 analysis of questionnaire data when the missingness is MNAR
. They found good performance of methods that include a measure of test takers’ trait and a residual error, such as, their Two-Way with Error (TW-E) method
. Van Ginkel, van der Ark, and Sijtsma (2007) studied the effects of different imputation methods on Cronbach’s alpha and Loevinger’s H. They found good performance of the TW-E
 method.

The TW-E
 method is based on a simple model and is easy to apply in practice. It performs well in questionnaire analysis when the missingness is MNAR
. Therefore, it is recommended to apply the TW-E
 method in the analysis of typical response tests and questionnaires
. The method is introduced below (see Mellenbergh, 2011, Sect. 4.2).
The items are conventionally scored (see Sect. 7.1 of this book), for example the answer categories of a 5-point Likert scale are scored 1, 2, 3, 4, and 5. The score of the ith test taker to the kth item
 is denoted Xik, for example, the score of the second test taker of the sample (i = 2) to the third test item
 (k = 3) is denoted X23. A model is specified for the item
 score, which decomposes the item
 score into two components:[image: $$ X_{ik} = TW_{ik} + E_{ik} , $$]

 (16.1)




where TWik is a fixed component and Eik a random component. The fixed component is further decomposed into three components:[image: $$ TW_{ik} = OM + \left( {TM_{i} - OM} \right) + \left( {IM_{k} - OM} \right) = TM_{i} + IM_{k} - OM. $$]

 (16.2)




OM is the overall mean score over all test takers of the population and all items of the test. TMi is test taker i’s mean item
 score, which is typical for test taker i’s construct that is measured by the test, and TMi − OM is the deviation of test taker i’s mean item
 score from the overall mean score. IMk is the kth item
 mean score, which is typical for the kth item
 attractiveness or difficulty, and IMk − OM is the deviation of the kth item
 mean score from the overall mean score. Inserting Eq. 16.2 into Eq. 16.1 yields a two-way ANOVA-type of model for the ith test taker’s score at the kth item
:[image: $$ X_{ik} = TM_{i} + IM_{k} - OM + E_{ik} . $$]

 (16.3)




It follows from this equation that the error can be written as:[image: $$ E_{ik} = X_{ik} - TM_{i} - IM_{k} + OM. $$]

 (16.4)




The components of these equations are estimated from the data of a sample of test takers. These estimates are used to impute missing item
 scores. Example 16.7 demonstrates the method.
Example 16.7 The TW-E
 method to impute a missing item
 score (constructed data)
A 3-item
 test is administered to a sample of five test takers. The items are 5-point Likert items that are scored 1, 2, 3, 4, and 5. Table 16.2 reports the (fictitious) item
 scores of the test takers.Table 16.2
Fictitious item
 scores, 3-item
 5-point Likert test and five test takers


	Test taker no.
	
Item
 no.
	Mean ([image: $$ {\rm T}\hat{\rm M} $$])

	1
	2
	3

	1
	4
	–
	2
	3.00

	2
	5
	4
	4
	4.33

	3
	2
	1
	3
	2.00

	4
	4
	5
	5
	4.67

	5
	3
	2
	4
	3.00

	Mean ([image: $$ {\rm I}\hat{\rm M} $$])
	3.60
	3.00
	3.60
	 

Note A dash means that the item
 score is missing





The estimate of the overall mean score is:[image: $$ O\hat{M} = \frac{4 + 2 + 5 + 4 + 4 + 2 + 1 + 3 + 4 + 5 + 5 + 3 + 2 + 4}{14} = 3.43. $$]





The score of the first test taker at the second item
 is missing. The estimate of the mean item
 score of the first test taker over the nonmissing items is:[image: $$ T\hat{M}_{1} = \frac{4 + 2}{2} = 3.00, $$]





and the estimate of the mean score of the second item
 over the nonmissing items is:[image: $$ I\hat{M}_{2} = \frac{4 + 1 + 5 + 2}{4} = 3.00. $$]





It follows from Eq. 16.2 that an estimate of TW12 is:[image: $$ T\hat{W}_{12} = T\hat{M}_{1} + I\hat{M}_{2} - O\hat{M} = \, 3.00 \, + \, 3.00 \, - \, 3.43 \, = \, 2.57. $$]





It is assumed that the error of the first test taker at the second item
 (i.e., E12) is normally distributed with mean 0 and variance [image: $$ \sigma_{E}^{2} $$]. The variance of this distribution is not known, but can be estimated from the nonmissing item
 scores by using Eq. 16.4. For example, the fourth test taker’s third item
 score is nonmissing (X43 = 5). It follows from Eq. 16.4 that an estimate of the error of this item
 score is:[image: $$ \hat{E}_{43} = X_{43} - T\hat{M}_{4} - I\hat{M}_{3} + O\hat{M} = \, 5 \, - \, 4.67 \, - \, 3.60 \, + \, 3.43 \, = \, 0.16. $$]





In the same way, the errors are estimated for each of the nonmissing item
 scores (see Table 16.3).Table 16.3Estimated errors of the nonmissing item
 scores of Table 16.2


	Test taker no.
	
Item
 no.

	1
	2
	3

	1
	0.83
	–
	−1.17

	2
	0.50
	0.10
	−0.50

	3
	−0.17
	−0.57
	0.83

	4
	−0.84
	0.76
	0.16

	5
	−0.17
	−0.57
	0.83


Note A dash means that the error could not be estimated




The sample variance of the estimated errors of Table 16.3 is 0.45. This variance estimates the variance of the missing error E12 (i.e., [image: $$ \hat{\sigma }_{E}^{2} = 0.45 $$]). A value is randomly selected from a normal distribution with mean 0 and variance 0.45. For example, the value 0.42 is randomly selected from a normal distribution with mean 0 and variance 0.45. It follows from Eq. 16.1 that[image: $$ T\hat{W}_{12} + E_{12} = \, 2.57 \, + \, 0.42 \, = \, 2.99. $$]





The answer categories of the Likert items of the test are integer scored (1, 2, 3, 4, and 5). Therefore, 2.99 is rounded to the nearest integer (i.e., 3), and 3 is imputed for the missing item
 score X12.

The TW-E
 method yields a complete set of test data that can be analyzed, for example, by computing Cronbach’s alpha or applying factor
 analysis to the interitem correlations. In general, the results of an analysis will differ when the TW-E
 method is applied for a second time to the same data because the errors are randomly selected from a distribution. For example, if in Example 16.7 the error −0.30 is randomly selected from a normal distribution with mean 0 and variance 0.45, it follows from Eq. 16.1 that[image: $$ T\hat{W}_{12} + E_{12} = = \, 2.57 \, - \, 0.30 \, = \, 2.27, $$]





which is 2 when it is rounded to the nearest integer. Imputing 2 for the missing item
 score X12 yields a complete data set that differs from the first one (imputed 2 for the missing item
 score X12 instead of 3). Therefore, the analysis of the second complete data set might yield different results than the analysis of the first one. This is handled by applying the TW-E
 method several (e.g., 5) times, to analyze the data each of these times, and to combine the results of the different analyses.
16.8 Recommendations
This section gives some guidelines to cope with missing data in research studies.
First, missingness of participants, variables, and items may be interesting of its own. Missingness variables are applied to give information on the type of missingness, and to study the effects of independent variables on persons’ willingness to participate in a study.
Second, specific data collection methods are useful to reduce missingness. Examples are the re-approaching of participants who have missing data, and the randomized response method
 to present sensitive and personal questions.
Third, the sample is maintained at its planned size by completing the sample with newly selected participants and oversampling
. However, these methods do not prevent or reduce estimation bias that is caused by missing participants.
Fourth, generally, naive missing data methods
 (e.g., listwise and pairwise deletion, last observation carried forward, and mean imputation) are not recommended. These methods are only admissible if the effects of the missing data on the conclusions of a study are negligible. Naive methods are also admissible in exploratory research
 that search for substantive hypotheses, but they are not admissible when these hypotheses are tested using other data.
Fifth, it is recommended to apply the maximum likelihood or Bayesian multiple imputation methods if participant and variable missingness
 is MCAR
 or MAR
. A worst-case strategy is appropriate if participant and variable missingness
 is MNAR
.
Sixth, a worst-case strategy is usually most appropriate for missing answers to maximum performance items. A missing answer to a constructed-response item
 is imputed by an incorrect answer, and a missing answer to a multiple-choice item
 is imputed by a randomly selected option from the item
 options.

Finally, the TW-E
 method is probably the most widely applicable method to impute different types (MCAR
, MAR
, and MNAR
) of missing typical response items.
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Abstract
An outlier
 is a value of a variable that is inconsistent with the other values. The discussion is restricted to univariate outliers, that is, outliers that are inconsistent with other values of the same variable. A naive strategy is to apply the Z-score method
 to detect outliers, to remove the outliers, and to analyze the remaining data as usual. The Z-score method
 is incorrect and should be replaced by other methods, such as, the MAD-score method
. Researchers have to check whether outliers are caused by mistake. If mistakes are detected and the correct values are known, the outliers are corrected. If mistakes are detected but the correct values are not known, the outliers are treated as missing data and the data are analyzed with model-based statistical methods that assume MCAR
 or MAR
. If mistakes are not found, two strategies are suitable. First, to study the robustness of the substantive conclusions against outliers. The data are analyzed with and without the outliers using the same statistical methods. The results of the two analyses are compared, and the results of both analyses or the results of the analysis that gives weakest support to the substantive hypothesis are reported. Second, robust statistical methods
, such as, bootstrap methods are applied to analyze the data. Finally, whatever method researchers used, they should always report the frequency and handling of the outliers.
Keywords
Bootstrap methodsContent robustness against outliersKendall’s tauMAD-score methodUnivariate outliers
Empirical data often contain outliers. Barnett and Lewis (1984, p. 4) described an 
            outlier
            
           as ‘an observation (or subset of observations), which appears inconsistent with the remainder of that set of data’. The part ‘appears to be inconsistent’ of this description indicates that the flagging of outliers is a matter of human judgment. Researchers have to decide whether an observation (e.g., a test score or reaction time) appears to be sufficiently inconsistent with other observations to qualify as an outlier
.
Outliers come about by different causes. Two types of causes are distinguished. First, coincidences, for example, a test administrator who records an IQ of 999 instead of 99, and a participant of a reaction time study who is distracted by an unexpected noise when a stimulus is presented. Second, nonaccidental causes, for example, an IQ of 160 of a highly gifted child.
Outliers caused by accidental errors are sometimes easy to recognize because they are impossible or unlikely. An example of an impossible score is an IQ of 999. An example of a highly unlikely score is a test score of 0 at a 60-item
 three-choice achievement test. The 0-score is possible (the test taker has incorrectly answered each of the 60 items), but it is highly unlikely. A test taker has a probability of 1/3 of choosing the correct option of a three-choice item
 by randomly guessing, and the expected score of a test taker who randomly guesses at each of the 60 items is 1/3 × 60 = 20. However, the cause of other outliers may be hard to detect. For example, an IQ of 170 is an outlier
, but it may come from an administrative error (e.g., recording 170 instead of 70), or from a highly gifted test taker.
A distinction is made between univariate and multivariate outliers (see, among others, Blommestijn & Lietaert Peerbolte, 2012). A 
            univariate outlier
            
           is a value of a variable that is inconsistent with other values of the same variable. For example, a child has an IQ of 160, whereas the IQs of the other children of the sample are between 74 and 133. A 
            multivariate outlier
            
           is a pattern of values of several variables that is inconsistent with other patterns. For example, a student who has a very low IQ but a very high Scholastic Aptitude Test (SAT) score. The student’s pattern of two test scores is inconsistent with the patterns of other students. IQ and SAT scores are positively correlated, which means that students who have low IQs usually have low SAT scores, and student who have high IQs usually have high SAT scores.
Univariate outliers affect conventional statistics
, such as, the sample mean and variance. Multivariate outliers may or may not affect the relation between variables (see Example 17.1).
Example 17.1 A bivariate outlier that does affect the relation between two variables and a bivariate outlier that does not affect this relation (constructed data)
Two tests (A and B) are administered to a sample of 10 students. Student no. 10 is a bivariate outlier
. Figure 17.1a shows the situation where Student 10 does not affect the relation between the two test scores.[image: ../images/459008_1_En_17_Chapter/459008_1_En_17_Fig1_HTML.png]
Fig. 17.1Scatter plot of ten students’ Test A and B scores, where Student 10 is an outlier
 that a does not affect the linear relation between the two test scores, and b affects this relation. The numbers are students’ sample numbers




Student 10 of Fig. 17.1a is an outlier
 on both tests. Moreover, he or she is a bivariate outlier
 because his (her) pattern of two test scores is inconsistent with the patterns of the other nine students. However, Student 10 does not affect the relation between the two test scores. The test scores of the first nine students scatter around a straight line, and Student 10’s scores are near the same line. In contrast, Fig. 17.1b shows the situation where Student 10 is an outlier
 that affects the relation between the two test scores. Student 10 is an outlier
 on Test B. Moreover, he or she is a bivariate outlier
 because his (her) pattern of two test scores is inconsistent with the patterns of the other nine students. Student 10 of Fig. 17.1b affects the relation between the two test scores because he or she is not at the same line as the other nine students.
A naive strategy to cope with outliers is to remove them from the data set, and to apply conventional statistical methods to the remaining data. Researchers are recommended not to apply this strategy. Instead, they are advised to apply more appropriate methods. Some of these methods are described in the remainder of this chapter.
17.1 Outlier Detection Methods
This section
 is restricted to methods for the detection of univariate outliers. A multivariate outlier
 is a pattern of values of different variables that is inconsistent with other patterns. It is not sufficient to apply univariate methods to the separate variables, but special multivariate outlier
 detection methods have to be applied (Wilcox, 2010, Sect. 7.9). For methods to detect multivariate outliers and corresponding R functions, the reader is referred to Wilcox (2012, Sect. 6.4).
Bakker and Wicherts (2014) reviewed the practices of outlier
 detection and handling in articles published between 2001 and 2010 in six important journals of different subfields of psychology. They concluded that it is very common to remove outliers in initial data analysis. Moreover, they found that the Z-score method
 is most frequently used to detect outliers.
The Z-score of the ith participant of a sample is:[image: $$ Z_{i} = \frac{{X_{i} - \overline{X} }}{{S_{X} }}, $$]

 (17.1)




where Xi is the ith participant’s variable value (e.g., a test score), and [image: $$ \overline{X} $$] and [image: $$ S_{X} $$] are the sample mean and standard deviation of the variable, respectively. The Z-score flags an outlier
 if it is relatively large or small. For example, a Z-score flags an outlier
 if it is smaller than −3 or larger than +3, or, in other words, if the absolute value of the Z-score is larger than 3 (i.e., |Z| > 3). Bakker and Wicherts (2014) found in their study of articles published in six psychology journals that the criterion of the absolute value of the Z-score for flagging an outlier
 varied from 1.76 to 10 with a median of 3.
The Z-score method
 has flaws that make it unfit for outlier
 detection (see, among others, Bakker and Wicherts, 2014). An important flaw is the 
              masking of outliers
              
             (Wilcox, 2010, Sect. 3.2). The Z-score depends on both the sample mean and sample standard deviation (see Eq. 17.1). Outliers simultaneously inflate the mean and standard deviation, which may cause that an outlier
 is not detected (see Example 17.2).
Example 17.2 Masking of outliers by the Z-score method (constructed data)
A 60-item
 achievement test is administered to a sample of twelve students. Each of the items has three (one correct and two incorrect) options. The items are dichotomously scored (1 for a correct answer and 0 for an incorrect answer), and the test score is the number of correctly answered items. The students’ (fictitious) test scores are in ascending order:[image: $$ 0,0,28,30,32,34,34,40,42,44,45,{\text{and }}50. $$]






The sample mean of these test scores is [image: $$ \overline{X} = 31.58 $$] and the sample standard deviation is [image: $$ S_{X} = 16.17 $$]. As said above, 0-scores are possible, but unlikely. The reasons for the 0-scores were not found. Therefore, these scores could not be corrected, and were not removed from the sample. It follows from Eq. 17.1 that the Z-scores of the first (Z(1)) and second (Z(2)) 0-scores are:[image: $$ {Z_{(1)} } = {Z_{(2)} } = \frac{0 - 31.58}{16.17} = - 1.95. $$]





These Z-scores do not flag the 0-scores as outliers when the criterion is 3 or even 2 (−2 < Z(1) = Z(2) = −1.95 < +2).
The example demonstrates that the Z-score method
 may fail to detect obvious outliers. The two 0-scores of the example are inconsistent with the other ten scores and are very unlikely for a 60-item
 three-choice test, but the Z-score method
 fails to detect them.
Bakker and Wicherts (2014) did a simulation study on the performance of Student’s t test of equal means of independent scores in the presence of outliers. They generated data, applied the Z-score method
 to remove outliers, and, subsequently, applied Student’s t test. Their results show that the Type I error of the t test is seriously inflated. The boxplot and MAD
-score methods are more appropriate to detect outliers. The MAD-score method
 is described in the remainder of this section. For the boxplot method the reader is referred to, among others, Wilcox (2010, Sect. 3.3).
The Z-score depends on both the mean and standard deviation. Outliers simultaneously inflate the mean and standard deviation, which may mask outliers. The mean is a measure for the location of a distribution, and the standard deviation is a measure for the variation of the distribution. The general idea is to replace the mean and standard deviation of the Z-score method
 by location and variation measures that are less affected by outliers than the mean and standard deviation.
The 
              MAD
              
            -score is the counterpart of the Z-score. It replaces the mean by the median (Med)
, and the standard deviation by the 
              MAD
              
            . The Med splits the values of a variable into the 50% smallest and 50% largest values. The median is a measure for the location of a distribution that is less sensitive to outliers than the mean. The 
              MAD
              
             is the median of the absolute deviations of the values of a variable from their median (see Example 17.3 for the computation of the 
              MAD
              
            ). The 
              MAD
              
             is a measure for the variation of a distribution that is less sensitive to outliers than the standard deviation. Analogously to the Z-score, the 
              MAD
              
            -score of the ith participant is:[image: $$ M_{i} = \frac{{X_{i} - Med}}{MAD}. $$]

 (17.2)




The 
              MAD
              
            -score is more appropriate to detect outliers than the Z-score because Med and 
              MAD
              
             are less sensitive to outliers than [image: $$ \overline{X} $$] and [image: $$ S_{X} $$], respectively. A rule of thumb is to flag a value Xi as an outlier
 if[image: $$ M_{i} &lt; - 2.97, $$]

 (17.3a)




or[image: $$ M_{i} &gt; + 2.97. $$]

 (17.3b)




(Wilcox, 2010, Sect. 3.2).
Example 17.3 illustrates the method for the test scores of Example 17.2.
Example 17.3 The MAD-score method to detect outliers of the test scores of Example 17.2
The median of the test scores of Example 17.2 is the score that splits the scores into the six (i.e., 50%) scores smaller than the median, and six (i.e., 50%) scores larger than the median. Therefore, the median is between the sixth (34) and seventh (34) of the ordered scores, and is set at their mean:[image: $$ M\hat{e}d = \frac{34 + 34}{2} = 34. $$]






The absolute deviation (AD)
 of a score Xi is the absolute value of the difference of the score and the median of the scores:[image: $$ AD_{i} = \left| {X_{i} - M\hat{e}d} \right|, $$]





for example, the absolute deviation of the third score of Example 17.2 (X(3) = 28) is:[image: $$ \left| {28 - 34} \right| = \left| { - 6} \right| = 6. $$]





The absolute deviation is computed for each of the twelve test scores:[image: $$ 34,34,6,4,2,0,0,6,8,10,11,{\text{and }}16. $$]





The 
              MAD
              
             is defined as the median of the absolute deviations. The six (50%) smallest absolute deviations are 0, 0, 2, 4, 6, and 6, and the six (50%) largest are 8, 10, 11, 16, 34, and 34. The median of these absolute deviations is between 6 and 8, and is set at their mean:[image: $$ MAD = \frac{6 + 8}{2} = 7. $$]





It follows from Eq. 17.2 that the 
              MAD
              
            -scores of the 0-scores are:[image: $$ M_{(1)} = M_{(2)} = \frac{0 - 34}{7} = - 4.87. $$]





The 
              MAD
              
            -scores of the twelve test scores are:[image: $$ - 4.87, - 4.87, - 0.86, - 0.57, - 0.29,0.00,0.00,0.86,1.14,1.43,1.57,{\text{and }}2.29. $$]





Equation 17.3a, b flags the two 0-scores as outliers, but none of the ten other test scores is flagged.
The Z-score method
 is not recommended. The MAD-score method
 is the preferred method of outlier
 detection. Wilcox (2012, Sect. 3.13.5) mentions an R function for doing the computations.
17.2 Outlier Detection and Correction

The
 statistical analysis of data starts with an initial phase. In this phase, researchers have to refrain from answering research questions, but have to focus on the quality of their data and measurements, the implementation of the study, and the characteristics of their sample (Adèr, 2008a, Sect. 14.2). The detection and correction of outliers fit into this initial phase of data analysis.
Researchers have to identify impossible (e.g., an IQ of 999), unlikely (e.g., a 0-score at a 60-item
 multiple-choice test), and other outliers. They are recommended to apply the MAD-score method
 to detect outliers.
Researchers have to make efforts to find the reasons for impossible and unlikely values, and other outliers. Activities of researchers and their co-workers have to be carefully checked for administrative and other errors. Errors made by participants can be checked by administering a retrospective interview
 after completing a test or task (see Sect. 7.​3.​1 of this book). During this interview participants are asked for the reasons of their impossible and unlikely scores and other outliers. For example, a participant who has a long reaction time at the first trial of a task may tell that he or she was confused in the beginning of the task, and hesitated to react immediately. If a retrospective interview
 was not held, participants can be re-approached within short time and asked for the reasons of their outliers (see Sect. 8.​6 of this book).
Errors that are detected should be replaced by the correct values. However, it may be impossible to retrieve correct values. For example, a participant who has a very long reaction time can retrospectively explain this long time, but it cannot be replaced by the correct time because the correct time was not measured.
The remaining outliers cannot be corrected, and have to be handled in the statistical analysis of the data. At this point, researchers have to decide whether an outlier
 is caused by a coincidence or not. Section 17.3 discusses the situation where it is evident that the outlier
 is coincidental, and Sect. 17.4 discusses the situation where that is not evident.
17.3 Coping with Coincidental Outliers
This section discusses the situation that an outlier
 is caused by a coincidence, but that this error cannot be corrected. For example, a long reaction time that is caused by an unexpected noise. It is plausible that these outliers are random.
It is recommended to remove coincidental outliers from the data set, and to treat them as missing values. It is plausible that the missingness is at random (MAR
) because the outliers are caused by coincidences. Under the MAR
 assumption the preferred methods to handle missing values are the maximum likelihood and Bayesian multiple imputation methods (see Sect. 16.​6.​1 of this book).
Researchers have to be very reserved with the removal of outliers. It has to be restricted to outliers that are evidently caused by coincidences, and that cannot be corrected. Other methods are recommended when data contain noncorrectable and noncoincidental outliers (see the next section).
17.4 Coping with Noncoincidental Outliers
Bakker and Wicherts (2014) found in their review of articles published in six psychology journals that it is rather common to remove outliers and to apply conventional statistical methods to the remaining data. The removal of outliers creates missing data. This missingness is not at random (MNAR
) because the outliers are not coincidental and not random. Model-based statistical missing data methods, such as, the maximum likelihood and Bayesian imputation methods, require that the missingness is MCAR
 or MAR
, and are not appropriate because the missingness is MNAR
. Moreover, the removal of noncoincidental outliers affects random procedures. If the sample of participants is a random sample from a population, removal of noncoincidental outliers causes that the sample is not random any more, and turns into a nonprobability sample (see Sect. 3.​2.​4 of this book). And, if participants are randomly assigned to (e.g., E-
 and C-
) conditions, removal of noncoincidental outliers may introduce systematic differences between conditions. The assignment of participants is not random any more, and the randomized experiment turns into a quasi-experiment (see Chap. 5 of this book). For example, if in a reaction time study, outliers mainly occur in the C-condition because participants of this condition are less attentive than participants of the E-condition, removal of outliers disturbs random assignment.
A researcher has two different options to cope with noncoincidental outliers. First, he or she applies conventional methods to analyze the data, and studies the influence of outliers on the conclusions of the analysis. Second, he or she uses statistical methods that are less sensitive to outliers than the conventional methods. Section 17.5 discusses the first strategy, and Sects. 17.6 through 17.9 the second one.
17.5 Content Robustness Against Outliers

Outliers may
 have substantial influence on the substantive conclusions of a statistical analysis. Adèr (2008b, p. 306) introduced the concept of content robustness. In line with his definition of this concept, an analysis is content robust against outliers if the outliers do not affect the substantive conclusions of the analysis. In other words, substantive conclusions are content robust against outliers when the outliers do not substantially change the conclusions of a study.

Content robustness against outliers
 is assessed by studying the effects of removal of outliers on conclusions. The analysis is done twice. First, the complete data, including the outliers, are analyzed. Second, the outliers are removed, and the same analysis is applied to the remaining data. In general, the results of the two analyses will not be exactly the same, but substantive conclusions may or may not differ. If the conclusions of the two analyses are approximately the same, for example, both analyses show a treatment effect, the substantive conclusions are robust against the outliers. However, if the conclusions differ, for example, one analysis shows a treatment effect and the other analysis does not show this effect, the conclusions are not robust against the outliers.
Publications on a study should report that two analyses were done, one with and one without the outliers. It is recommended to report the results of both analyses. However, if the results of only one analysis are reported, researchers should report the results that give the weakest support to the substantive hypothesis.
17.6 Robust Statistics
The second
 strategy to cope with noncoincidental outliers is to apply 
              robust statistical methods
              
             instead of the conventional methods. Usually, these methods are less sensitive to outliers than the conventional methods. The most popular statistics
 of the behavioral sciences are the mean, standard deviation, and product moment correlation (pmc). These statistics
 have a number of robust alternatives (see, among others, Wilcox, 2012).
A robust alternative of the standard deviation is the 
              MAD
              
            , which was discussed in Sect. 17.1 of this chapter. A robust alternative of the mean is the median. Example 17.4 illustrates that the median is less sensitive to outliers than the mean.
Example 17.4 Sensitivity of the mean and median to outliers
Example 17.2 gives the (fictitious) scores of a sample of twelve students. The mean of these scores is [image: $$ \overline{X} = 31.58 $$], (see Example 17.2), and the median is [image: $$ M\hat{e}d = 34 $$] (see Example 17.3). The two 0-scores are outliers (see Example 17.3). The test scores that remain after the 0-scores are removed are in ascending order:[image: $$ 28,30,32,34,34,40,42,44,45,{\text{and }}50. $$]






The mean of these ten scores is [image: $$ \overline{X} = 37.90 $$]. The median is between the fifth and sixth score, and is set at their mean:[image: $$ M\hat{e}d = \frac{34 + 40}{2} = 37. $$]





The outliers have more effect on the mean than on the median. Removing the two outliers increases the mean more (from 31.58 to 37.90) than the median (from 34 to 37).
Robust alternatives of the pmc are Spearman’s rank correlation
 (see Sect. 11.​4.​10 of this book) and Kendall’s tau
. These alternatives are less sensitive to outliers than the pmc, but outliers can also affect them (Wilcox, 2012, Sects. 9.​3.​10 and 9.​3.​11). Theoretically, Kendall’s tau
 better protects against outliers than Spearman’s rank correlation
 (Croux & Dehon, 2010). Therefore, Kendall’s tau
 is preferred to assess a bivariate symmetrical relation
.
The following sections describe some robust methods to test null hypotheses on medians and Kendall’s tau
.
17.7 Comparing Paired Scores
This section discusses robust methods to test null hypotheses on paired dependent variable (DV
-) scores. Examples of paired scores are a test that is administered to the same participants before (pretest
) and after (posttest) a treatment, and a questionnaire that is administered to husbands and their wives.
The difference score of the ith pair is the difference of the two scores, and is given by Eq. 12.1 of Sect. 12.1.1:[image: $$ D_{i} = X_{2i} - X_{1i} , $$]

 (12.1)




where X1i and X2i are the first (e.g., pretest
) and second (e.g., posttest) scores of the ith pair, respectively. A property of means is that the mean difference score is equal to the difference of the means of the two separate scores (Eq. 12.2, Sect. 12.1.1):[image: $$ \upmu_{D} =\upmu_{2} -\upmu_{1} , $$]

 (12.2)




where μD is the population mean of the difference score, and μ1 and μ2 are the population means of the first and second scores, respectively. It follows from Eq. 12.2 that the null hypothesis that the mean difference score is zero (Eq. 12.3 of Sect. 12.1.1), that is,[image: $$ {\text{H}}_{0} :\upmu_{D} = 0 $$]

 (12.3)




is equivalent to the null hypothesis that the two means are equal:[image: $$ H_{0} :\upmu_{1} =\upmu_{2} . $$]

 (17.4)




Equation 12.2 holds for means. However, generally, it does not hold for medians, that is,[image: $$ Med_{D} \ne Med_{2} - Med_{1} , $$]

 (17.5)




(see Example 17.5).
Example 17.5 Test scores illustrating Eqs. 12.2 and 17.5 (constructed data)
A test is administered to five participants at pretest
 and posttest. For each of the participants the difference score is computed. Table 17.1 gives the (fictitious) scores.Table 17.1Means and medians of (fictitious) pretest
, posttest, and difference scores of five participants


	Participant no.
	Score

	Posttest
	
                          Pretest

                        
	Difference

	1
	40
	30
	10

	2
	42
	41
	1

	3
	44
	39
	5

	4
	48
	46
	2

	5
	49
	43
	6

	Mean:
	44.6
	39.8
	4.8

	Median:
	44
	41
	5






The mean difference score is equal to the difference of the posttest and pretest
 means (Eq. 12.2): 4.8 = 44.6 − 39.8. However, the median of the difference score is not equal to the difference of the posttest and pretest
 medians (Eq. 17.5): 5 ≠ 44 − 41 = 3.
Null hypotheses Eqs. 12.3 and 17.4 on means are equivalent. However, it follows from Eq. 17.5 that a similar equivalence does not hold for medians. The null hypothesis that the median of the difference score is equal to zero, that is,[image: $$ H_{0} :Med_{D} = 0 $$]

 (17.6)




is not equivalent to the null hypothesis that the medians of the two scores are equal:[image: $$ H_{0} :Med_{1} = Med_{2} . $$]

 (17.7)




Rejection of null hypothesis Eq. 17.6 does not necessarily imply that null hypothesis Eq. 17.7 is rejected, and rejection of null hypothesis Eq. 17.7 does not necessarily imply that null hypothesis Eq. 17.6 is rejected. Therefore, two different null hypotheses can be tested. A test of null hypothesis Eq. 17.6 is done when the interest is in the difference score, and a test of null hypothesis Eq. 17.7 is done when the interest is on the comparison of the two (e.g., pretest
 and posttest) scores.
Wilcox (2012, Sect. 4.6.2) describes a method to compute confidence intervals (CIs)
 of the median. Moreover, he mentions a R-function for doing the computations. These methods can be applied to test the null hypothesis that the median of the difference score is zero (i.e., Eq. 17.6).
Null hypothesis Eq. 17.7 is on the equality of the medians of the two scores, for example, the equality of the medians of pretest
 and posttest scores. Null hypothesis Eq. 17.7 implies that the difference of the two population medians is zero:[image: $$ Med_{d} = Med_{2} - Med_{1} = 0. $$]

 (17.8)




Note that Medd of Eq. 17.8 is the difference of the two medians, whereas MedD of Eq. 17.6 is the median of the difference score.
Null hypothesis Eq. 17.7 is tested by constructing a confidence interval (CI)
 of Medd. Null hypothesis Eq. 17.7 is rejected if zero is outside this CI
, and it is not rejected if zero is within this CI
. The percentile bootstrap is applied to construct CIs of Medd. The steps of this method are (Wilcox, 2012, Sect. 5.9.11):	(1)A sample of n pairs of participants is randomly selected from a population of pairs of scores.

 

	(2)A sample of n pairs is randomly selected with replacement
 from the original sample. The medians of the first (e.g., pretest
) and second (e.g., posttest) scores are computed. The medians of this first bootstrap sample are indicated by [image: $$ M\hat{e}d_{11}^{*} $$] and [image: $$ M\hat{e}d_{21}^{*} $$], where the asterisk indicates that the medians are computed in a bootstrap sample. Moreover, the difference of these two bootstrap medians is computed:[image: $$ M\hat{e}d_{d1}^{*} = M\hat{e}d_{21}^{*} - M\hat{e}d_{11}^{*} . $$]






 

	(3)Step 2 is repeated B times, which yields B [image: $$ M\hat{e}d_{d}^{*} $$]-values (i.e., [image: $$ M\hat{e}d_{d1}^{*} ,M\hat{e}d_{d2}^{*} , \ldots ,M\hat{e}d_{dB}^{*} $$]).

 

	(4)These B [image: $$ M\hat{e}d_{d}^{*} $$]-values are set in ascending order:[image: $$ M\hat{e}d_{d(1)}^{*} \le M\hat{e}d_{d(2)}^{*} \le \cdots \le M\hat{e}d_{d(B)}^{*} , $$]





where the subscript between parentheses denotes the rank number of the [image: $$ M\hat{e}d_{d} $$]-value: [image: $$ M\hat{e}d_{d(1)}^{*} $$] is the smallest value, [image: $$ M\hat{e}d_{d(2)}^{*} $$] the second smallest value, and so on.

 

	(5)A two-sided bootstrap CI
 of the population Medd is a middle part of the ordered [image: $$ M\hat{e}d_{d}^{*} $$]-values. For example, the two-sided bootstrap 95% CI
 of Medd is the middle 95% of the ordered [image: $$ M\hat{e}d_{d}^{*} $$]-values. Null hypothesis Eq. 17.7 is rejected at the two-tailed 5% significance level if zero is in the smallest 2.5% or the largest 2.5% of the ordered [image: $$ M\hat{e}d_{d}^{*} $$]-values, and is not rejected if zero is in the middle 95% of the ordered [image: $$ M\hat{e}d_{d}^{*} $$]-values.

 





17.8 Comparing Independent Scores
Independent scores are scores of distinct groups of participants, for example, DV
-scores of distinct E-
 and C-condition participants. The conventional method to compare the scores of the two groups is Student’s t test for the means of the groups (see Sect. 12.​1.​2 of this book). Student’s t test is sensitive to outliers. Bakker and Wicherts (2014) did a simulation study on the robustness of tests against outliers. They found that the nonparametric Mann-Whitney test (Canavos, 1984, Sect. 15.2.1) and Yuen’s (1974) 20% trimmed means test are less sensitive to outliers than Student’s t test. This section describes a robust bootstrap test on medians.
The null hypothesis of equal medians of two distinct (e.g., E-
 and C-condition) groups is:[image: $$ H_{0} :Med_{E} = Med_{C} , $$]

 (17.9)




which implies that the difference of the two medians is zero:[image: $$ Med_{EC} = Med_{E} - Med_{C} = 0. $$]

 (17.10)




Null hypothesis Eq. 17.9 is tested by constructing a bootstrap CI
 of MedEC. The null hypothesis is rejected if zero is outside this CI
, and it is not rejected if zero is within this CI
. The steps of the percentile bootstrap procedure are:	(1)A sample of n participants is randomly selected from a population, nE of them are randomly assigned to the E-condition and the remaining nC to the C-condition. A DV
-score is obtained for each of the participants.

 

	(2)A sample of nE DV
-scores is randomly selected with replacement
 from the scores of the original E-condition group, and a sample of nC DV
-scores is randomly selected with replacement from the scores of the original C-condition group. The medians [image: $$ M\hat{e}d_{E1}^{*} $$] and [image: $$ M\hat{e}d_{C1}^{*} $$] of the E-
 and C-condition scores of the first bootstrap samples are computed. The asterisk indicates that the medians are computed in bootstrap samples. Moreover, the difference of the two bootstrap samples is computed:[image: $$ M\hat{e}d_{EC1}^{*} = M\hat{e}d_{E1}^{*} - M\hat{e}d_{C1}^{*} . $$]






 

	(3)Step 2 is repeated B times, which yields B [image: $$ M\hat{e}d_{EC}^{*} $$]-values (i.e., [image: $$ M\hat{e}d_{EC1}^{*} ,M\hat{e}d_{EC2}^{*} , \ldots ,M\hat{e}d_{ECB}^{*} $$]).

 

	(4)These B [image: $$ M\hat{e}d_{EC}^{*} $$]-values are set in ascending order:[image: $$ M\hat{e}d_{EC(1)}^{*} \le M\hat{e}d_{EC(2)}^{*} \le \cdots \le M\hat{e}d_{EC(B)}^{*} , $$]





where the subscript between parentheses denotes the rank number of the [image: $$ M\hat{e}d_{EC}^{*} $$] -value.

 

	(5)A two-sided bootstrap CI
 of the population MedEC is a middle part of the ordered [image: $$ M\hat{e}d_{EC}^{*} $$]-values. For example, the two-sided bootstrap 95% CI
 of MedEC is the middle 95% of the ordered [image: $$ M\hat{e}d_{EC}^{*} $$]-values. Null hypothesis Eq. 17.9 is rejected at the two-tailed 5% significance level if zero is in the smallest 2.5% or the largest 2.5% of the ordered [image: $$ M\hat{e}d_{EC}^{*} $$]-values, and it is not rejected if zero is in the middle 95% of the ordered [image: $$ M\hat{e}d_{EC}^{*} $$]-values.

 





Wilcox (2012, Sect. 5.4.2) mentions a slight adaption of the procedure when tied E-
 and C-condition means of a bootstrap sample occur. Moreover, he reports an R function for doing the computations (Wilcox, 2012, Sect. 5.4.3).
17.9 Association Between Two Variables
The pmc is a coefficient for the symmetrical relation
 between two continuous variables (see Sect. 11.​4.​11 of this book). However, the pmc is sensitive to outliers. In case of outliers, it is recommended to apply Kendall’s tau
 (Gibbons, 1971, Sects. 12.1 and 12.2) to the data because it is less sensitive to outliers than the pmc. 
              Kendall’s tau
              
             is the difference of the probabilities of concordant and discordant pairs
 of a population of participants. A pair of participants is concordant on two variables if their order is the same on the two variables, and a pair of participants is discordant if their order on the two variables is different (see Sect. 11.​4.​7 of this book).

Kendall’s tau
 is estimated in a sample of n participants by the difference of the sample proportions of concordant and discordant pairs
:[image: $$ \hat{\uptau} = \frac{ncon}{1/2n(n - 1)} - \frac{ndis}{1/2n(n - 1)} = \frac{2(ncon - ndis)}{n(n - 1)}, $$]

 (17.11)




where ncon and ndis are the sample frequencies of concordant and discordant pairs
 of participants (see Example 17.6).
Example 17.6 Kendall’s tau
Two tests (A and B) are administered to five participants. Table 17.2 reports the test scores.Table 17.2Fictitious scores of five participants at two tests (A and B)


	Participant no.
	Test

	A
	B

	1
	10
	30

	2
	20
	10

	3
	150
	50

	4
	40
	140

	5
	60
	40






The score of the third participant at Test A (150) is much larger than the scores of the other participants at Test A, and the score of the fourth participant at Test B (140) is much larger than the scores of the other participants at Test B. Therefore, the researchers compute Kendall’s tau
 between the scores of the two tests instead of the pmc. Table 17.3 reports the type of each pair of participants, for example, the pair of Participants 1 and 2 is discordant because Participant 1 has a smaller score at Test A (10) than Participant 2 (20), but a larger score at test B (30) than Participant 2 (10).Table 17.3The different pairs of the five participants of Table 17.2 and the type of each pair


	Pair of participants
	Type

	1 and 2
	dis

	1 and 3
	con

	1 and 4
	con

	1 and 5
	con

	2 and 3
	con

	2 and 4
	con

	2 and 5
	con

	3 and 4
	dis

	3 and 5
	con

	4 and 5
	dis





The frequencies of concordant and discordant pairs
 of participants are ncon = 7 and ndis = 3. Equation 17.11 yields:[image: $$ \hat{\uptau} = \frac{2(7 - 3)}{5(5 - 1)} = 0.40. $$]





The null hypothesis of no association between two variables is:[image: $$ H_{0} :\uptau = 0. $$]

 (17.12)




Wilcox (2012, Sect. 9.3.13) recommends the percentile bootstrap to test this null hypothesis. In the first step of the procedure, a sample of n participants is randomly selected from a population. In the second step, a sample of n participants is randomly selected with replacement
 from the original sample. Kendall’s tau
 is computed in this first bootstrap sample. The procedure continues as the percentile bootstrap that was described in the previous section. Replacing the bootstrap median differences ([image: $$ M\hat{e}d_{EC}^{*} $$]) by bootstrap taus ([image: $$ \hat{\uptau}^{*} $$]) yields a bootstrap CI
 of tau. This CI
 is used to test null hypothesis Eq. 17.12.
17.10 Recommendations
Outliers often occur in behavioral science data, and they can seriously bias study results. The following recommendations are given.
First, the preferred method to detect univariate outliers is the Median Absolute Deviation
 (
              MAD
              
            -) score method. The Z-score method
 should be abandoned.
Second, the data have to be checked on outliers that are caused by coincidences, such as, impossible and unlikely scores. Errors of investigators are retrieved by checking all research procedures. Errors of participants can be detected by applying a retrospective interview
 or re-approaching participants, and asking them to correct errors.
If it is certain that errors have been made coincidentally, but that they cannot be corrected, the outliers are removed from the data set, and are treated as missing data. It is likely that this missingness is MCAR
 or MAR
 because the outliers were caused by coincidences. The preferred methods to handle this types of missingness are model-based methods, such as, the maximum likelihood and Bayesian multiple imputation methods (see Sect. 16.​6.​1 of this book).
Third, if it is not evident that the outliers come from coincidences, two strategies are possible. The first one is to study the sensitivity of substantive conclusions against outliers. The data are analyzed twice with the same statistical methods, that is, with and without the outliers. The conclusions of the two analyses are compared. The results of both analyses are reported, or the results of only the analysis that gives weakest support to the substantive hypothesis is reported. The second strategy is to apply robust statistical methods
. Examples are the median and the percentile bootstrap to compare paired and independent scores, and Kendall’s tau
 and the percentile bootstrap to assess the association between two variables.
Finally, the frequency and handling of outliers have to be mentioned in publications of a study.
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Abstract
A factor is an independent variable. A factorial design completely crosses two or more factors. It is an efficient design that simultaneously studies main effects of factors and their interactions. A distinction is made between factors that can be manipulated by researchers and factors that cannot be manipulated. Usually, the effects of manipulable factors are causally interpreted. Nonmanipulable factors are included for two different reasons, but they should not be dichotomized. First, to increase the precision of parameter estimates and the power of statistical tests. The nonmanipulable factor is included as a blocking variable in a randomized block design (if its values are known before participants are assigned to conditions) or as a covariate in the analysis of the data. Second, to study their relations with manipulable factors, but these relations should not be causally interpreted. The statistical analysis of factorial design data has to be tuned to the type of dependent variable (DV). Usually, ANOVA or ANCOVA are applied to (approximately) continuous DVs, but these methods make strong assumptions. Akritas et al.’s (J Am Stat Assoc 92:3375–3384, 1997) nonparametric method is more appropriate to analyze (approximately) continuous and ranked DVs. The preferred methods for dichotomous, nominal-categorical, and ordinal-categorical DVs are the logit, baseline-category, and cumulative logit models, respectively. Often, researchers apply omnibus statistical tests to factorial design data. These tests mainly fit into exploratory research. Confirmatory studies prespecify specific hypotheses. The proper methods to test these hypotheses are planned comparisons of conditions.
Keywords
Baseline splittingCumulative splittingDichotomizationFactorial designInteraction effectLinear contrastLogit modelMain effectManipulable and nonmanipulable factorsPlanned comparisons
The previous chapters focused on the situation where the effect of one independent variable (IV) on a dependent variable (DV) is studied. For example, the effect of a new psychotherapy compared to the standard therapy (IV: Treatment) on patients’ depression test score (DV: depressive mood). This chapter is directed to research situations that involve more than one IV. The inclusion of several IVs into one design has some advantages, but also a disadvantage. The simultaneous study of several IVs is usually more efficient and less expensive than separate studies of each of the IVs. Moreover, the simultaneous study of different IVs yields more information than separate studies because interactions can be studied. However, the number of different combinations of IVs might become very large and unmanageable.
The discussion is restricted to between-subjects designs with completely crossed factors. This situation suffices to show some common errors and to discuss methods to prevent or correct them.
18.1 Factorial Designs
The situation is considered of research designs that have two or more IVs. In the context of research designs, an IV is called a 
              factor
              
             and the values of the IV the levels of the 
              factor
              
            . For example, a dichotomous IV that consists of a new and a standard treatment is called a treatment factor with two levels.
A 
              factorial design
              
             is a design that uses two or more factors that are combined. The 
              complete crossing of factors
              
             means that each level of a factor is combined with each level of the other factors. Each of these combinations is called a 
              cell of the factorial design
              
            . Participants of the study are distributed across the cells and data are collected for each cell of the design. Example 18.1 clarifies this terminology.
Example 18.1 A completely crossed 2 × 2 factorial design
A treatment factor has two levels: a new treatment and the standard treatment. The duration factor also has two levels: each of the two treatments is applied 10 or 20 weeks. The complete crossing of the two factors yields 2 (treatments) × 2 (durations) = 4 cells of the design:	 	Duration factor


	10 weeks
(short)
	20 weeks
(long)

	Treatment factor

	New
	×
	×

	Standard
	×
	×




A cross means that participants are assigned to the cell, and data are collected. For example, 25 participants are assigned to each of the four cells, and a test is administered to each of the 4 (cells) × 25 (participants) = 100 participants. The design is called a 2 × 2 factorial design because the first factor (Treatment) has two levels and the second factor (Duration) has two levels.

The design of Example 18.1 is the simplest possible factorial design because it has two factors and two levels per factor. The factorial design can be extended to designs with more than two factors and more than two levels per factor. For example, a design with three factors (A, B, and C), where Factor A has two levels, Factor B three levels, and Factor C four levels has 2 × 3 × 4 = 24 cells, and is called a 2 × 3 × 4 factorial design. The number of cells increases with the number of factors and the number of levels per factors. Therefore, a design with many factors and many levels per factor easily becomes unmanageable in practice.
An important distinction is between manipulable and nonmanipulable factors. A 
              manipulable factor
              
             is an IV that can be manipulated by researchers, whereas a 
              nonmanipulable factor
              
             cannot be manipulated (cf. Sect. 4.​1 of this book). Examples of manipulable factors are the Treatment and Duration factors of Example 18.1. Examples of nonmanipulable factors are Age, Gender, Income, Educational Level, and Socioeconomic Status (SES). This distinction is relevant for the interpretation of the results of a study because manipulable and nonmanipulable factors have a different status within factorial designs (see Sect. 18.4 of this chapter).
18.2 Main and Interaction Effects
A factorial design admits the study of the main and interaction effects of the factors. A 
              main effect
              
             is the differential effect of the levels of a factor on the DV, whereas an 
              interaction effect
              
             is the differential effects of combinations of levels of factors on the DV. Main effects can be studied by doing separate studies on each of the factors, but interaction effects can only be studied by combining levels of different factors into one study. Example 18.2 illustrates the concepts of main and interaction effects.
Example 18.2 Main and interaction effects on a test score DV, 2 × 2 factorial design (constructed data)
A sample of 100 depressive patients is selected for a study. The patients are randomly assigned to the four conditions of the 2 × 2 factorial design of Example 18.1 (25 patients per cell of the design). After completing the treatment, a depression test is administered to each of the patients. The test has 30 items and each of the items has five answer categories that are integer scored (i.e., 1, 2, 3, 4, or 5). The test score is the sum of the 30 item scores. The minimum possible test score is Xmin = 30 × 1 = 30 (a score of 1 at each of the 30 items), and the maximum possible score is Xmax = 30 × 5 = 150 (a score of 5 at each of the 30 items). Moreover, after completing the treatment, each of the patients is interviewed by a clinical psychologist. The psychologist evaluates patients’ depressive mood. This example discusses main and interaction effects on an approximately continuous DV (i.e., the depression test score), while Examples 18.5 through 18.7 discuss these effects on other types of DVs. The following effects are distinguished:	(1)A main effect of the treatment factor, and no main effect of the duration factor, and no interaction effect;

 

	(2)a main effect of the duration factor, and no main effect of the treatment factor, and no interaction effect;

 

	(3)main effects of both treatment and duration factors, but no interaction effect;

 

	(4)an ordinal interaction effect;

 

	(5)a disordinal interaction effect.

 





These effects are demonstrated using the (fictitious) means of the depression test scores. The mean scores of the four cells are indicated by XNS (new treatment/short (10 weeks duration)), XNL (new treatment/long (20 weeks duration)), XSS (standard treatment/short (10 weeks duration)), and XSL (standard treatment/long (20 weeks duration)). Idealized versions of the five types of effects are given.	(1)Only a main effect of the treatment: [image: $$ \bar{X}_{NS} = \bar{X}_{NL} = 50 $$], and [image: $$ \bar{X}_{SS} = \bar{X}_{SL} = 90 $$] (see Fig. 18.1).[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig1_HTML.png]
Fig. 18.1Only a main effect of the treatment. A cross indicates the new treatment and a circle the standard treatment


A dotted line connects the crosses and the circles, respectively. The lines are parallel, which means that the treatment effect is the same for each of the two levels (i.e., 10 and 20 weeks) of the duration factor: the new treatment decreases the depression test score at each of the two levels of the duration factor.

 

	(2)Only a main effect of the duration: [image: $$ \bar{X}_{NS} = \bar{X}_{SS} = 80 $$], and [image: $$ \bar{X}_{NL} = \bar{X}_{SL} = 60 $$] (see Fig. 18.2).[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig2_HTML.png]
Fig. 18.2Only a main effect of duration. A cross indicates the new treatment and a circle the standard treatment


The dotted lines that connect the crosses and circles, respectively, coincide, which means that the duration effect is the same for each of the two levels (new and standard) of the treatment factor: the 20-weeks duration decreases the depression test score at each of the two levels of the treatment factor.

 

	(3)A main effect of both treatment and duration: [image: $$ \bar{X}_{NS} = 70 $$], [image: $$ \bar{X}_{NL} = 50 $$], [image: $$ \bar{X}_{SS} = 100 $$], and [image: $$ \bar{X}_{SL} = 80 $$] (see Fig. 18.3).[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig3_HTML.png]
Fig. 18.3A main effect of both treatment and duration. A cross indicates the new treatment and a circle the standard treatment


The figure shows that the new treatment and the 20-weeks duration decreases the test score. Moreover, the difference between the 10 and 20 weeks durations (i.e., 20 score points) is the same for each of the two treatments, and the difference between the standard and new treatments (i.e., 30 score points) is the same for each of the two durations.

 

	(4)An 
                        ordinal interaction effect
                        
                      : [image: $$ \bar{X}_{NS} = 50 $$], [image: $$ \bar{X}_{SS} = 60 $$], [image: $$ \left| {\bar{X}_{NL} = 40} \right. $$], and [image: $$ \bar{X}_{SL} = 80 $$] (see Fig. 18.4).[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig4_HTML.png]
Fig. 18.4An ordinal interaction effect. A cross indicates the new treatment and a circle the standard treatment


The figure shows the interaction effect: the difference between the standard and new treatment is larger for the 20 weeks duration (i.e., 40 score points) than for the 10 weeks duration (i.e., 10 score points). This type of interaction was called ordinal by Bracht and Glass (1968) because the mean of the new treatment is smaller than the mean of the standard treatment for both durations.

 

	(5)A 
                        disordinal interaction effect
                        
                      : [image: $$ \bar{X}_{NS} = 60 $$], [image: $$ \bar{X}_{SS} = 90 $$], [image: $$ \bar{X}_{NL} = 90 $$], and [image: $$ \bar{X}_{SL} = 60 $$] (see Fig. 18.5).[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig5_HTML.png]
Fig. 18.5A disordinal interaction effect. A cross indicates the new treatment and a circle the standard treatment



 






The figure shows the interaction effect: the mean of the new treatment is smaller than the mean of the standard treatment when the duration is 10 weeks, but the mean of the new treatment is larger than the mean of the standard treatment when the duration is 20 weeks. This type of interaction was called disordinal by Bracht and Glass (1968).
The example demonstrates some properties of factorial designs. It gives cause to the following comments.
First, a factorial design combines two or more factors and admits the study of main effects and their interactions. The main effects could be studied by doing separate studies on each of the factors (see Example 18.3).
Example 18.3 Separate studies on the effects of the two factors of Example 18.2
Two separate studies are done on the treatment and duration effects. The first study is on the effect of the treatment. A sample of 50 patients is selected, 25 of them are randomly assigned to 20 weeks new treatment and the other 25 to 20 weeks standard treatment. The second is on the duration effect, and is done with the treatment that had the best results in the first study. For example, if in the first study, the new treatment decreased the depression test scores more than the standard treatment, the new treatment is selected for the second study. A new sample of 50 patients is selected, 25 of them are randomly assigned to the 20-weeks version of the new treatment and the other 25 to the 10-weeks version. The first study assesses the effect of the 20-weeks version of the new treatment, and the second study compares the 20- and 10-weeks versions of the new treatment. However, the two studies do not yield information on the interaction of the treatment and duration factors. In contrast, the 2 × 2 factorial design of Example 18.2 yields information on the effects of the two factors as well as their interaction.
Second, the interpretation of main effects is not straightforward when interactions are present. For example, the dotted lines of Figs. 18.1, 18.2, and 18.3 are parallel or coincide, which means that interaction is absent. Therefore, the interpretation of the main effects is straightforward, for example, Fig. 18.1 shows that the new treatment is more effective than the standard treatment, and that the effect is the same for the 10- and 20-weeks versions. The dotted lines of Figs. 18.4 and 18.5 are not parallel, which means that the factors interact. Therefore, the interpretation of one factor depends on the other factor, for example, Fig. 18.5 shows that the 10-weeks version of the new treatment is more effective than the 10-weeks version of the standard treatment, but that the 20-weeks version of the new treatment is less effective than the 20-weeks version of the standard treatment.

Third, the distinction between ordinal and disordinal interactions is relevant for the interpretation of the results of a factorial design. The dotted lines of an ordinal interaction do not cross (see Fig. 18.4), whereas the dotted lines of a disordinal interaction cross (see Fig. 18.5). The interpretation of an ordinal interaction is simpler than the interpretation of a disordinal interaction. For example, the ordinal interaction of Fig. 18.4 implies that the new treatment always has to be preferred above the standard treatment because the new treatment yields smaller depression test scores for both the 10- and 20-weeks durations. The interpretation of a disordinal interaction is more complex. For example, the disordinal interaction of Fig. 18.5 shows that the new treatment has to be preferred if the duration is 10 weeks, but the standard treatment has to be preferred if the duration is 20 weeks.
18.3 Testing Main and Interaction Effects
The figures of the previous section are idealized pictures of effects. Usually, empirical data show less clear effects, and statistical methods are needed to test effects. Section 11.​2 of this book distinguished five types of variables: (1) dichotomous, (2) nominal-categorical, (3) ordinal-categorical, (4) ranked, and (5) continuous variables. This section discusses factorial designs that have different types of DVs.
18.3.1 Continuous and Ranked DVs
The conventional method to analyze factorial design data is Analysis of Variance (ANOVA). ANOVA is applied to continuous DVs, such as, reaction times, and also to DVs that are approximately continuous, such as, test scores. Conventional ANOVA assumes that (1) the DV is normally distributed in each cell of the design, and (2) the variances of the DV are homogeneous (i.e., the same in each cell of the design). It follows from these assumptions that only the means of the DV can vary between cells of the design.
The ANOVA assumptions are rather strict, and are easily violated in empirical data. It is known for a long time that violations of ANOVA assumptions can increase Type I and II errors of ANOVA tests (Clinch & Kesselman, 1982; Glass, Peckham, & Sanders, 1972). Nonparametric alternatives of parametric ANOVA tests were developed. Toothaker and Newman (1994) studied the performance of three nonparametric tests (i.e., the Puri and Sen, rank transform, and aligned rank tests). These tests do not make the normality assumption, but assume that the distribution of the DV is the same in each cell of the design except for its location. This assumption is also very strong, and is also easily violated in empirical data. Toothaker and Newman (1994) simulated data for 2 × 2, 2 × 4, and 4 × 4 factorial designs. Their results show that the three nonparametric tests can increase the Type I and II errors of the tests.
Akritas, Arnold, and Brunner (1997) developed another nonparametric method for the analysis of factorial design data. As other nonparametric methods, their method uses the rank numbers of the DV scores. However, in contrast to other nonparametric methods, it does not make the equality of distributions assumption. Theoretically, the method is well-suited for the analysis of factorial design data. The method can test main and interaction effects, does not make strong assumptions, and can be applied to designs that have different numbers of participants per cell of the design. Moreover, the method is less sensitive to outliers than conventional ANOVA because it is based on rank numbers (see Chap. 17 of this book). Example 18.4 illustrates how to handle the data of the 2 × 2 factorial design of Example 18.2.
Example 18.4 Ranking data of the 2 × 2 factorial design of Example 18.2
The test scores of the 100 patients of Example 18.2 are pooled, and rank numbers are assigned to these scores. Ties are handled by the midranks method (see Sect. 11.​4.​10 of this book). Null hypotheses on main and interaction effects are tested using statistics that are reported by Akritas et al. (1997). Wilcox (2012, Sect. 7.9.1) gives an R function for doing the computations.
It is tempting to apply a two-step procedure. In the first step, the homogeneity of variance null hypothesis is tested. In the second step, a choice is made between conventional ANOVA and Akritas et al.’s method: ANOVA is applied if the null hypothesis of homogeneous variance is not rejected, and Akritas et al.’s method is applied if this null hypothesis is rejected. However, it is known that a two-step procedure for testing the difference between two means increases the Type I error of the testing procedure (see Sect. 12.​3 of this book). Therefore, it is conjectured that a two-step procedure for testing factorial design data will have negative effects on the Type I error. For the time being, the Akritas et al.’s method is the recommended method to test effects of factorial designs that have (approximately) continuous or ranked DV scores.

18.3.2 Dichotomous DVs
Akritas et al.’s method is appropriate for (approximately) continuous and ranked DV scores, but cannot be applied to dichotomous, nominal-categorical, and ordinal-categorical DV scores. These types of scores have to be analyzed with logit models (Agresti, 2002).
A dichotomous DV consists of two categories, that is, a first and a second category, for example, the first category is ‘passed the examination’ and the second category is ‘failed the examination’. The data are the frequencies of these two categories, for example, the frequency of students who passed the examination and the frequency of students who failed. The odds of the two categories is the ratio of these two frequencies (see Sect. 11.​4.​1 of this book):[image: $$ Odds\left( {two\,categories} \right) = \frac{Frequency\,first\,category}{Frequency\,second\,category}. $$]

 (18.1)



The 
                logit
                
               of two categories is the natural logarithm (i.e., logarithm at base e = 2.718…) of the odds:[image: $$ Logit\left( {two\,categories} \right) = ln(Odds\,two\,categories) = ln\frac{Frequency\,first\,category}{Frequency\,second\,category}, $$]

 (18.2)



where ln denotes the natural logarithm.
The data of a factorial design that has a dichotomous DV are the frequencies of the two categories per cell of the design. Using Eq. 18.2 these frequencies are transformed to logits per cell of the design. The logits are analyzed by logit models. A 
                logit model
                
               is used to test main and interaction effects of factorial designs that have a dichotomous DV. The logit model analysis resembles ANOVA in the sense that both methods test null hypothesis on main and interaction effects. However, the logit model applies to dichotomous DVs, whereas ANOVA applies to continuous DVs. Moreover, the logit model makes less stringent assumptions than ANOVA. Example 18.5 demonstrates how the logit model is applied to analyze a dichotomous DV of the 2 × 2 factorial design of Example 18.2.
Example 18.5 The 2 × 2 factorial design of Example 18.2 and a dichotomous DV
A cutting score is defined on the depression test scores of Example 18.2. For each of the 100 patients it is checked whether his (her) test score is below or above the cutting score: patients who have a test score equal to or below the cutting score are labeled ‘sufficiently recovered’ and patients who have a test score above the cutting score are labeled ‘not sufficiently recovered’. The cutting score splits the test scores into a dichotomous variable with two categories (i.e., sufficiently and not sufficiently recovered). The fictitious frequencies per cell of the 2 × 2 factorial design are:	 	Weeks

	10
	20

	Treatment
	New
	Rec.: 22
	Rec.: 22

	Not rec.: 3
	Not rec.: 3

	
Logit: 1.99
	
Logit: 1.99

	Standard
	Rec.: 14
	Rec.: 14

	Not rec.: 11
	Not rec.: 11

	
Logit: 0.24
	
Logit: 0.24




The table reports the frequencies of sufficiently recovered (Rec.) and not sufficiently recovered (Not rec.) patients and the logit transformation per cell of the design. For example, 25 patients were assigned to the 10-weeks version of the new treatment, 22 of them were sufficiently recovered and 3 were not sufficiently recovered. It follows from Eq. 18.2 that the logit is:


              [image: $$ Logit(10 - weeks,newtreatment) = ln\frac{22}{3} = 1.99. $$]




            
Figure 18.6 gives the graphical representation of the logits.[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig6_HTML.png]
Fig. 18.6Only a main effect of the treatment. A cross indicates the new treatment and a circle the standard treatment


The logit model is used to test null hypotheses on main and interaction effects. Figure 18.6 is the idealized picture of only a main effect of the treatment factor on the logits. Figure 18.6 is comparable to Fig. 18.1 of Sect. 18.2. Figure 18.1 shows the main effect of the treatment factor on the test scores, while Fig. 18.6 shows the main effect of the treatment factor on the dichotomized test scores. Both figures give an idealized picture of the main effect of the treatment factor in absence of the main effect of the duration factor and the treatment × duration interaction. The figures of the other effects (only a duration main effect, a treatment and duration main effect, an ordinal treatment × duration interaction effect, and a disordinal treatment × duration interaction effect) on the dichotomous scores yield idealized pictures that are comparable to Figs. 18.2, 18.3, 18.4, and 18.5, respectively.
18.3.3 Nominal-Categorical DVs
The logit model is also appropriate for the analysis of factorial designs that have categorical DVs. A nominal-categorical DV is handled by conceptually splitting it into dichotomous variables, which combine a base line category with each of the other categories, and simultaneously applying the logit model to these dichotomous variables (Agresti, 2002, Sect. 7.1).
Example 18.6 demonstrates how the logit model is applied to a nominal-categorical DV of the 2 × 2 factorial design of Example 18.2.
Example 18.6 The 2 × 2 Factorial design of Example 18.2 and a nominal-categorical DV
The 100 patients of Example 18.2 were interviewed by a clinical psychologist. The psychologist evaluated each of the patients using a nominal and an ordinal scale. The nominal scale is described in this example, and the ordinal scale in Example 18.7 of the following section. The nominal scale has three categories: the patient feels (1) relaxed, (2) fatigued, and (3) stressed. The nominal variable is conceptually split into two dichotomous variables. The relaxed category is taken as the baseline category, and each of the other two categories is combined with the baseline category. Figure 18.7 shows the 
                  baseline splitting
                  
                 of the three-category nominal scale.[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig7_HTML.png]
Fig. 18.7Baseline-splitting of a three-category nominal variable into two dichotomous variables


The psychologist assigned each of the 100 patients to one of the three categories, and the category frequencies are counted per cell of the 2 × 2 factorial design. Conceptually, the three-category variable is split into two dichotomous variables that preserve the nominal nature of the three categories. As an example, Fig. 18.8 shows the fictitious frequencies of the three-category variable, and the frequencies of the two dichotomous variables for the 10-weeks version of the new treatment.[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig8_HTML.png]
Fig. 18.8Fictitious frequencies three-category variable and its baseline splittings, 10-weeks version of the new treatment


The logit model is appropriate to analyze the frequencies of the two dichotomous variables. Although it seems plausible, it is not allowed to apply the logit model separately to each of the two dichotomous variables because these two variables are dependent. For example, the dichotomous variables of Fig. 18.8a and b are dependent because the same 13 relaxed patients are included into each of the two dichotomous variables. The baseline-category logit model is a method that simultaneously analyzes the two dichotomous variables (Agresti, 2002, Sect. 7.1). The model tests null hypotheses on the main and interaction effects of factorial designs.

Example 18.6 demonstrated baseline-splitting of a three-category nominal variable. Similarly, nominal variables that have more than three categories can conceptually be split into dichotomous variables, and the baseline-category logit model can be applied to test null hypotheses on main and interaction effects.
18.3.4 Ordinal-Categorical DVs
The logit model is also suited for the analysis of ordinal-categorical DVs. However, the splitting of an ordinal-categorical variable differs from the splitting of a nominal-categorical variable. An ordinal-categorical DV is handled by conceptually splitting it into dichotomous variables that preserve the order of the categories (Agresti, 2002, Sect. 7.2). Example 18.7 demonstrates how the logit model is applied to an ordinal-categorical DV of the 2 × 2 factorial design of Example 18.2.
Example 18.7 The 2 × 2 factorial design of Example 18.2 and an ordinal-categorical DV
In addition to the nominal scale (see Example 18.6), the psychologist used an ordinal scale to assess the severity of patients’ depression. The scale has three ordered categories: (1) not depressed, (2) moderately depressed, and (3) strongly depressed. The ordinal variable is conceptually split into two dichotomous variables that preserve the order of the three categories. Three ways of splitting preserve the ordinal nature of a variable, but only 
                  cumulative splitting
                  
                 (Agresti, 2002, Sect. 7.2) is discussed in this chapter. For the other two splittings (i.e., adjacent-categories and continuation-ratio splitting) the reader is referred to, among others, Agresti (2002, Sect. 7.2). Figure 18.9 shows the cumulative splitting of the ordinal three-category variable.[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig9_HTML.png]
Fig. 18.9
Cumulative splitting of a three-category ordinal variable into two dichotomous variables


The dichotomous variable of Fig. 18.9a combines the moderately and not depressed categories, while the dichotomous variable of Fig. 18.9b combines the strongly and moderately depressed categories. The psychologist assigned each of the 100 patients to one of the three ordered categories, and the category frequencies are counted per cell of the 2 × 2 factorial design. Conceptually, the three-category variable is split into two dichotomous variables that preserve the ordinal nature of the three categories. As an example, Fig. 18.10 shows the fictitious frequencies of the two dichotomous variables for the 10-weeks version of the new treatment.[image: ../images/459008_1_En_18_Chapter/459008_1_En_18_Fig10_HTML.png]
Fig. 18.10Fictitious frequencies three-category variable and its cumulative splitting, 10-weeks version of the new treatment



The logit model is suited to analyze the frequencies of the two dichotomous variables. It is not allowed to apply the logit model separately to each of the two dichotomous variables because these two variables are dependent. For example, the two dichotomous variables of Fig. 18.10 are dependent because the same 15 not depressed patients are counted in each of the two dichotomous variables. The 
                cumulative logit model
                
               is a method that simultaneously analyzes the two dichotomous variables (Agresti, 2002, Sect. 7.2). The model tests null hypotheses on the main and interaction effects of factorial designs.
Example 18.7 demonstrated cumulative splitting of a three-category ordinal variable. In the same way, ordinal variables that have more than three categories can conceptually be split into dichotomous variables, and the cumulative logit model can be applied to test null hypotheses on main and interaction effects of factorial designs.
The logit model is the appropriate method for the analysis of dichotomous and nominal- and ordinal-categorical DVs. The interpretation of the effects of the factors of a factorial design on a dichotomous variable is straightforward. The main and interaction effects are on the logits of a dichotomous variable (see Fig. 18.6), and the interpretation is similar to the interpretation of the effects of factors on a continuous variable (cf. Figs. 18.1 and 18.6). However, the interpretation of the effects of factors on nominal- and ordinal-categorical DVs is less straightforward. The effects are in logits, but factors influence more than one dichotomous variable. For example, the effects of the factors of the 2 × 2 design of Example 18.2 on three-category DVs is on two dependent dichotomous variables (see Examples 18.6 and 18.7).
In the practice of behavioral research, it is rather common to score the ordered categories of a DV by assigning rank numbers to the categories, for example, the three ordered categories of the DV of Example 18.7 are scored: 1 for not depressed, 2 for moderately depressed, and 3 for strongly depressed. Subsequently, conventional ANOVA is applied to these scores. The ANOVA-assumptions (i.e., a normally distributed DV with homogeneous variance per cell of the design) are almost surely violated, which can increase Type I and II errors of statistical tests. It is advised against integer scoring of ordered categories, and it is recommended to apply the cumulative logit model to analyze ordinal-categorical DV’s.
18.4 Nonmanipulable Factors
A nonmanipulable factor is an IV that cannot be manipulated by researchers, whereas a manipulable factor is an IV that can be manipulated. Examples, of nonmanipulable factors are Gender, Age, Educational level, and SES. The complete combination of manipulable and nonmanipulable factors yields a design that is similar to a factorial design (see Example 18.8).
Example 18.8 Combining a manipulable and a nonmanipulable factor
A study is planned on the effects of a new arithmetic course compared to the standard course. A sample of students is selected, half of them are randomly assigned to the new course and the other half to the standard course. Moreover, the researchers include the nonmanipulable gender factor into the design. The arithmetic performance of each of the students is measured at the end of the course with a 30-item arithmetic test. Combining the manipulable course factor with the nonmanipulable gender factor yields a design that is similar to a 2 × 2 factorial design:	 	Gender

	Boys
	Girls

	Course
	New
	×
	×

	Standard
	×
	×




A cross means that students are present in the cell of the design, and the arithmetic test is administered to them.

The designs of Examples 18.1 and 18.8 are of similar structure. Both designs have two factors with two levels, which yield four different combinations. However, the designs differ in an important aspect. The two factors of Example 18.1 (i.e., Treatment and Duration) are manipulable, whereas one factor of Example 18.8 (i.e., Course) is manipulable and the other factor (i.e., Gender) is not manipulable. Nonmanipulable variables are included into designs for two different reasons. First, to increase the precision of parameter estimates and the power of statistical tests, and, second, to study their relations with manipulable factors.
Nonmanipulable variables are included as blocking variables or covariates. Section 4.​5.​1 of this book discussed blocking variables and Sect. 4.​5.​2 covariates. Blocking variables and covariates increase the precision of parameter estimates and the power of statistical tests. It is required that the blocking variable or covariate is associated with the DV, and the variability of the DV is sufficiently smaller within blocks or covariate values than between blocks or covariate values. Moreover, it is required that the manipulable factors do not affect blocking variables or covariates.
A nonmanipulable variable can only be used as a blocking variable if its values are known to the researchers before participants are assigned to conditions. The resulting design is a randomized block design (see Sect. 4.​5.​1 of this book). Example 18.9 demonstrates the use of Gender as a blocking variable in the design of Example 18.8.
Example 18.9 A nonmanipulable blocking variable to increase precision
The sample of students of Example 18.8 is divided into subsamples of boys and girls. Half of the number of boys is randomly assigned to the new arithmetic course and the other half to the standard course. Moreover, half of the number of girls is randomly assigned to the new course and the other half to the standard course. The design of this example is a randomized block design (see Sect. 4.​5.​1 of this book).
A nonmanipulable factor may also be included as a covariate. The covariate does not need to be measured before participants are assigned to the conditions of the study. The covariate can be measured at any time of the study, as long as the manipulable factors do not affect the covariate. Example 18.10 demonstrates the use of Gender as a covariate.

Example 18.10 A nonmanipulable covariate to increase precision
Half of the number of students of Example 18.8 is randomly assigned to the new course and the other half to the standard course. At the end of the course the arithmetic test is administered to each of the students, and the gender of each student is registered. The manipulable course factor cannot affect students’ gender. Therefore, Gender is a covariate that can be used in the statistical analysis of the data.
Examples 18.9 and 18.10 demonstrate a difference between a blocking variable and a covariate. A blocking variable has to be used before participants are assigned to conditions. Therefore, researchers have control over the distribution of the nonmanipulable variable across the conditions. For example, Example 18.9 assigns 50% of the boys and 50% of the girls to the new course, and 50% of the boys and 50% of the girls to the standard course. In contrast, a covariate can be measured before and after participants are assigned to conditions. If a covariate is measured after participants are assigned to conditions, researchers have no control over the distribution of the nonmanipulable variable across conditions. For example, in the design of Example 18.10 it is not known in advance how many boys and how many girls will participate in the new course, and how many boys and how many girls will participate in the standard course.
A nonmanipulable factor needs not only be included to increase precision, but may be of interest of its own. Researchers may include a nonmanipulable factor in a design because they are interested in the association between the nonmanipulable and the manipulable factors (see Example 18.11).

Example 18.11 A nonmanipulable variable of interest
The nonmanipulable gender factor of Example 18.8 is included because researchers are interested in the relation of Gender with the course factor. For example, researchers hypothesize that the new course has more effect on the arithmetic test scores of girls than boys. This hypothesis is on the Course × Gender interaction. The difference between the test scores of new and standard course girls is larger than the difference between new and standard course boys.
The interpretation of nonmanipulable and manipulable factors differs. Usually, a causal interpretation is given of the effect of a manipulable variable on a DV. For example, effects of the manipulable treatment and duration factors of Example 18.2 are interpreted as caused by these factors. The causal interpretation is based on the random assignment of participants to the levels of manipulable factors, which controls selection bias (see Sect. 4.​4 of this book). However, participants cannot be randomly assigned to the levels of a nonmanipulable factor, such as, gender. Therefore, the interpretation of nonmanipulable factors has to be in terms of association instead of causation (see Sect. 4.​2 of this book) because other variables may cause the effects (see Example 18.12).

Example 18.12 The interpretation of an interaction hypothesis
A study is done to test the Course × Gender interaction hypothesis of Example 18.11. The study supports an interaction effect: the difference in arithmetic test scores of the new and standard course groups is larger for girls than for boys. The study shows that Gender is related to Course, but this relation does not imply that Gender causes the interaction effect because other variables may cause the interaction. For example, students’ arithmetic skill may cause the interaction: more skilled students profit more from the new course than less skilled students, and the girls of the study are more skilled than the boys.
Most of the statistical methods for the analysis of factorial design data can handle blocking variables and covariates. Usually, ANOVA is applied to analyze data from randomized block designs, and Analysis of Covariance (ANCOVA) to analyze data of factorial designs that include a covariate. These methods apply to (approximately) continuous DVs and make strong assumptions. Akritas et al.’s (1997) method makes less stringent assumptions and is applicable to continuous and ranked DVs of randomized block designs. Blocking variables and covariates can be included in logit models for the analysis of dichotomous, nominal-categorical, and ordinal-categorical DVs of factorial designs. Finally, nonmanipulable factors that are included because of their own interest can be analyzed by correlational methods.

18.5 Dichotomization of Nonmanipulable Independent Variables
In general, factors have a limited number of levels, for example, a factor that has two experimental and one control condition has three levels. Nonmanipulable IVs may have large numbers of values, for example, age in years and IQ have a broad range of different values. Some researchers dichotomize continuous and test score IVs. The IV is split into two groups of participants, for example, aged below and above the sample median age, and IQs below and above the sample mean IQ. In this way they create a factor that has few levels (e.g., younger and older participants), and about equal numbers of participants per level (e.g., 50% participants younger than the median age, and 50% older than the median). This practice was adopted in the pre-computer era to decrease the computational burden, but continues. For example, MacCallum, Zhand, Preacher, and Rucker (2002) examined articles published in the Journal of Personality and Social Psychology, Journal of Consulting and Clinical Psychology, and Journal of Counseling Psychology in 1998, 1999, and 2000. They found that 11.5% of these articles reported 
              dichotomization
              
             of one or more variables.
This practice was criticized by Humphreys and Fleishman (1974) and Cohen (1983). Allison, Gorman, and Primeva (1993) recommended not to dichotomize continuous IVs, and this recommendation was supported by a literature review of MacCallum et al. (2002). Usually, the consequences of dichotomization are negative. First, information is lost. For example, if IQs are dichotomized into IQs equal to and larger than 100 and IQs smaller than 100, the IQ differences within each of these two categories is lost, for example, no difference is made between IQs of 100 and 130 because both IQs belong to the higher IQ category. Second, the effect size and the power of statistical tests may decrease. Third, if two variables are dichotomized, spurious significant results and overestimated effect sizes may occur. Fourth, it is impossible to detect nonlinear relations between a dichotomized IV and the DV. Finally, the reliability of the IV may decrease by dichotomization.
DeCoster, Iselin, and Galucci (2009) generally confirmed these results, but slightly nuanced them. A dichotomized IV may perform as well as the undichotomized IV under strict conditions. However, these conditions are hard to fulfill in practice. The general conclusion is therefore that dichotomization of continuous and test score DVs is not recommended. Moreover, dichotomization is nowadays superfluous because most methods for the analysis of factorial design data can cope with nonmanipulable IVs without dichotomization.
18.6 Testing Specific Substantive Hypotheses
The tests of the previous sections are omnibus tests of main and interaction effects. For example, if a factor has two experimental (E1- and E2-) and one control (C-) condition, the F-test of an ANOVA tests the null hypothesis that the three DV-means are equal:[image: $$ H_{0}:\,\mu_{E1} = \mu_{E2} = \mu_{C} . $$]

 (18.3)



If this null hypothesis is rejected, it is likely that the three means differ. However, the test of null hypothesis Eq. 18.3 is an omnibus test that does not tell which of the means differ from each other: (1) μE1 and μE2, (2) μE1 and μC, or (3) μE2 and μC. This information is obtained by applying pairwise comparisons of the means. A large number of methods were developed to compare pairs of means (Jaccard, Becker, & Wood, 1984; Ramsay, 2002). A 
              pairwise multiple comparison procedure
              
             tests the null hypothesis of equal means of pairs of conditions simultaneously:[image: $$ H_{0}:\,\left( 1 \right)\mu_{E1} = \mu_{E2} ,\left( 2 \right)\mu_{E1} = \mu_{C} ,\,and\,\left( 3 \right)\mu_{E2} = \mu_{C} . $$]

 (18.4)



In general, these procedures control the familywise error rate of the multiple tests (see Sect. 12.​7 of this book). However, researchers do not have to specify which pairs will differ, and which ones will not. Therefore, both omnibus tests and pairwise multiple comparison procedures mainly fit into an exploratory research strategy.
An exploratory strategy aims at the finding of substantive hypotheses that have to be tested on new data. In contrast, a confirmatory strategy tests hypotheses that are specified by the researchers. The method of planned comparisons fits into a confirmatory research strategy. It does not apply an omnibus test, but directly tests a specific hypothesis. Usually, the specific hypothesis is formulated as a linear contrast. A linear contrast is a weighted sum of condition parameters (e.g., DV-means and logits), where the sum of the weights is zero (see, for example, Keppel & Wickens, 2004, Chap. 4).
The general strategy of 
              planned comparisons
              
             has the following elements. First, a linear contrast of substantive interest is defined. Second, a null hypothesis on the contrast is formulated, for example, the contrast is zero. Third, the contrast and its variance are estimated from sample data. Fourth, the confidence interval (CI) of the contrast is constructed. Finally, the null hypothesis on the contrast is rejected if the null hypothesis is outside the CI, and it is not rejected if the null hypothesis is within the CI. The procedure is described for DV-means and logits.
18.6.1 Planned Comparisons of DV-Means
The number of cells of a design is indicated by r, for example, the number of cells of a 3 × 4 factorial design is r = 3 × 4 = 12. These cells are numbered from 1 to r, and the population DV-score means of the cells are: μ1, μ2, …, μr. A linear contrast is a weighted sum of the r population means:[image: $$ LC(\mu ) = w_{1} \mu_{1} + w_{2} \mu_{2} + \cdots + w_{r} \mu_{r} = \sum\limits_{i = 1}^{r} {w_{i}\upmu_{i} } , $$]

 (18.5a)



where the sum of the weights is zero:[image: $$ w_{1} + w_{2} + \cdots + w_{r} = \sum\limits_{i = 1}^{r} {w_{i} } = 0. $$]

 (18.5b)



The second step of the procedure is to formulate a null hypothesis on the linear contrast. For example, the null hypothesis that Eq. 18.5a is zero:[image: $$ H_{0}:\,LC(\mu ) = \sum\limits_{i = 1}^{r} {w_{i} \mu_{i} } = 0. $$]

 (18.6)



The DV is administered to a sample of participants. The contrast Eqs. 18.5a, b is estimated by substituting the sample means ([image: $$ \bar{X} $$]) for the population means:[image: $$ LC(\bar{X}) = w_{1} \bar{X}_{1} + w_{2} \bar{X}_{2} + \cdots + w_{r} \bar{X}_{r} = \sum\limits_{i = 1}^{r} {w_{r} } \bar{X}_{i} . $$]

 (18.7)



The variance of the contrast is also estimated from the sample data. Under the assumption that the variance is homogeneous (i.e., the same across the r cells), a pooled estimator of the variance can be computed. In practice, the homogeneity of variance assumption is often violated. An estimator that does not make the homogeneity of variance assumption is (Keppel & Wickens, 2004, Sect. 7.5):[image: $$ V\hat{a}r\{ LC(\bar{X})\} = \frac{{w_{1}^{2} S_{1}^{2} }}{{n_{1} }} + \frac{{w_{2}^{2} S_{2}^{2} }}{{n_{2} }} + \cdots + \frac{{w_{r}^{2} S_{r}^{2} }}{{n_{r} }} = \sum\limits_{i = 1}^{r} {\frac{{w_{i}^{2} S_{i}^{2} }}{{n_{i} }}} , $$]

 (18.8)



where [image: $$ S_{i}^{2} $$] and ni are the ith sample variance and sample size, respectively. The standard error of the linear contrast is the square root of Eq. 18.8. If the DV is normally distributed in each of the r cells, the statistic[image: $$ \frac{{LC(\bar{X}) - LC(\upmu)}}{{\sqrt {V\hat{a}r\{ LC(\bar{X})\} } }} $$]

 (18.9a)



is approximately Student t distributed with estimated degrees of freedom:[image: $$ d\hat{f} = \frac{{\sum\nolimits_{i = 1}^{r} {\left( {\frac{{w_{i}^{2} S_{i}^{2} }}{{n_{i} }}} \right)^{2} } }}{{\sum\nolimits_{i = 1}^{r} {\frac{{\left( {\frac{{w_{i}^{2} S_{i}^{2} }}{{n_{i} }}} \right)^{2} }}{{n_{i} - 1}}} }}, $$]

 (18.9b)



which is rounded to the smallest integer (Keppel & Wickens, 2004, Sect. 7.5).
Equations 18.9a, b and Student’s t distribution are used to construct CIs of linear contrasts. For example, applying the method of Sect. 12.​1.​1 of this book, the two-sided 95% CI of a linear contrast of the population means is:[image: $$ LC(\bar{X}) - t_{U}^{\prime \prime } \sqrt {V\hat{a}r\{ LC(\bar{X})\} } &lt; LC(\upmu) &lt; LC(\bar{X}) - t_{L}^{\prime \prime } \sqrt {V\hat{a}r\{ LC(\bar{X})\} } , $$]

 (18.10)



where [image: $$ t_{L}^{\prime \prime } $$] and [image: $$ t_{U}^{\prime \prime } $$] are the 0.025 and 0.975 quantiles of Student’s t distribution, respectively, with degrees of freedom estimated by Eq. 18.9b.
Finally, a null hypothesis on a linear contrast is tested. For example, the null hypothesis that a linear contrast is zero (i.e., null hypothesis Eq. 18.6) is rejected at the two-tailed 5% significance level if zero is outside CI Eq. 18.10, and is not rejected if zero is within this CI.
Example 18.13 demonstrates the testing of a linear contrast of means.
Example 18.13 Testing a linear contrast of the means of a 2 × 3 factorial design (constructed data)
Researchers are interested in the effect of three different arithmetic textbooks (A, B, and C) on students’ performance. Two different teaching methods are used: (1) by teachers, and (2) by a computer. The DV is an arithmetic test. The design is a 2 × 3 factorial design that has r = 2 × 3 = 6 population means.	 	Textbook

	A
	B
	C

	Method
	Teachers
	μ1
	μ2
	μ3

	Computer
	μ4
	μ5
	μ6




The researchers have the specific hypothesis that the effect of Textbook A used by teachers will differ from the mean of the effects of Textbook B and C given by the computer:


              [image: $$ \upmu_{1} \ne \frac{{\upmu_{5} +\upmu_{6} }}{2}. $$]




            
Multiplying both sides of this inequality by 2 yields:

              [image: $$ 2\upmu_{1} \ne\upmu_{5} +\upmu_{6} , $$]




            
which implies that

              [image: $$ 2\upmu_{1} -\upmu_{5} -\upmu_{6} \ne 0. $$]




            
This inequality is written in terms of the six means:

              [image: $$ 2 \times\upmu_{1} + 0 \times\upmu_{2} + 0 \times\upmu_{3} + 0 \times\upmu_{4} + \left( { - 1} \right) \times\upmu_{5} + \left( { - 1} \right) \times\upmu_{6} \ne 0. $$]




            
The left term of this inequality is a linear contrast because it is a weighted sum of the six means with weights w1 = 2, w2 = w3 = w4 = 0, and w5 = w6 = −1 that sum to zero (i.e., w1 + w2 + w3 + w4 + w5 + w6 = 2 + 0 + 0 + 0 −1 − 1 = 0). Null hypothesis Eq. 18.6 is:

              [image: $$ H_{0}:\,2 \times\upmu_{1} + 0 \times\upmu_{2} + 0 \times\upmu_{3} + 0 \times\upmu_{4} + \left( { - 1} \right) \times\upmu_{5} + \left( { - 1} \right) \times\upmu_{6} = 2\upmu_{1} -\upmu_{5} -\upmu_{6} = 0. $$]




            
A sample of 150 students is selected, and 25 students are randomly assigned to each cell of the design. The (fictitious) means and variances of the test scores and the sample sizes are:	
                          [image: $$ \bar{X}_{1} = 30 $$]
                        

                          [image: $$ S_{1}^{2} = 10 $$]
                        
n1 = 25
	
                          [image: $$ \bar{X}_{2} = 27 $$]
                        

                          [image: $$ S_{2}^{2} = 9 $$]
                        
n2 = 25
	
                          [image: $$ \bar{X}_{3} = 29 $$]
                        

                          [image: $$ S_{3}^{2} = 11 $$]
                        
n3 = 25

	
                          [image: $$ \bar{X}_{4} = 25 $$]
                        

                          [image: $$ S_{4}^{2} = 10 $$]
                        
n4 = 25
	
                          [image: $$ \bar{X}_{5} = 28 $$]
                        

                          [image: $$ S_{5}^{2} = 12 $$]
                        
n5 = 25
	
                          [image: $$ \bar{X}_{6} = 26 $$]
                        

                          [image: $$ S_{6}^{2} = 9 $$]
                        
n6 = 25




It follows from Eq. 18.7 that the linear contrast is estimated by[image: $$ 2 \times \bar{X}_{1} + 0 \times \bar{X}_{2} + 0 \times \bar{X}_{3} + 0 \times \bar{X}_{4} + ( - 1) \times \bar{X}_{6} = 2\bar{X}_{1} - \bar{X}_{5} - \bar{X}_{6} = 2 \times 30 - 28 - 26 = 6. $$]




It follows from Eq. 18.8 that the variance of the linear contrast is estimated by[image: $$ \begin{aligned} &amp; \frac{{2^{2} \times S_{1}^{2} }}{{n_{l} }} + \frac{{0^{2} \times S_{2}^{2} }}{{n_{2} }} + \frac{{0^{2} \times S_{3}^{2} }}{{n_{3} }} + \frac{{0^{2} \times S_{4}^{2} }}{{n_{4} }} + \frac{{( - 1)^{2} \times S_{5}^{2} }}{{n_{5} }} + \frac{{( - 1)^{2} \times S_{6}^{2} }}{{n_{6} }} \\ &amp; = \frac{{\text{4} \times 1\text{0}}}{{\text{25}}}\text{ + }\frac{{\text{1} \times \text{12}}}{{\text{25}}}\text{ + }\frac{{\text{1} \times \text{9}}}{{\text{25}}}\text{ = }\frac{{6\text{1}}}{{\text{25}}}\text{ = 2}\text{.44}. \\ \end{aligned} $$]




It follows from Eq. 18.9b that the degrees of freedom of Student’s t distribution are:[image: $$ \frac{{\left( {\tfrac{{2^{2} \times S_{1}^{2} }}{25}} \right)^{2} + \left( {\tfrac{{( - 1)^{2} \times S_{5}^{2} }}{25}} \right)^{2} + \left( {\tfrac{{( - 1)^{2} \times S_{6}^{2} }}{25}} \right)^{2} }}{{\frac{{\left( {\tfrac{{2^{2} \times S_{1}^{2} }}{25}} \right)^{2} }}{24} + \frac{{\left( {\tfrac{{( - 1)^{2} \times S_{5}^{2} }}{25}} \right)^{2} }}{24} + \frac{{\left( {\tfrac{{( - 1)^{2} \times S_{6}^{2} }}{25}} \right)^{2} }}{24}}} = \frac{{\left( {\tfrac{4 \times 10}{25}} \right)^{2} + \left( {\tfrac{12}{25}} \right)^{2} + \left( {\tfrac{9}{25}} \right)^{2} }}{{\frac{{\left( {\tfrac{4 \times 10}{25}} \right)^{2} }}{24} + \frac{{\left( {\tfrac{12}{25}} \right)^{2} }}{24} + \frac{{\left( {\tfrac{9}{25}} \right)^{2} }}{24}}} = 24. $$]




The 0.025 and 0.975 quantiles of Student’s t distribution with 24 degrees of freedom are [image: $$ t_{L}^{\prime \prime } = - 2.06 $$] and [image: $$ t_{U}^{\prime \prime } = + 2.06 $$], respectively. The lower bound of the two-sided 95% CI Eq. 18.10 is:[image: $$ 6 - 2.06 \times \sqrt {2.44} = 2.78, $$]




and the upper bound is[image: $$ 6 - \left( { - 2.06} \right) \times \sqrt {2.44} = 9.22. $$]




Therefore, the two-sided 95% CI of the linear contrast is:[image: $$ 2.78 &lt; 2\upmu_{1} -\upmu_{5} -\upmu_{6} &lt; 9.22. $$]




The null hypothesis that the linear contrast is zero is rejected at the two-tailed 5% significance level because zero is outside this CI.
Section 12.​1.​2 of this book described the Welch test. Equation 12.11 is the null hypothesis that the means of independent E- and C-groups are equal:[image: $$ H_{0} :\upmu_{E} -\upmu_{C} = 0. $$]

 (12.11)



The Welch test of null hypothesis Eq. 12.11 is a special case of the null hypothesis that a linear contrast is zero (i.e., Eq. 18.6). Setting in Eq. 18.6 r = 2, μ1 = μE, and μ2 = μC, and weights w1 = + 1 and w2 = −1 (w1 + w2 = 1 − 1 = 0) yields the linear contrast μE − μC. Additionally, setting in Eqs. 18.8 and 18.9a, 18.9b [image: $$ S_{1}^{2} = S_{E}^{2} ,S_{2}^{2} = S_{C}^{2} = n_{1} = n_{E} $$], and n2 = nC yields Eq. 12.​12 of the Welch test.
18.6.2 Planned Comparisons of DV-Logits
The previous section discussed the testing of specific substantive hypotheses on means. Usually means are computed for continuous DVs (e.g., reaction times) and DVs that are approximately continuous (e.g., test scores). However, dichotomous, nominal-categorical, and ordinal-categorical DVs are frequently used in behavioral research. A nominal-categorical DV is conceptually reduced to dichotomous variables by baseline-splitting, and an ordinal-categorical DV is conceptually reduced to dichotomous variables by cumulative splitting. Therefore, only dichotomous DVs have to be considered. The procedure of studying planned comparisons of dichotomous DVs is the same as for continuous DVs, except that contrasts are defined for logits instead of means.
The cells of a design are numbered from 1 to r. The population frequency of persons of the ith cell who are in the first category of the dichotomous DV is Fi, which implies that Ni − Fi persons of the ith cell are in the second category of the DV (Ni is the size of the subpopulation of the ith cell). It follows from Eq. 18.2 that the population logit of the ith cell is:[image: $$ L_{i} = ln\frac{{F_{i} }}{{N_{i} - F_{i} }}. $$]

 (18.11)



A linear contrast of r population logits is:[image: $$ LC(L) = w_{1} L_{i} + w_{2} L_{2} + \cdots + w_{r} L_{r} = \sum\limits_{i = 1}^{r} {w_{i} L_{i} } , $$]

 (18.12a)



where the sum of the weights is zero:[image: $$ w_{1} + w_{2} + \cdots + w_{r} = \sum\limits_{i = 1}^{r} {w_{i} } = 0. $$]

 (18.12b)



A null hypothesis is formulated on the contrast, for example, the null hypothesis that Eq. 18.12a is zero:[image: $$ H_{0} :LC\left( L \right) = 0. $$]

 (18.13)



The DV is administered to a sample of participants. Equation 18.11 is estimated by substituting the sample frequency (fi) and subsample size (ni) for the population frequency and subpopulation size, respectively:[image: $$ \hat{L}_{i} = ln\frac{{f_{i} }}{{n_{i} - f_{i} }}. $$]

 (18.14)



The variance of Eq. 18.14 is estimated by[image: $$ V\hat{a}r(\hat{L}_{i} ) = \frac{{n_{i} }}{{f_{i} (n_{i} - f_{i} )}} $$]

 (18.15)



(Agresti, 2002, Sect. 3.1.6). The linear contrast Eq. 18.12a, 18.12b is estimated by substituting Eq. 18.14 for Li:[image: $$ LC(\hat{L}) = \sum\limits_{i = 1}^{r} {w_{i} \hat{L}_{i} } = \sum\limits_{i = 1}^{r} {w_{i} ln\frac{{f_{i} }}{{n_{i} - f_{i} }}} . $$]

 (18.16)



The variance of this estimator is estimated by[image: $$ V\hat{a}r\left\{ {LC(\hat{L})} \right\} = \sum\limits_{i = 1}^{r} {w_{i}^{2} V\hat{a}r(L_{i} )} = \sum\limits_{i = 1}^{r} {w_{i}^{2} \frac{{n_{i} }}{{f_{i} (n_{i} - f_{i} )}}} . $$]

 (18.17)



The square root of Eq. 18.17 is the standard error of the linear contrast.
The statistic[image: $$ \frac{{LC(\hat{L}) - LC(L)}}{{\sqrt {V\hat{a}r\left\{ {LC(\hat{L})} \right\}} }} $$]

 (18.18)



is approximately normally distributed. Therefore, Eq. 18.18 is used to construct CIs of linear contrasts. For example, the two-sided 95% CI of a linear contrast of population logits is:[image: $$ LC(\hat{L}) - 1.96\sqrt {V\hat{a}r\left\{ {LC(\hat{L})} \right\}} &lt; LC\left( L \right) &lt; LC(\hat{L}) + 1.96\sqrt {V\hat{a}r\left\{ {LC(\hat{L})} \right\}} . $$]

 (18.19)



Finally, a null hypothesis on a linear contrast of logits is tested. For example, the null hypothesis that a linear contrast is zero (i.e., null hypothesis Eq. 18.13) is rejected at the two-tailed 5% significance level if zero is outside CI Eq. 18.19, and is not rejected if zero is within this CI.
Example 18.14 demonstrates the testing of a linear contrast of logits.
Example 18.14 Testing a linear contrast of the logits of four cells of a design
Example 18.8 of this chapter described a (hypothetical) study where a new and a standard course are compared. The design has a manipulable factor (Course) and a nonmanipulable factor (Gender). The DV is a 30-item arithmetic test. A cutting score on the test is defined: Students having scores equal to or larger than the cutting score pass, and students having scores smaller than the cutting score fail. The logit is the natural logarithm of the ratio of the frequencies of passing and failing students (see Eq. 18.2). The design has r = 2 (New/Standard Course) × 2 (Boys/Girls) = 4 cells, and a logit L of passing and failing per cell:	 	Gender

	Boys
	Girls

	Course
	New
	
                            L
                            1
                          
	
                            L
                            2
                          

	Standard
	
                            L
                            3
                          
	
                            L
                            4
                          




Researchers’ substantive hypothesis is that the new course has more effect than the standard course, but only for girls and not for boys. Therefore, they expect that the logit for the new course and girls is larger than the mean of the other three logits:[image: $$ L_{2} \text{ &gt; }\frac{{L_{1} \text{ + }L_{3} \text{ + }L_{4} }}{\text{3}}. $$]





Multiplying both sides of this inequality by 3 yields:[image: $$ 3L_{2} &gt; L_{1} + L_{3} + L_{4} , $$]




which implies that[image: $$ 3L_{2} - L_{1} - L_{3} - L_{4} &gt; 0. $$]




The left term of this inequality is a linear contrast because it is a weighted sum of the four logits with weights w1 = 3, w2 = w3 = w4 = −1 that sum to zero (i.e., w1 + w2 + w3 + w4 = 3 − 1 − 1 − 1 = 0). Null hypothesis Eq. 18.13 is:

              [image: $$ H_{0}:\,3L_{2} - L_{1} - L_{3} - L_{4} = 0. $$]




            
A sample of 100 boys and 90 girls participate in the study. Fifty boys are randomly assigned to the new course and the other 50 to the standard course, and 45 girls are randomly assigned to the new course and the other 45 to the standard course. The (fictitious) frequencies of passing students, sample size, and estimated logits per cell are:	f1 = 38
n1 = 50
[image: $$ \hat{L}_{1} $$] = 1.153
	f2 = 40
n2 = 45
[image: $$ \hat{L}_{2} $$] = 2.079

	f3 = 32
n3 = 50
[image: $$ \hat{L}_{3} $$] = 0.575
	f4 = 30
n4 = 45
[image: $$ \hat{L}_{4} $$] = 0.693




Equation 18.14 was used to compute the logits, for example, the logit of the first cell:[image: $$ \hat{L}_{1} = ln\frac{{f_{1} }}{{n_{1} - f_{1} }} = ln\frac{38}{50 - 38} = 1.153. $$]




It follows from Eq. 18.16 that the estimate of the contrast is:[image: $$ LC(\hat{L}) = 3\hat{L}_{2} - \hat{L}_{1} - \hat{L}_{3} - \hat{L}_{4} = 3 \times 2.079 - 1.153 - 0.575 - 0.693 = 3.816. $$]




It follows from Eq. 18.17 that the variance of this estimate is:[image: $$ \begin{aligned} V\hat{a}r\left\{ {LC(\hat{L})} \right\} &amp; = ( - 1)^{2} \frac{50}{38 \times (50 - 38)} + 3^{2} \frac{45}{40 \times (45 - 40)} \\ &amp; + \,( - 1)^{2} \frac{50}{32 \times (50 - 32)} + ( - 1)^{2} \frac{45}{30 \times (45 - 30)} = 2.321. \\ \end{aligned} $$]




The substantive hypothesis is directional (i.e., the new course has more effect than the standard course, but only for girls and not for boys). Therefore, a one-tailed test at 5% significance level is applied using a one-sided CI. The lower end-point CI of the contrast is:[image: $$ 3L_{2} - L_{1} - L_{3} - L_{4} &gt; LC(\hat{L}) - \, 1.65 \times \sqrt {V\hat{a}r\left\{ {LC(\hat{L})} \right\}} = 3.816 - 1.65 \times \sqrt {2.321} = 1.30. $$]




Zero is not within this CI. Therefore, the null hypothesis that the contrast is zero (i.e., H0: 3L2 − L1 − L3 − L4 = 0) is rejected at the one-tailed 5% significance level, which supports researchers’ substantive hypothesis.
18.6.3 Testing Multiple Null Hypotheses of Contrasts
In practice, researchers often formulate more than one specific substantive hypothesis that is tested on sample data. Linear contrasts are specified for each of these substantive hypotheses, and a null hypothesis is tested for each of these contrasts. If each of these null hypotheses is tested at a prespecified significance level α (e.g., α = 0.05), the familywise error rate will exceed α (see Sect. 12.​7 of this book). Therefore, it is recommended to prespecify the familywise error rate (e.g., α = 0.05), and to apply a multiple testing null hypothesis testing procedure, such as, Hochberg’s (1988) method (see Sect. 12.​7).
18.7 Recommendations
This chapter discussed between-subjects designs with completely crossed fixed factors. It excluded within-subjects designs, nested factors, and random factors (see, for example, Keppel & Wickens, 2004). However, some general recommendations follow from this limited discussion.
Factorial designs are appropriate when different IVs have to be studied. In general, factorial designs are more efficient than separate studies. Moreover, they yield information on the interaction of factors. However, factorial designs are unmanageable when too many factors or levels per factor are included in the study.
A factorial design includes one or more manipulable factors, but may also include nonmanipulable factors. Nonmanipulable factors are included for two different reasons. First, nonmanipulable factors are used to increase the precision of parameter estimates and the power of statistical tests. They are used as blocking variables in data collection and covariates in data analysis. Second, nonmanipulable factors are included to study their relations with other factors. The relations between nonmanipulable and manipulable factors are assessed with correlational methods. It is warned against causal interpretations of these relations because association does not imply causation.
Nonmanipulable factors should not be dichotomized. Dichotomization of factors has serious flaws, and undichotomized nonmanipulable factors are easily handled, for example, as blocking variables or covariates.
The data analysis method has to be tuned to the type of DV (continuous, ranked, dichotomous, nominal-categorical, and ordinal-categorical). ANOVA and ANCOVA are often applied to continuous (e.g., reaction time) and approximately continuous (e.g., test scores) DVs. However, these methods make strong assumptions that usually are not fulfilled in practice. Most of the nonparametric alternatives also make strong assumptions. Akritas et al.’s (1997) method is a nonparametric method that does not make strong assumptions, and seems to be the most appropriate method for the analysis of continuous and ranked DVs. The recommended method for the analysis of dichotomous DVs is logit model analysis. The method does not make strong assumptions. Moreover, this method can be applied to nominal-categorical and ordinal-categorical DVs because these types of DVs are conceptually reducible to sets of dichotomous DVs. Baseline splitting conceptually reduces a nominal-categorical DV to a set of dichotomous DVs, and cumulative splitting conceptually reduces an ordinal-categorical DV to a set of dichotomous DVs that preserve the order of the ordinal-categorical DV,
Usually, researchers apply omnibus tests, such as, ANOVA and pairwise multiple comparisons to their data. In general, these methods are not very specific, and mainly fit into an exploratory research strategy that aims at the detection of substantive hypotheses. In contrast, planned comparisons mainly fit into a confirmatory strategy, where prespecified hypotheses are tested. Researchers are advised to distinguish between exploratory and confirmatory studies, and between the exploratory and confirmatory parts of a study. Omnibus tests are appropriate in exploratory research, but planned comparisons have to be applied in confirmatory studies. Moreover, if several planned comparisons are tested, the familywise error rate of the tests has to be controlled.
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Abstract
Research is published in journals, books, dissertations, reports, blogs, and other media. The most prestigious media of the behavioral sciences are international peer-reviewed journals. Journal editors decide to accept or reject a manuscript, and are usually assisted by reviewers in making this decision. The process is affected by factors that are not relevant for the decisions and errors are made: suited manuscripts may be rejected and unsuited manuscripts accepted. Two types of factors are discussed. First, publication bias
, which means that the decision to accept a manuscript is affected by the results of a study, for example, manuscripts that report statistically significant results have a higher acceptance rate than manuscripts that report nonsignificant results. Second, original studies have a higher acceptance rate than replications. Replications necessarily deviate from the original study, just because they are conducted at a later time. Therefore, it is proposed to plan a replication as a test of a hypothesis on the elements of the original study that are modified in the replication. These replication hypotheses are tested with linear contrasts
 of original and replication study
 outcomes. The usual null hypothesis testing methods are applied if the replication hypothesis
 states that the results of the original study and replication differ, and equivalence testing
 if the hypothesis states that they do not differ. Moreover, a framework is proposed that gives guidelines for conducting replication research. Proposals are described to improve the publication process. Publication bias
 is revealed by preregistration
 of planned studies, and is prevented by blinding editors and reviewers
 to the results and conclusions of a study. Replication research is fostered by requiring students to replicate original studies, publishing special issues and brief reports on replications, making available data and materials to other researchers, and collaboration of researchers
 to replicate studies. Adversarial collaboration
 is a way to settle a debate on a hypothesis.
Keywords
Adversarial collaborationCorrectness replication hypothesisEquivalence testingFile drawer problemGeneralization replication hypothesisPrecision replication hypothesisPreregistrationPublication biasRegistered reportsTransparency
Research studies are reported in different publication media. The most noticeable media are journals, edited books, proceedings of conferences and symposia, and dissertations. Nowadays, studies are also published on blogs. Usually, these publications are easy to access. However, other publications, such as master theses and reports, are often harder to obtain.
The most prestigious media for publication of behavioral science research are peer-reviewed journals that have a high status in the behavioral sciences or other disciplines (e.g., biology, medicine, statistics
, philosophy, sociology, economics, etc.). Their prestige is based on sound procedures to guarantee the quality of published articles.
Edited books are mostly collections of articles on one or more prespecified topics. The evaluation procedure of book contributions is similar to the procedure of journal manuscripts. However, the submission of manuscripts for books differs from that of journal manuscripts. In general, the initiative to submit a manuscript to a journal is taken by the researchers themselves, whereas book editors invite researchers to contribute to a book.
Proceedings are collections of papers or posters that are presented at a conference or symposium. Usually, the quality of papers or posters is evaluated, and editors select a number of these for publication in the proceedings of the conference or symposium.
Dissertations are supervised by researchers, and evaluated by dissertation committees. Usually, Dutch and Flemish behavioral science dissertations consist of an introduction, a summary, and a number of manuscripts that are or will be submitted to journals and edited books.
Nowadays, it is in the behavioral sciences less common to publish new research results in books. Most of the published books are textbooks for learning and instruction. Book publishers apply procedures to guarantee the scientific qualities of books, but they also consider whether the sales of a book will be sufficiently profitable.
Other ways of reporting research are, for example, papers, master theses, and reports. These publications belong to the so-called ‘grey literature’ that is less accessible than the previously mentioned publications.
The remainder of this chapter discusses the process of publishing research results and threats of this process. The focus is on the publishing of journal articles, and publishing in other media is mostly indirectly mentioned.
19.1 The Publication Process
Three different parties are involved in the publication process of a journal article: (1) the author(s) of the manuscript, (2) the editor of the journal, and (3) the reviewers of the manuscript. These parties have different responsibilities, which are described by the Publication Manual of the American Psychological Association (APA, 2010, Chap. 8). The authors submit a manuscript to a journal. For APA-, and many other journals, the manuscript has to comply with guidelines for the preparation of manuscripts, and ethical, legal, and policy requirements. The editor is responsible for the content and quality of the journal. He or she has to decide whether the content and quality of a submitted manuscript are appropriate for the journal. Usually, the editor asks the assistance of peer reviewers. These reviewers are experts in the content of the manuscript and the methods that are used. APA’s policy is to review manuscripts anonymously: the names and affiliations of the authors are not revealed to reviewers, and names and affiliations of reviewers are not revealed to authors. The reviewers evaluate the quality of a manuscript, the contributions to the field or subfield of the behavioral sciences, and the appropriateness of the manuscript for the journal. Usually, reviewers are asked to evaluate the manuscript on a number of criteria, and to found their evaluations by written comments. In general, the editor considers the reviewers’ evaluations and comments, and uses three decision categories: (1) accept the manuscript for publication, (2) reject the manuscript, and (3) reject the manuscript with invitation to revise and resubmit the manuscript. An invitation to revise means that the authors get the opportunity to revise the manuscript according to the editor’s and reviewers’ comments. However, this invitation does not guarantee that the revised manuscript will be accepted. The editor may ask the assistance of reviewers, and uses the three decision criteria again for the revised manuscript.
The publication process is a decision making process. As is the case for most of these processes, two errors can be made: suited manuscripts may be rejected for publication (false negatives) and unsuited manuscripts may be accepted (false positives). Reviewers are the gatekeepers of science. They look for weak spots in manuscripts to minimize the chance of false positives (i.e., accepting unsuited manuscripts), and they are less interested in the minimization of false negatives (i.e., rejecting suited manuscripts). Editors are responsible for the content and quality of the journal, and are usually interested in the minimization of both false positives and false negatives.
It is rather common that editors of books and proceedings invite authors to contribute to the book. They expect that invited authors are capable to make good and relevant contributions to the book. They have to prevent false positives (i.e., accepting unsuited manuscripts), but have to get good contributions. Therefore, book editors frequently make more efforts to improve and revise manuscripts than journal editors.
The following comments are made on the publication process. First, the process is very competitive. The rejection rates of social and behavioral science journals are between 70 and 90% (Nosek & Bar-Anan, 2012), and researchers’ careers heavily depend on their journal publications. Second, the time lag between first submission of a manuscript and publication is long. For example, Nosek and Bar-Anan (2012) report a case study of an author who published 39 journal articles in the period 1999–2012. The mean time between first submission and publication of these articles was 677 days. Third, reviewing is hard and responsible work, but is not rewarded. Reviewers are not paid, and they get not any other reward because the review process is anonymous. The usual ‘reward’ of seriously and on time reviewing is to get new manuscripts for review. Fourth, the agreement between different reviewers of the same manuscript is not high (Mahoney, 1977; Whitehurst, 1984). Therefore, authors often get reviews that contradict each other. However, low interreviewer agreement is not necessarily problematic. For example, a manuscript may be evaluated very differently by a content expert and a methodologist because these reviewers have different expertise. Fifth, authors are frequently upset by reviewers’ comments, and complain about reviews. These complaints are often not justified, but sometimes they are correct. For example, the comment ‘The data analysis of this study is incorrect’ is hard to handle without further explanation. Moreover, reviewers may be unfair when a manuscript is critical on their own work or harms their interests.
The publication process has flaws. Editors and reviewers are affected by factors that are not relevant for the quality and appropriateness of manuscripts. The decision to accept a manuscript is also influenced by the results of the study (see Sect. 19.2), and editors and reviewers are more interested in novel and original studies than in studies to reproduce existing research results (see Sect. 19.3). Errors in manuscripts are frequently not detected. Schroter et al. (2008) showed that, on average, reviewers detected only three out of nine major errors that were purposefully placed into three medical manuscripts. Bakker and Wicherts (2011) showed that many errors in the reporting of statistical results are not detected. They studied 281 articles published in psychology journals, and found that 18% of the statistical results were incorrectly reported. A common and persistent weakness of behavioral research is that many studies have small sample sizes (see Sect. 12.​6 of this book). Apparently, a small sample size
 is not a compelling reason to reject a manuscript. However, a small sample size
 leads to imprecise parameter estimates and low power of statistical tests.
Many authors have made proposals to improve the publication process. Section 19.4 describes some of these proposals.
19.2 Publication Bias
Begg (1994, p. 400) defined 
              publication bias
              
             as ‘the bias that is induced by selective publication, in which the decision to publish is influenced by the results of the study’. This definition is general and includes any result that influences the decision to publish.
Mahoney (1977) did an experimental study on publication bias
. A group of reviewers evaluated a manuscript. The manuscript was identical for each of the reviewers, except for the results. In one of the five experimental conditions the results were consistent with reviewers’ theoretical perspective, and in another condition the results were inconsistent. The study showed that reviewers’ evaluations of the manuscript were more positive in the consistent condition than in the inconsistent condition. A well-studied factor
 that affects the decision to publish are the results of statistical tests: Manuscripts that report significant test results have a larger chance of being published than manuscripts that report nonsignificant results. Rosenthal (1979) called this the 
              file drawer problem
              
            : Studies that have nonsignificant results end up in researchers’ file drawers.
The file drawer problem
 is well founded on empirical research. Torgerson (2006) gives an overview of the problem, focusing on educational research. Sterling (1959) found that significant results are overrepresented in four psychology journals, which was corroborated later by a study of Sterling, Rosenbaum, and Weinkam (1995). These studies found that 97% of the articles of the Sterling study and 96% of the Sterling, Rosenbaum, and Weinkam study reported significant results. Evidence for file drawing has also come from studies of the fate of research projects that were registered before they were done. Cooper, DeNeve, and Charlton (1997) followed research projects that were approved by the Human Subjects Committee of an American Psychology Department. They found that 74% of the completed projects that had significant results were submitted to a journal or book, whereas only 41% of completed projects that had nonsignificant results were submitted. Franco, Molhatra, and Simonovits (2014) studied the fate of social and behavioral science projects that were reviewed and granted by a special program of the American National Science Foundation. They found that 62% of the projects, where all or most statistical tests supported the hypotheses, were published, whereas 21% of the projects, where none or most statistical tests did not support the hypotheses, were published.
File drawing can come from all parties that are involved in the publication process. Authors are often reluctant to submit null results. Greenwald (1975) surveyed authors who had submitted manuscripts to the Journal of Personality and Social Psychology. He asked them to report their probability of submitting a manuscript where the null hypothesis on the focal hypothesis was rejected and their probability of submitting a manuscript where this null hypothesis was not rejected. The authors’ mean probability of submitting was 0.59 when the null hypothesis was rejected and 0.06 when the null hypothesis was not rejected. Franco et al. (2014) found in their study of the fate of granted projects that authors who have null results are less inclined to write the report of the study than authors who have nonnull results: 65% of the projects that had nonsignificant results were not written, whereas 4% of the projects that had significant results were not written.

Publication bias
 can also be caused by external factors. Clients who have paid for a study (e.g., companies, policy makers, etc.) are not pleased when the results of a study are unfavorable to their interests. Therefore, paying clients may cause publication bias
 by prohibiting or hampering publication of unwelcome results. Employers of researchers may also be reluctant to publish results that are unwelcome to their paying clients out of fear to miss orders for research in the future.
Note that an overrepresentation of significant results need not to be caused by file drawing. Unfortunately, some researchers apply inadmissible and questionable research practices
 to get significant results. For example, by doing a number of studies on the same topic, but reporting only the studies that had significant results (Bakker, van Dijk, & Wicherts, 2012). The detection and counteracting of these practices are discussed in the next chapter.

Publication bias
 distorts literature reviews. Detection and correction of overrepresentation of significant results was studied within the context of meta-analysis, where effects of different research studies (e.g., differences of the means of two groups or correlations) are quantitatively summarized. Light and Pillemer (1984) proposed a graphical method to detect publication bias
 in meta-analysis, and Wang and Bushman (1998) proposed an alternative graphical method. A disadvantage of graphical methods is that they completely depend on human judgment. Statistical tests are less dependent on human judgment than graphical methods. Therefore, a number of statistical methods were developed to detect and deal with publication bias
. Overviews and studies of the performance of these methods were given by Banks, Kepes, and Banks (2012), Macaskill, Walter, and Irwig (2001), Torgerson (2006), and Vevea and Woods (2005). Some more recent contributions are tests of Ioannides and Trikalinos (2007), Simonsohn, Nelson, and Simmons (2014), van Assen, van Aert, and Wicherts (2015), Bayesian methods (Rouder & Morey, 2011), and methods to assess the sensitivity of meta-analysis for publication bias
 (Copas, 2013; Vevea & Woods, 2005). These methods make different assumptions, have different limitations, and answer different questions on publication bias
. Therefore, it seems best that meta-analysts formulate questions on publication bias
, and select methods that are most appropriate to answer these questions (Rothstein & Bushman, 2012).

Publication bias
 coming from editors and reviewers is prevented by implementing registered reports in the publication process. Walster and Cleary (1970) proposed to blind editors and reviewers to the results of a study. Their proposal was ignored for a long time but was introduced in the journal Cortex by Chambers (2013). The publication process is split into two stages. In the first stage, a report of the study is submitted but the results of the study are withhold. The report describes the research questions, literature, design, operationalizations, sample size
, prospective power, implementation, data analysis methods, and all other relevant information on the study, but it withholds the results and conclusions. The report is reviewed as usual. The editor decides to reject the report, to invite authors to revise and resubmit the report, or to accept the (revised) report in principle. In the second stage, the editor asks authors of in-principle accepted reports to add the results and conclusions, and to submit the complete article. The article is accepted for publication if the study is conducted according to the registered report
 and no flaws are detected. Registered reports prevent critiquing after results are known (CARKing) (Nosek & Lakens, 2014) because editors and reviewers were blind to the results and conclusions of the study when the decision was made to reject or to accept the report.
19.3 Replications
Reproducibility of study results is a key concept of the empirical sciences. A study result, such as, a treatment effect should not occur only once, but should hold in replications. In general, a replication study
 is a study that repeats an original study to check whether the results of the original study are reproducible. The importance of reproducibility and replication studies was stressed by, among others, Lindsay and Ehrenberg (1993), King (1995), and Tsang and Kwan (1999), and, more recently by, for example, Chambers (2017), Drotar (2010), Munafò et al. (2017), Nosek et al. (2015), Pashler and Wagenmakers (2012), and Schmidt (2009). However, replication studies were not frequently published in behavioral science journals. Makel, Plucker, and Hagarty (2012) counted the frequency of replication studies in the 100 psychology journals that have the highest 5-year impact factor
. They found that about 1.5% of articles published in the period 2000–2010 reported replications. A possible reason for this low rate is that both editors and reviewers find replication studies less important than original studies. Neuliep and Crandall (1990) administered a questionnaire to a group of past and present editors of behavioral and social science journals. A majority of the respondents (74%) found a study that reported new results more important than a study that replicated an original study. They administered a similar questionnaire to reviewers: 54% of the respondents found an original study more important than a replication, while 44% found both types of studies equally important (Neuliep & Crandall, 1993). Another reason for the low rate of replication studies might be that researchers believe that editors are biased against replication studies (Neuliep & Crandall, 1990), and do not submit their replication study
. However, replication aversion seems to decline in view of replication studies published by Klein et al. (2014), Nosek and Lakens (2014), and the Open Science Collaboration (2015).
Lindsay and Ehrenberg (1993) discussed replication from the point of view of hypothesis testing. An element of an original study is modified, and a replication study
 tests the effect of the modification. In line with their view, this chapter considers a replication as a special type of hypothesis testing study. The following definition is used: A replication is a study of the same research questions as a previous (original) study that tests one or more hypotheses about the effects of modifications of the original study on its outcomes by means of empirical data that were not used in the original study. The substantive questions of the replication are identical to the questions of the original study. The term modification refers to any change of the original study. A replication cannot be identical to the original study because of changes that occurred in the time that elapsed between the two studies (Lindsay & Ehrenberg, 1993). For example, if the same experimenters conduct the replication as the original study, they have become more experienced, and, if other experimenters conduct the replication, their behavior will not be exactly the same as that of the experimenters of the original study. Differences between the original study and its replication may range
 from minor to major modifications. The term outcome refers to any type of result of a study, for example, the standardized or unstandardized difference of the mean dependent variable scores of experimental and control condition participants, the difference of proportions recovered treatment and placebo condition
 patients, the correlation between two variables, and so on. Finally, a replication uses empirical data that were not used in the original study. The definition excludes theoretical and methodological analysis of the original study to detect weaknesses or flaws, and reanalysis of the data. These analyses differ from replication because they analyze the original study, whereas a replication is a new study.
A replication tests the effects of one or more modifications of specific elements of an original study. Researchers may plan a single replication or multiple replications. A single replication tests the effects of one modification or tests simultaneously a number of modifications on the study results. Multiple replications can be planned to test separately the effects of different modifications. Lindsay and Ehrenberg (1993) recommended to plan a series of replications to study different aspects of the original study.
Section 19.3.1 discusses different types of replication hypotheses, and Sects. 19.3.2 and 19.3.3 how these hypotheses can be tested. Schmidt (2009) noted that guidelines for conducting replications are scarce. Section 19.3.4 presents a framework with guidelines for replication research.
19.3.1 Replication Hypotheses
Replications are conducted for different reasons. Three main reasons are distinguished. First, to increase the precision of outcome estimates. Second, to control the correctness of outcomes. Finally, to study the generalization of outcomes. For each of these reasons different types of replication hypotheses are specified.
The outcome of the original study is usually an estimate of a population parameter, for example, the difference of mean dependent variable scores of experimental and control condition participants, the difference of proportions recovered treatment and placebo condition
 patients, and the correlation between two variables. The original study estimated these parameters
 from a sample of participants. The precision of these estimates is affected by random errors
. A large random error variance yields imprecise estimates, and a small random error variance yields precise estimates.

Random errors
 come from different sources. Random sampling of persons and random assignment of participants to conditions yield variances that are a function of the sample size
. In general, larger samples yield smaller error variances, and, therefore, more precise parameter estimates than smaller samples. Measurement models assume that test takers’ observed test scores or latent trait estimates are affected by measurement errors. Measurement error variance depends on, for example, test length
, test construction methods, and standardization
 of test administration. Reduction of measurement error variance leads to more precise estimates of test takers’ true scores or latent trait values. Examples of other factors that increase random error variance are randomly missing and outlying data.
A 
                precision replication hypothesis
                
               states that the outcome estimates of the original study are imprecise, but not biased by systematic factors. If it is conjectured that the estimates are imprecise because of a small sample size
, the replication uses a sample size
 that yields sufficiently precise outcome estimates. If it is hypothesized that the estimates of the original study are imprecise because of measurement error, the replication uses instruments that yield precise estimates. And, if it is hypothesized that the estimates of the original study are imprecise because of other factors, the replication reduces the random error variance that comes from these factors. A precision hypothesis is studied with a replication that is close to the original study, but yields more precise outcome estimates. Typical for precision replication hypotheses is that they state that the outcome estimates of the original study are imprecise, but not biased by systematic factors.
Systematic factors threat the validity of empirical studies (Shadish, Cook, & Campbell, 2002). The list of systematic factors is long, and they can occur in all parts of a study. Examples are publication bias
, selective refusals of persons to participate in a study, selective drop out of participants, incorrect implementation of study conditions, response styles, experimenter effects, violations of assumptions of statistical methods, selective reporting of study outcomes, and so on. Moreover, questionable research practices
 and fraud systematically bias study outcomes. A 
                correctness replication hypothesis
                
               states that a systematic factor
 biased the outcomes of the original study. The replication repairs this flaw, but, apart from that, is close to the original study. For example, if it is hypothesized that the outcomes of a study are biased because participants were not randomly assigned to conditions, the replication repairs this flaw by randomly assigning participants to conditions, but stays close to the original study. Typical for correctness replication hypotheses is that they state that the outcomes of the replication differ from those of the original study.
Any empirical study is unique in the sense that it was conducted at a given occasion, by given researchers who studied a given sample of participants and applied specific methods. These specifics limit the scope of study outcomes. A 
                generalization replication hypothesis
                
               is about the generalization of the outcomes of the original study. A generalization replication hypothesis
 can be stated about different aspects of the original study, for example, the participants, researchers, situation, measurement instruments, data analysis, and so on.
Two versions of generalization hypotheses are distinguished. First, hypotheses that state that the outcomes of the original study are generalizable over an aspect of the original study. For example, the original study used a sample of psychology freshmen, and the hypothesis states that the outcomes are generalizable to students of other disciplines. Second, hypotheses that state that the outcomes of the original study are not generalizable over an aspect of the original study. For example, the original study used a sample of psychology freshmen, and the hypothesis states that the outcomes of the original study are not generalizable to office workers.
19.3.2 Testing a Replication Hypothesis

In general
, two goals of hypothesis testing are distinguished. First, researchers expect that an effect is present, for example, a correlation is positive. They formulate a null hypothesis, for example, the correlation is 0. Their goal is to reject this null hypothesis. Null hypothesis significance testing (NHST) is applied to test this type of null hypothesis (see Chap. 12 of this book). Second, researchers expect that an effect is absent, for example, the mean IQs of two school classes are approximately the same. They do not want to reject the null hypothesis of approximately equal IQ means. Equivalence testing
 has to be applied to test this type of null hypothesis (see Sect. 12.​10 of this book).
The aim of a replication study
 is to study whether the outcomes of an original study are or are not reproducible. Different methods have been proposed to assess whether the outcomes of the original study and replication are consistent or inconsistent.
Anderson and Maxwell (2016) studied 50 replications from the psychological literature. They found that 44 of these replications based consistency or inconsistency on the p-value (the p-value of a statistic
 (e.g., a sample correlation) is the probability that the statistic is equal to or more extreme than its sample value given that the null hypothesis is true). The p-values of the original study and the replication are compared. The outcomes of the two studies are consistent if the decisions on the null hypothesis are the same. For example, the outcomes of an original study and a replication about the difference of the mean scores of two conditions are consistent if (a) the difference of the original study and replication are in the same direction (i.e., both positive or both negative), and (b) both differences are significant at the same level. Otherwise, the outcomes of the original study and replication are inconsistent, for example, the difference of the original study is significant at the 5% level, but the difference of the replication is not significant at the 5% level. This method bases reproducibility of outcomes on decisions about the null hypothesis (i.e., rejection or nonrejection). However, decisions can differ, although the p-values are about the same. For example, the p-value of the original study is 0.04, and the null hypothesis is rejected at the 5% level, whereas the p-value of the replication is 0.06, and the null hypothesis is not rejected at the 5% level.
Three methods base reproducibility on confidence intervals (CIs)
. First, a CI
 of the outcome of the original study is constructed, and the outcome of the replication is compared to the CI
 of the original study. The outcomes are consistent if the outcome of the replication is within the CI
 of the original study. Cumming and Maillardet (2006) studied the performance of this capture method for the mean of a normal distribution. The sample means of the original study and the replication were both randomly selected from the same normal distribution, the CI
 of the original study mean was constructed, and the mean of the replication was compared to the CI
 of the original study. On average, 83% of the replication means was captured by the 95% CI
 of the original study. Researchers may think that 95% of the replication means will be captured because a 95% CI was used. However, the 83% captured means is much smaller than 95%.
Second, the CI
 of the outcome of the replication is compared to the CI
 of the original study. The outcomes are consistent if the two CIs overlap, and inconsistent if they do not overlap. However, two CIs may considerably overlap and the difference of the two outcomes can still be significant (see Sect. 12.​2 of this book). Overlapping CIs do not necessarily imply consistency.
Finally, the outcomes of the original study and the replication are compared with a linear contrast of the two outcomes. A null hypothesis about the contrast and a significance level are prespecified. The CI
 of the contrast is constructed, and the null hypothesis is rejected if it is outside the CI
 (see Sect. 18.​6 of this book).

The CI
-approach of the linear contrast of the original study and replication outcomes is the preferred base to compare these outcomes. A CI
 of the contrast assesses the precision of the contrast, can be used to test a null hypothesis about the contrast, and avoids the problems of the p-value, capture, and comparing CIs methods.
Replication hypotheses state that an effect (e.g., the difference of two means) is present or absent. The preferred method to study the presence of an effect is the CI
-approach of the contrast. However, if the replication hypothesis
 states that an effect is absent, the proper method is equivalence testing
 of the contrast (Anderson & Maxwell, 2016) (see Sect. 12.​10 of this book).
Three types of replication hypotheses were distinguished, that is, precision, correctness, and generalization hypotheses. The choice between the CI
-approach and equivalence testing
 is determined by the content of the replication hypothesis
. A precision replication hypothesis
 states that the outcome of the original study is imprecise, but not biased. Therefore, equivalence testing
 of the contrast is the proper method to study a precision replication hypothesis
. The correctness replication hypothesis
 is that the outcomes of the original study and replication differ. Therefore, the CI
-approach is the proper method to study a correctness replication hypothesis
. A generalization replication aims to show that the original study outcome is either generalizable or not generalizable over an aspect of the original study. If the replication hypothesis
 is that the outcome is generalizable, the proper method is equivalence testing
. However, if the hypothesis is that the outcome is not generalizable, the proper method is the CI
-approach of the contrast.
To summarize, the following strategy of testing replication hypotheses is proposed:	1.The outcome of the original study is imprecise: equivalence test;

 

	2.The outcome of the original study is biased: CI
-approach of the linear contrast;

 

	3.The outcome of the original study is generalizable over an aspect of the original study: equivalence test;

 

	4.The outcome of the original study is not generalizable over an aspect of the original study: CI
-approach of the linear contrast.

 





If an equivalence test indicates that the outcomes of the original study and the replication are approximately the same, the outcomes can be combined. Combination of outcomes increases the precision of outcome estimates, but makes no sense if the replication showed that the original study is biased or is not generalizable. Meta-analysis methods are applied to combine approximately equal outcomes. A distinction is made between random-effects and fixed-effects meta-analysis methods. Random-effects methods assume that studies are randomly selected from a superpopulation of studies, whereas fixed-effects methods apply to studies that are not randomly selected. A replication is intentionally planned to test a hypothesis, and is not randomly selected from a superpopulation of studies. Therefore, fixed-effects methods are appropriate to combine approximately equal outcomes of original and replication studies. Bonett (2008) presented fixed-effects methods to combine bivariate correlations and to compute their CIs, and Bonett (2009) to combine unstandardized differences and standardized differences of means and to compute their CIs. The combined estimates are the unweighted averages of the separate estimates. For example, if the sample correlation of the original study is 0.32 and the sample correlation of the replication is 0.28, the combined estimate of the correlation is (0.32 + 0.28)/2 = 0.30. Bonett’s methods make weaker assumptions than the standard fixed-effects meta-analysis methods, and are recommended to combine approximately equal original study and replication outcomes. (Anderson & Maxwell, 2016).
19.3.3 Equivalence Testing of a Linear Contrast
Section 18.​6.​1 of
 this book discussed the CI
-approach of testing a null hypothesis of a linear contrast. The CI
-approach is recommended to test correctness replication hypotheses and generalization hypotheses that state that an outcome is not generalizable. Equivalence testing
 is recommended to test precision replication hypotheses and generalization hypotheses that state that an outcome is generalizable. Section 12.​10 of this book discussed equivalence testing
. This section demonstrates equivalence testing
 of a linear contrast.

A DV
 is administered to a sample of participants. The population means of the DV
-scores of the E-
 and C-group of the original study are μEO and μCO, respectively, where the subscript ‘O’ indicates the original study. The difference between these means[image: $$ \upmu_{DO} =\upmu_{EO} -\upmu_{CO} $$]

 (19.1)


is the parameter of interest because it assesses the effect of the E-condition compared to the C-condition. Similarly, the parameter of interest of the replication study
 is:[image: $$ \upmu_{DR} =\upmu_{ER} -\upmu_{CR} , $$]

 (19.2)


where the subscript ‘R’ indicates the replication study
.
The replication hypothesis
 is that these two differences are approximately the same. It follows from Eqs. 19.1 and 19.2 that their difference is:[image: $$ LC(\upmu) =\upmu_{DO} -\upmu_{DR} =\upmu_{EO} -\upmu_{CO} - (\upmu_{ER} -\upmu_{CR} ) =\upmu_{EO} -\upmu_{CO} -\upmu_{ER} +\upmu_{CR} . $$]

 (19.3)




The last term of Eq. 19.3 shows that this difference is a linear contrast because it is a weighted sum of means with weights w1 = w4 = + 1 and w2 = w3 = −1 that sum to zero (i.e., +1 − 1 − 1 + 1 = 0). The linear contrast is estimated by the corresponding linear contrast of sample means (Eq. 18.​5, Sect. 18.6.1 of this book):[image: $$ LC(\overline{X} ) = \overline{X}_{EO} - \overline{X}_{CO} - \overline{X}_{ER} + \overline{X}_{CR} . $$]

 (19.4)




The variance of this linear contrast is estimated by (Eq. 18.​8, Sect. 18.6.1):[image: $$ V\hat{a}r\left\{ {LC(\overline{X} )} \right\} = \frac{{( + 1)^{2} S_{EO}^{2} }}{{n_{EO} }} + \frac{{( - 1)^{2} S_{CO}^{2} }}{{n_{CO} }} + \frac{{( - 1)^{2} S_{ER}^{2} }}{{n_{ER} }} + \frac{{( + 1)^{2} S_{CR}^{2} }}{{n_{CR} }} = \frac{{S_{EO}^{2} }}{{n_{EO} }} + \frac{{S_{CO}^{2} }}{{n_{CO} }} + \frac{{S_{ER}^{2} }}{{n_{ER} }} + \frac{{S_{CR}^{2} }}{{n_{CR} }}, $$]

 (19.5)




where [image: $$ S_{EO}^{2} $$] and [image: $$ S_{CO}^{2} $$] are the sample variances and [image: $$ n_{EO} $$] and [image: $$ n_{CO} $$] the sample sizes of the E-
 and C-conditions, respectively, of the original study, and [image: $$ S_{ER}^{2} $$] and [image: $$ S_{CR}^{2} $$] the sample variances and [image: $$ n_{ER} $$] and [image: $$ n_{CR} $$] the sample sizes of the E-
 and C-conditions, respectively, of the replication study
.
The replication hypothesis
 is that the differences of the means of the two studies are approximately equal. Therefore, the appropriate method is an equivalence testing
 procedure (see Sect. 12.​10 of this book). The researchers have to define an equivalence interval (EI)
 on the linear contrast:[image: $$ EI_{L} &lt; LC(\upmu) =\upmu_{DO} -\upmu_{DR} &lt; EI_{U} , $$]

 (19.6)




where EIL and EIU are the lower and upper bounds, respectively, of the equivalence interval. The EI
 specifies the interval where the difference between the parameter of interest of the original study (μDO) and the replication (μDR) is negligible from the researchers’ point of view. The equivalence hypothesis is tested at significance level α by comparing the EI
 and a CI
 with confidence coefficient
 1−2α. Note that an equivalence test at significance level α needs a CI
 with confidence coefficient
 1−2α, for example, an equivalence test at the 5% significance level (i.e., α = 0.05) needs a 90% CI
 (i.e., 1−2α = 1−2 × 0.05 = 0.90). Equivalence is supported at significance level α if the CI
 is completely within the EI
.
If the equivalence test supports the hypothesis that the differences of the original study and replication are approximately equal, the estimates of the two studies can be combined. A combined estimate of the difference of the E-
 and C-condition means is the average of the estimates of the original study and replication differences (Bonett, 2009).
Example 19.1 illustrates the strategy of comparing the parameter of interest with equivalence testing
 and fictitious data.
Example 19.1 Equivalence testing of a replication hypothesis (fictitious data)
A sample of 50 psychology freshmen participates in a study, 25 are randomly assigned to the E-condition, and the other 25 to the C-condition. The DV
 is a 50-item
 test. The sample test score means and variances are:[image: $$ \overline{X}_{EO} = 40,\overline{X}_{CO} = 30,S_{EO}^{2} = 10,\;{\text{and}}\;S_{CO}^{2} = 8. $$]






The researchers think that the results of the study also apply to other types of participants. They plan a replication with a sample of office workers. The sample size
 of the original study was small (50 participants). Therefore, they conduct a study that is the same as the original study, but has a larger sample size
. They select a sample of 100 office workers, 50 are randomly assigned to the E-condition and the other 50 to the C-condition. The sample means and variances are:[image: $$ \overline{X}_{ER} = 38,\overline{X}_{CR} = 29,S_{ER}^{2} = 12,\;{\text{and}}\;S_{CR}^{2} = 13. $$]





The replication hypothesis
 is that the difference between the E-
 and C-condition means of the original study (i.e., μDO = μEO − μCO) and the replication study
 (i.e., μDR = μER − μCR) are approximately equal. Therefore, the appropriate way to test this hypothesis is by an equivalence test. The researchers think that a difference of 3 test score points between μDO and μDR is negligible from a substantive point of view. Therefore, their EI
 is:[image: $$ - 3 &lt;\upmu_{DO} -\upmu_{DR} &lt; 3. $$]





It follows from Eq. 19.4 that μDO − μDR is estimated by:[image: $$ LC(\overline{X} ) = 40 - 30 - 38 + 29 = 1, $$]





and it follows from Eq. 19.5 that the variance of this estimate is estimated by:[image: $$ V\hat{a}r\left\{ {LC(\overline{X} )} \right\} = \frac{10}{25} + \frac{8}{25} + \frac{12}{50} + \frac{13}{50} = 1.22. $$]





The equivalence hypothesis is tested at the 5% significance level, which means that a two-sided 90% CI
 has to be used. Under the assumption that the DV
 scores are normally distributed in the populations of participants, the 90% CI
 is approximately from [image: $$ 1\, - \,1.65 \times \sqrt {1.22} = - 0.82\;{\text{to}}\;1 + 1.65\sqrt {1.22} = 2.82 $$]:[image: $$ - 0.82 &lt;\upmu_{DO} -\upmu_{DR} &lt; 2.82. $$]






This CI
 is completely within the EI
 (see Fig. 19.1) Therefore, equivalence is supported at the 5% significance level. It is concluded that the effect of the E-condition approximately applies to both psychology freshmen and office workers. The difference of the E-
 and C-condition means of the original study is 40 − 30 = 10, and the difference of the replication is 38 − 29 = 9. Using Bonett’s (2009) method, the combined estimate of the difference of the E-
 and C-condition means is the average of these two differences: (10 + 9)/2 = 9.5.[image: ../images/459008_1_En_19_Chapter/459008_1_En_19_Fig1_HTML.png]
Fig. 19.1
EI
 and two-sided 90% CI
, fictitious data of Example 19.1



19.3.4 A Framework for Replication Research
An exploratory study explores data to derive substantive hypotheses that have to be tested with new data. A confirmatory study tests hypotheses that are prespecified by the researchers. The replication definition puts replications into the context of confirmatory research
. This section proposes a 
                replication framework
                
               that gives guidelines for conducting replications. The framework has the following steps.
First, detailed information is collected about the original study. Available sources and authors of the original study are consulted and asked to provide materials, stimuli, measurement instruments, raw data, computer programs, and so on. The American Psychological Association requires authors to keep this information for at least five years for replication by other researchers (APA, 2010, Sect. 1.08). Unfortunately, many authors did not meet this requirement: only 26% of the authors of articles published in the 2004 issues of four APA journals provided their data for reanalysis (Wicherts, Borsboom, Kats, & Molenaar, 2006). Recently, more pressure is asserted to share information, and the willingness to cooperate might have increased.
Second, one or more replication hypotheses are formulated. Usually, new data are required to test hypotheses about the effects of modifications of the original study, but the effect of modification of the data analysis can be studied if the data of the original study are available. A replication is not needed because the data of the original study can be reanalyzed. For example, the hypothesis that a new statistical method that was previously not available will yield other results than the original study is tested by reanalysis of the original study data. However, if these data are not available, a replication has to be conducted to collect data and to study the effects of the new statistical method.
Third, a procedure to test the replication hypothesis
 is devised. The procedure is based on a linear contrast of the original study and replication outcomes. The CI
-approach or an equivalence test is chosen to test the replication hypothesis
. Three types of replication hypotheses were distinguished, and the choice of the test depends on the type of replication hypothesis
. In general, a precision replication hypothesis
 states that the estimate of the outcome of the original study is imprecise, but not systematically biased. The proper method of testing a precision replication hypothesis
 is an equivalence test of the contrast. A correctness replication hypothesis
 states that the outcome of the original study is biased. The proper method to test a correctness replication hypothesis
 is the CI
-approach of the contrast. A generalization replication hypothesis
 states that the outcome of the original study is or is not generalizable over an aspect of the original study. If the replication hypothesis
 states that the outcome is generalizable, the original study and replication outcomes have to be approximately the same, and the proper method is an equivalence test. However, if the replication hypothesis
 is that the outcome of the original study is not generalizable, the proper method is the CI
-approach of the contrast.
Fourth, a plan is made for the replication. The plan includes the replication hypothesis
, the modifications of the original study, and the methods to test the replication hypothesis
. Wagenmakers, Wetzels, Borsboom, van der Maas, and Kievit (2012) proposed to preregister confirmatory studies. A replication is a confirmatory study, and the plan has to be preregistered at a public repository, preferably, as a registered report
 (Nosek & Lakens, 2014) that is submitted to a journal.
Fifth, the replication is conducted according to the plan, and the replication hypothesis
 is tested. The data of the replication may be explored to detect interesting phenomena, but the replication hypothesis
 must be tested according to the preregistered plan.
Sixth, the original study and replication outcomes are combined if an equivalence test showed that the outcomes are approximately the same. Combination of outcomes increases the precision of outcome estimates, but makes no sense if the replication showed that the original study outcome is biased or is not generalizable. The fixed-effects methods that were described by Bonett to combine bivariate correlations (Bonett, 2008) and standardized and unstandardized differences of means (Bonett, 2009) are recommended.
Seventh, the report of the replication is written and is submitted for publication. CARKing is prevented if journals implement registered reports in their evaluation of submitted manuscripts.
Finally, all information about a published replication (i.e., participants, materials, raw data, statistical methods, computer programs, etc.) is made available at a public repository. The replication must be transparent, verifiable, and open to scientific debate to promote ‘an open research culture’ (Nosek et al., 2015, p. 1422).
19.4 Proposals
Errors are made in the publication process: some inappropriate manuscripts are published (false positives), and some appropriate manuscripts are rejected (false negatives). Proposals have been made to reduce errors. Three types of proposals are discussed: proposals on (1) attitudes (Sect. 19.4.1), (2) editorial policies (Sect. 19.4.2), and (3) collaboration of researchers
 (Sect. 19.4.3).
False positive publications can also come from scientific misconduct
 (see the next chapter). Section 20.​4 discusses proposals to prevent and detect scientific misconduct
.
19.4.1 Attitude Towards Replication
The attitude towards replications has, in the past, been rather negative. Editors and reviewers found replications less important than novel studies (Neuliep & Crandall, 1990, 1993), and the publication rate of replications was low (Makel et al., 2012). Fortunately, the aversion to replications is declining given the publication of replications by Klein et al. (2014), Nosek and Lakens (2014), and the Open Science Collaboration (2015).
Section 19.3 described a replication as a specific type of hypothesis testing study: A replication tests a hypothesis on the effects of modifications of the original study on study results. Hypothesis testing has a high status in the behavioral sciences. It is expected that a side effect of the conception of a replication as hypothesis testing is that it will positively influence the attitude towards replication research.
Neuliep and Crandall (1993) recommended that students are required to conduct replication studies as part of their training
. Frank and Saxe (2012) gave students of their experimental methods courses the assignment to replicate a study. The students were instructed to select a recent and relevant study, to design a replication study
, and to conduct this study under supervision of the course instructors. Students trained research skills, and got experienced with replication research. It is expected that familiarity with replications will positively influence students’ attitude to replication research, and that they will become more motivated to conduct replication studies themselves.
19.4.2 Editorial Policies
Different proposals on editorial policies were made to improve the publication process. Proposals were made to correct misconceptions, to reduce publication bias
, and to stimulate replication research.
The samples of behavioral studies are frequently small, which leads to imprecise parameter estimates and low power of statistical tests (see Sect. 12.​6 of this book). Therefore, some journals recommend to conduct multiple studies on the same topic instead of a single study. This recommendation encourages researchers to conduct a number of studies, where each of the studies has a small sample size
. If an effect (e.g., difference between means, correlation, etc.) is absent and a statistical test is applied to the data of each of the studies, the probability of rejecting the null hypothesis in at least one of the studies is rather high (Bakker et al., 2012). Therefore, a questionable research practice
 is to conduct multiple small sample studies, and to focus on the studies that yield significant results. This practice is counteracted by preferring a single large study above multiple small sample studies that have as many participants as the multiple studies, for example, a single study with 200 participants instead of five studies with 200/5 = 40 participants per study. In practice, it is sometimes unavoidable to conduct multiple small sample studies instead of a single large sample study. For these cases proper statistical methods have to be applied. Meta-analytic statistical methods (Hedges & Olkin, 1985) are appropriate to combine results of multiple studies. Moreover, proper sequential testing methods were developed (see Piantodosi, 2005, Sect. 14.4), for example, the group sequential testing method (see Sect. 12.​9 of this book).


                Preregistration
                
               is the registration of planned studies before they are started. It does not prevent publication bias
, but it is useful for the assessment of the degree of publication bias
. For example the studies of Cooper et al. (1997) and Franco et al. (2014), which were mentioned in Sect. 19.2 of this chapter, could assess the degree of publication bias
 thanks to the registration of planned studies by a Human Subjects Committee (Cooper et al., 1997) and a National Science Foundation program (Franco et al., 2014), respectively. Moreover, preregistration
 is useful for researchers who plan a replication study
. Preregistration
 informs them whether other researchers are planning a replication on their topic.
Editors are recommended to implement registered reports in their journals. Registered reports reduce publication bias
 because CARKing is impossible.
Proposals were made on editorial policies that facilitate and stimulate replication research. Publication of replications is facilitated by journal sections that publish brief reports of replication studies, and by special journal issues that publish replication studies. For example, the journal Social Psychology published a special issue with 15 articles on the replication of social psychological results (Nosek & Lakens, 2014). Replication research is made mote attractive by offering incentives to replicate original studies (Koole & Lakens, 2012). For example, to cocitate replications with the original study. A journal compiles original studies and its replications in a single file. If an original study is cited, the replications of this study are cocitated.
Many authors, among others, Bakker et al. (2012), Banks et al. (2012), King (1995), Nosek et al. (2015), Tsang and Kwan (1999), and Simmons, Nelson, and Simonsohn (2011) pleaded for 
                transparency
                
               in publishing. The American Psychological Association requires that authors keep their data, protocols, materials, computer programs, etc., for a period of at least five years after publication of a study. Additionally, authors must make this information available to qualified researchers to reanalyze the data, verify the results, and replicate the study (APA, 2010, Sect. 1.08). Unfortunately, many authors did not comply with these standards (Wicherts, Borsboom, Kats, & Molenaar, 2006). Wicherts et al. (2006) proposed that researchers who submit a manuscript are required to submit their data and that this information is made available when the article is published. Since 2014 the journal Psychological Science stimulates transparency
 by assigning badges to articles that meet transparency
 standards (Kidwell et al., 2016). The journal grants an open data badge to articles that make their data available on an open access repository, and an open materials badge to articles that make their materials (e.g. tests, stimulus materials, programs, etc.) available on an open access repository. Kidwell et al. (2016) studied the effects of these measures. They found that the badges increase data and materials sharing in the journal Psychological Science. The granting of badges appears to be an effective incentive to increase transparency
. Transparency
 is easy to enforce. Researchers who submit a manuscript must be required to supplement the manuscript with their data and other information (e.g., protocols, code books, computer programs, etc.) in a standardized form. Editors and reviewers declare to treat the supplementary information confidentially. If researchers do not provide complete supplementary information, the manuscript is rejected. If a manuscript is published, the supplementary information is electronically made available to readers, except when authors give compelling reasons that the supplementary information must remain confidential.
19.4.3 Collaboration


                Collaboration of researchers
                
               is suited to improve the publication process. Two examples are mentioned.
First, a group of researchers decides to collaborate in conducting replication studies (Open Science Collaboration, 2012). The group is composed of teams of researchers who volunteer to replicate studies. A sample of articles is selected for replication, and each of the teams chooses an article and a key finding for replication. The team conducts the study with a sufficiently large sample according to a standardized protocol
. This type of collaboration has already proved to be very useful. Klein et al. (2014) report replications of 13 effects that were described in the psychological literature. Each of these effects was replicated by 36 different research groups (25 from the US and 11 from other countries). The main conclusion is that 10 of the 13 effects were consistently replicated. The Open Science Collaboration (2015) published replications of 100 studies that were published in three psychology journals. The authors compared, among other things, the mean effect size
 of the original and replication studies. They expressed the effect size
 in terms of the product moment correlation (pmc). They found that the mean pmc of the original studies was about twice as large as the mean pmc of the replications (about 0.40 vs. 0.20).
Second, collaboration to settle a scientific debate. 
                Adversarial collaboration
                
               is the collaboration on a topic (Mellers, Hertwig, & Kahneman, 2001). Two parties that have a debate agree on an empirical study to settle the debate. The study is jointly conducted by the two parties with the help of an unbiased arbiter. The study is published by the two parties and the arbiter. Matzke et al. (2015) combined adversarial collaboration
 and preregistration
 in a study on the effect of horizontal eye movements on the free recall of words. Two researchers who thought that the effect was positive collaborated with three researchers who were sceptical on the positive effect. The two parties agreed on the design, operationalizations, implementation, data analysis, and publication of a study on the effect. The agreements were laid down in an adversarial collaboration
 agreement that was preregistered at the Open Science Framework. The conduction of the study was guided by an impartial arbiter and was published by the two parties and the arbiter. Adversarial collaboration
 is also useful when different parties have opposite replication hypotheses. For example, one party thinks that the results of a study are limited to the setting of the original study (e.g., schools), whereas another party thinks that the results are generalizable to other setting (e.g., companies and hospitals). The teams can agree to conduct similar replications in different settings.
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Abstract

Scientific misconduct
 is a very serious threat to research. Scientific fraud
 and questionable scientific practices
 are distinguished. Three types of fraud are described. First, plagiarism
 is the presentation of another’s work as the researchers own, and self-plagiarism
 is the presentation of a researcher’s previously published work as new. Second, fabrication
 is the creating of non-existing research or parts of research. Third, falsification
 is the distortion of truthful information. Researchers apply questionable practices to present a more positive picture of their studies, for example, reporting significant results and not mentioning nonsignificant results. Editors and reviewers apply questionable practices as well, for example, encouraging researchers to apply questionable practices. Fraud is always intentional, but questionable practices are intentional or unintentional. For example, practices that are common in a researcher’s subfield are not meant to mislead. Intentional questionable practices are a type of fraud because they are applied to mislead editors, reviewers, and readers. However, unintentional questionable practices come from lack of knowledge and understanding. Policies to counteract scientific misconduct
 are described. Education should inform students on ethical standards of research, and teach them to apply correct methods and procedures. Substantive researchers should consult methodologists and statisticians to avoid questionable practices. The publication process should pay more attention to misconduct, for example, by preregistering planned studies, applying text-matching software
 to detect (self-) plagiarism
, adding suspicion of fraud to reviewers’ evaluation criteria, and adding disclosure statements and transparency
 batches to submitted manuscripts and published articles. Probably, fraud and intentional questionable practices cannot completely be banned, but should be penalized under the law that is applicable.
Keywords
Disclosure statementFabrication of dataFalsification of dataPlagiarismPreregistrationQuestionable editorial practicesQuestionable research practicesScientific fraudText-matching softwareTransparency standards
The previous chapters described methods to counteract random and systematic errors
. Systematic errors
 are made because of misunderstandings and lack of methodological know-how. This chapter is on systematic errors
 that are caused by 
            scientific misconduct
            
          . An extensive discussion of scientific misconduct
 is given by Chambers (2017). The main categories of misconduct are fraud and questionable scientific practices
.


            Scientific fraud
            
           is the deliberate misrepresentation of truthful scientific information by someone who knows the truth (Protti, 1996). Three types of scientific fraud
 are distinguished. First, plagiarism
, for example, copying parts of another author’s manuscript. Second, fabrication
, for example, making empirical data that did not exist. Third, falsification
, for example, reporting that the result of a statistical test is significant at the 5% level while it is not significant.


            Questionable scientific practices
            
           are strategies to present another picture of a study than is warranted. These practices can be applied by researchers themselves or by editors and reviewers. An example of a questionable practice of a researcher is an author who withholds nonsignificant results from his (her) manuscript. An example of a questionable practice of a reviewer is one who recommends to reject a manuscript because it conflicts with his (her) own interests.
Fraud is always committed with the intention to mislead others. Questionable practices are applied either with or without this intention. For example, an author who withholds nonsignificant results to get his (her) manuscript published, intentionally misleads the editor and reviewers, but an author who withholds nonsignificant results because he or she thinks that these results are not interesting for readers, has no intention to mislead. Whatever researchers’ intentions, fraud and questionable practices are inadmissible in science.
Professional organizations developed standards for ethical conduct. For example, the American Psychological Association publishes ethical standards and codes of conduct for psychologists (APA, 2010, Sect. 1.07). Researchers ought to keep to these standards because scientific misconduct
 harms others, delays the growth of scientific knowledge, and subverts trust in science. This chapter discusses plagiarism
 Sect. 20.1, fabrication
 and falsification
 Sect. 20.2, and questionable practices Sect. 20.3. Section 20.4 discusses ways to prevent, discourage, detect, and punish scientific misconduct
.
20.1 Plagiarism
The American Psychological Association describes plagiarism
 of researchers as the presentation of ‘portions of another’s work or data as their own, even if the other work or data source is cited occasionally’ (APA, 2010, Standard 8.11). Plagiarism
 harms others by violating their intellectual property rights. Moreover, it harms others’ careers when plagiators are recognized and cited instead of the original authors.
Information on the prevalence of plagiarism
 is hard to get because researchers will not easily admit plagiarism
. Martinson, Anderson, and de Vries (2005) studied scientific misconduct
 of health scientists in the USA. They anonymously mailed a survey to a large sample of researchers. About 47% of the deliverable questionnaires
 yielded usable responses. They found that 1.4% of the respondents admitted ‘using another’s ideas without obtaining permission or giving due credit’ within the previous three years (Martinson et al., 2005, Table 1). The survey yields no information on the prevalence of plagiarism
 among behavioral scientists, but it is a warning that plagiarism
 should not be ignored.
A distinction is made between plagiarism
 and self-plagiarism
. The American Psychological Association describes self-plagiarism
 of researchers as the presentation of ‘their own previously published work as new scholarship’ (APA, 2010, Sect. 1.10). It permits limited duplication
 of parts of previous publications, for example, the description of a theory, tests, and statistical methods, but it prohibits extensive duplication
 of text. The criterion is ‘that the core of the new document must constitute on original contribution to knowledge, and only the amount of previously published material necessary to understand that contribution should be included, primarily in the discussion of theory and methodology’ (APA, 2010, Sect. 1.10).
20.2 Fabrication and Falsification
Claxton (2005a, p. 22) defined 
              fabrication
              
             as ‘creating records, data, or information where none previously existed’, and 
              falsification
              
             as ‘substituting for or altering truthful information’. It is obvious that both fabrication
 and falsification
 are serious types of scientific misconduct
. Fanelli (2009) conducted a meta-analysis of surveys on scientific misconduct
. She found that about 2% of scientists admitted fabrication
 or falsification
 of data or results at least once in their career. Stroebe, Postmes, and Spears (2012) mention a Gallup survey of 2008. They estimated from the results of this survey and additional data that the prevalence of fabrication
 and falsification
 of data is about 1% per year. These figures are rough estimates because fraud is not easily admitted, but they indicate that scientific fraud
 cannot be trivialized.
Cases of fraud that were detected in different scientific disciplines are described by, among others, Claxton (2005a), Martin (1992), and Stroebe et al. (2012). A notorious case from psychology is the fraud of D. Stapel. He received his doctor’s degree from the University of Amsterdam, where he worked from 1993 to 1999. He was full professor at the University of Groningen (2000–2006) and Tilburg University (2007–2011). A group of young researchers of Tilburg University suspected that Stapel falsified data, and they had the courage to report their suspicion to the head of their department. He informed the rector of Tilburg University, and the rector appointed a committee (the Levelt committee) to investigate the case. Moreover, the University of Amsterdam (Drenth committee) and Groningen (Noort committee) appointed committees to investigate whether Stapel committed fraud when he was employed at their universities. The three committees investigated Stapel’s publications in the period 1993–2011, and published their findings in a single report. The committees concluded that Stapel committed fraud in 55 of his publications (Levelt Committee, Noort Committee, & Drenth Committee, 2012 p. 25), where the committees (p. 17) described fraud as the ‘fabrication
, falsification
 or unjustified replenishment of data, as well as the whole or partial fabrication
 of analysis results. It also includes the misleading presentation of crucial points as far as the organization or nature of the experiment are concerned’.
Some activities are usually classified as questionable practices (see the next section), but they meet Claxton’s (2005a) definition of falsification
 that was given above. Therefore, they are described in this section.
Frequently, the tail probability of a statistical test is rounded to two decimal places, for example, p = 0.053 is rounded to p = 0.05. A tail probability of 0.053 is not significant at the 5% level. A fraudulent practice is to round a tail probability larger than 0.05 to 0.05 and to report that the result of the test is significant at the 5% level. John, Loewenstein, and Prelec (2012) emailed a survey on scientific misconduct
 to a sample of academic psychologists. About 22% of the respondents endorsed the survey question. ‘In a paper ‘rounding off’ a p value (e.g., reporting that a p value 0.054 is less than 0.05)’. This is an instance of altering truthful information. It misleads readers, especially those who are great believers in significance.
A substantial amount of research is done or founded by organizations, such as, companies and government institutions. Usually, the interest of these organizations is that research results support their products or policies. However, positive results are less credible when it is known that the organization was involved in the study. Therefore, organizations may want to hide the origin of studies. Authorship is sometimes faked by ghostwriters. Claxton (2005b) mentions an attempt to falsify authorship. A well-known scientist received an authorless manuscript on a product of a company with the request to be the author of the manuscript. The scientist refused, and reported the case to the Danish Committee on Scientific Dishonesty.
20.3 Questionable Scientific Practices

Plagiarism
, fabrication
, and falsification
 are
 gross violations of scientific integrity. These practices are deliberately applied to mislead the scientific community. Other practices are not so clearly fraudulent, but questionable all the same. Researchers commit fraud with the intention to mislead others, but they apply questionable practices with or without this intention. Frequently, researchers apply questionable practices because they think that these practices are admissible, and some questionable practices are generally accepted in subfields of the behavioral sciences. Questionable practices can be applied by researchers themselves (see Sect. 20.3.1), but also by editors and reviewers (see Sect. 20.3.2).
20.3.1 Questionable Research Practices
A questionable research practice (QRP) is
 a research or writing strategy that gives a more positive picture of a research study than is warranted. The survey of John et al. (2012) showed that QRPs
 are very common in psychology. This section describes some popular QRPs
.
Section 19.​2 of the previous chapter discussed that manuscripts that report significant results have a larger chance of being published than manuscripts that report nonsignificant results. Some QRPs
 take advantage of this tendency. They combine chance capitalization
 to get significant results with selective reporting of significant results. Researchers apply strategies to increase the number of significant results and report these results, but withhold the nonsignificant results. These QRPs
 were described by, among others, Chambers (2017), Goldacre (2009, Chap. 11), John et al. (2012), the Levelt Committee, Noort Committee, and Drenth Committee (2012, Chap. 5), Martinson et al. (2005), and Piantodosi (2005, Chap. 22). Some examples are given.
First, different statistical tests (e.g., Student’s t test, the Welch Test, and the Wilcoxon test) are applied to test the same null hypothesis with the same data. The test that yields the smallest tail probability is reported, and it is not reported that more than one statistical test was applied to the same data.
Second, different dependent variables (DVs) are administered to the same participants. A statistical test is applied to each of these DVs. The DVs where the statistical test is significant are reported, and the other DVs are not mentioned.
Third, a study has, for example, one experimental condition and several control conditions. The difference of the experimental condition and each of the control conditions is tested. The control conditions that significantly differ from the experimental condition are reported, but the control conditions that do not significantly differ from the experimental condition are not mentioned.
Fourth, multiple small-sample studies are conducted, and the same null hypothesis is tested in each of these studies. The studies that yield significant results are reported, but the nonsignificant results are withheld.
Fifth, correlations are computed between a number of variables. The significant correlations are reported, but nonsignificant correlations are not mentioned.
Sixth, the test of an effect is nonsignificant in the total sample of participants. The total sample is split into subsamples, for example, males and females, younger and older participants, lower and higher income participants, and so on. The statistical test is applied in each of these subsamples. The subsample that yields most support to the substantive hypothesis is reported, and it is not mentioned that this result was obtained after splitting the total sample into subsamples.
Seventh, two statistical analyses are applied to the data: one data set includes outliers and the other data set excludes outliers. The analysis that yields most support to the substantive hypothesis is reported, and the other analysis is not mentioned. Section 17.​5 of this book recommended to analyze the data with and without outliers to study the robustness of conclusions to outliers. This strategy differs from the outlier
 QRP: the robustness strategy reports the results of both analyses or the analysis that gives least support to the substantive hypothesis, whereas the outlier
 QRP only reports the analysis that gives most support to the substantive hypothesis.
Finally, adding new participants to the sample till the statistical test is significant. The procedure starts with a sample of participants to test a null hypothesis. If the null hypothesis is rejected at significance level α (e.g., α = 0.05), the procedure stops. If the null hypothesis is not rejected, new participants are added to the sample, and the null hypothesis is tested again at significance level α. The procedure continues till the null hypothesis is rejected. John et al. (2012) found in their survey of psychologists that about 57% of the respondents admitted to have applied this sequential QRP. A simulation study of Simmons et al. (2011) showed that this QRP substantially increased the familywise error rate
 (see Sect. 12.​7 of this book) of Student’s t test above the nominal level of α = 0.05. In some research settings participants need to be included sequentially into a study. For example, a psychotherapy institute compares the effects of a new depression treatment to the effects of the standard treatment. The institute monthly admits new patients, and each of them is randomly assigned to the new or standard treatment. Statistics
 developed proper sequential tests for this situation. An example is the group sequential testing method that was described in Sect. 12.​9 of this book. Researchers should abandon the sequential QRP and apply proper sequential statistical tests.

QRPs
 can also be combined, for example, multiple small-sample studies combined with the application of the sequential QRP to each of these studies. Bakker et al. (2012) conducted simulation studies where QRPs
 were combined. Their results showed that combinations of QRPs
 substantially inflated the familywise error rate
 above the 5% significance level.
A different type of QRP is on the presentation of hypotheses in publications. Hypothesizing after the results are known (HARKing)
 is defined as ‘presenting a post hoc hypothesis in the introduction of a research report as if it were an a priori hypothesis’ (Kerr, 1998, p. 197). The data are explored for interesting hypotheses, but these hypotheses are reported as if they were formulated before the study started. HARKing applies an exploratory strategy, but misleads readers by presenting the study as confirmatory. Hypotheses that are found by data exploration must be tested using other data (see Sect. 12.​8 of this book).
Claxton (2005b) discussed questionable practices on authorship. Ghostwriting to hide authorship of a manuscript is falsification
 of authorship (see Sect. 20.2), but other practices on authorship are questionable. Some examples are given.
First, a well-known scientist is added as coauthor, although he or she did not sufficiently contributed to the study. The scientist is only added to increase the credibility of the study. Second, a study is funded or conducted by an organization (e.g., a company or government institute). The manuscript does not disclose that the organization was involved in the study because it fears that the results of the study will be less credible. Third, the 
                duplication
                
               of previously published work is a QRP because it increases an author’s publication list, and gives the impression that more information is available than is the case. There might be good reasons for duplicate publications, but duplications are only permitted under specific conditions, for example, it is clearly reported that the publication is a duplication
 of a previous publication, and editors and publishers agree with the duplication
.

QRPs
 are very common in the behavioral sciences. For example, John et al. (2012) found in their survey of psychologists large percentages of respondents who admitted to have applied QRPs
. The committees that investigated Stapel’s fraud interviewed coauthors of his publications. Many of them reported to have applied QRPs
, and, surprisingly, were not bothered (Levelt Committee, Noort Committee, & Drenth Committee, 2012, Sect. 5.3). QRPs
 are rather common and some behavioral scientists believe that they are permitted in their subfield. However, QRPs
 are, in Goldacre’s (2009) words, ‘bad science’ that must be banned.
20.3.2 Questionable Editorial Practices
The previous section described questionable practices of researchers, but also editors and reviewers can apply questionable practices. LeBel et al. (2013) called these questionable editorial practices (QEPs)
.
The interviews with Stapel’s coauthors revealed that editors and reviewers sometimes encourage authors to use QRPs
 (Levelt Committee, Noort Committee, & Drenth Committee, 2012, Sect. 5.6). For example, they recommend authors to omit unwelcome results, variables, and conditions in their manuscripts. They seem to aim at a nice and smooth story that supports the substantive hypotheses of the study.
Another QEP is that editors’ and reviewers’ judgments are affected by their interests and opinions. For example, reviewers who negatively evaluate a manuscript because it harms their financial position or decreases their chance to get a grant. Reviewers’ theoretical position can also affect their judgments. Mahoney (1977) showed this in an experimental study. A group of 67 reviewers of psychology journals participated in his study. The reviewers were randomly assigned to different conditions. The reviewers of all conditions evaluated the same manuscript, except that the results of the study differed between conditions. In one condition the results were consistent with reviewers’ theoretical position, and in another condition the results were inconsistent with this position. The evaluation of the manuscript was more positive in the consistent condition than in the inconsistent condition. Reviewers may be intentionally or unintentionally more positive when a study supports their views. However, intentionally or not, it is unfair to authors who have a different view than the reviewers.
20.4 Policies Against Misconduct
The frequencies of fraud and questionable practices are too high to trivialize. Science is self-corrective, but corrections may take much time and money. Since the detection of Stapel’s fraud, the behavioral sciences have become more sensitive to fraud. For example, his fraud motivated Crocker and Cooper (2011) to write an Editorial of Science to call up researchers to address fraud. Sound policies are needed to prevent, discourage, detect, and punish scientific misconduct
. Three types of policies are discussed: (1) educational (Sect. 20.4.1), (2) editorial (Sect. 20.4.2), and (3) formal (Sect. 20.4.3) policies.
20.4.1 Educational Policies
A research curriculum needs to teach students that scientific misconduct
 is unethical and inadmissible. Students must learn that professional organizations have standards and codes of conduct for researchers. Moreover, they must understand that scientific fraud
 is illegal, and liable to penalty. Depending on the applicable laws in different countries, researchers can be held liable via tort law, and, subsequently, must pay damages and/or civil penalties. In severe cases, researchers can also violate applicable criminal law.

Scientific misconduct
 may come from lack of skills and knowledge, and misunderstandings. Examples are ‘patchwriting’ (Pecorari, 2013, Chap. 1) and the sequential QRP (see Sect. 20.3.1 of this chapter). Inexperienced writers may copy words and sentences of other texts because they lack the skill to write the text themselves. Patchwriting is counteracted by training
 writing skills and teaching how to cite and quote texts of others (Pecorari, 2013, Chap. 2). In some non-Western countries, it was tradition to copy text of others without recognizing authorship. Editors should inform authors of these countries that plagiarism
 is not allowed in science. The sequential QRP is widely applied in behavioral sciences (John et al., 2012). Education must inform students that the sequential QRP seriously inflates the familywise error rate
 of statistical tests, and that proper sequential tests are available.
Researchers often apply methods that are intuitively appealing, but are actually incorrect. For example, the sequential QRP seems plausible, but inflates the Type I error of statistical tests. It is obvious that researchers should be thoroughly trained in methodology and statistics
, but the room for these parts of behavioral science curricula is generally limited. Usually, researchers have knowledge of the methods that are common in their subfield, but this knowledge may be inadequate. This situation could be improved by incorporating more methodological and statistical expertise in substantial research. Therefore, Sijtsma (2016) proposed to include methodologists and statisticians in research teams. Moreover, he recommended researchers to consult more often methodologists and statisticians. Trained methodologists and statisticians are less sensitive to plausible but incorrect intuitions, and are better equipped to avoid common pitfalls.
20.4.2 Editorial Policies
The publication process was described in the previous chapter. The process is based on the assumption that authors are honest. However, it should be made more resistant to misconduct. This section describes some editorial policies to counteract scientific misconduct
.

Plagiarism
 can be detected by applying text-matching software
 to manuscripts that are submitted for publication (Pecorari, 2013, Chap. 3). The software assesses the percentage of overlap of a submitted text with other publications. Usually, a text has some overlap with other publications because of the use of standard words and expressions. However, a large overlap is a marker of plagiarism
. A large overlap does not necessarily imply plagiarism
, but it is a sign for further investigation.
In general, fraud is not often detected by editors and reviewers (Stroebe et al., 2012). One reason is that they evaluate a single manuscript, and do not compare the submitted manuscript with other publications of the same author. Another reason is that editors and reviewers focus on the substantive and methodological aspects of a study. Moreover, they assume that authors are honest.

Text-matching software
 can be applied to detect self-plagiarism
. The software compares an author’s manuscript to all other publications of the same author. A large overlap is a marker for self-plagiarism
 and duplication
. Moreover, it can be a marker for fraud. For example, the use of the same table or figure in the submitted manuscript as in previous publications of the same author(s) may indicate fraud. Again, a large overlap is no proof of misconduct, but it is a sign for further investigation.
Reviewers use a set of criteria to evaluate a submitted manuscript. These criteria are on the substantive and methodological aspects of a study, but not on possible misconduct. Stroebe et al. (2012) proposed to add the suspicion of fraud to reviewers’ criteria. Reviewers are asked whether they have a suspicion of scientific misconduct
. The editor has to take action to investigate this suspicion. For example, he or she can apply statistical software that assesses the likelihood of the results. The suspicion of misconduct is supported if the results are statistically too good to be true. Moreover, the editor can ask other reviewers to re-analyze the data, and to check the research procedures.
Section 19.​4.​2 of the previous chapter recommended preregistration
 of studies. A study is registered before it is conducted. Preregistration
 is a tool to detect HARKing. The preregistration
 should include the main hypotheses of the study. A discrepancy between the preregistered hypotheses and the hypotheses of the submitted manuscript is a sign of HARKing. It means that hypotheses were formulated after the data were explored. The study is not a confirmatory study that tests hypotheses, but is an exploratory study that searches for hypotheses. The hypotheses that come from the data exploration need to be tested using other data.

A number of QRPs
 combine chance capitalization
 and selective reporting. A tool against this type of QRPs
 is the 
                disclosure statement
                
               (LeBel et al., 2013). The statement discloses specifications of the design and implementation of a study. It is recommended that authors add a disclosure statement
 to a manuscript that is submitted for publication. The statement could include the following specifications: Fixed or sequentially sampling of participants, exclusion of participants, all statistical tests, DVs, conditions, and subsamples, missing data and outliers, and funding organizations.
Section 19.​4.​2 of the previous chapter recommended more transparency
 of the publication process. It means that researchers make available their data and all other information that is relevant for their study. Sijtsma (2016) argued that transparency
 of data may aid to reduce QRPs
. This also holds for transparency
 of other information, such as, research materials and protocols. Nosek et al. (2015) formulated guidelines to promote transparency
 and openness in research. These guidelines help to discourage and reduce fraud and questionable practices. Moreover, transparency
 is advanced by assigning badges to articles that meet transparency
 standards (Kidwell et al., 2016).
It is obvious that preregistration
, disclosure, and transparency
 can be faked, which means that an author tries to mislead editors, reviewers, and readers. However, faking is risky, because it is a type of fraud, and depending on the applicable law, civil or even criminal law can be imposed on fraudsters.
20.4.3 Formal Policies
Case histories showed that fraudsters were often exposed by persons who are working close to the perpetrators (Claxton, 2005a; Stroebe et al., 2012). For example, Stapel’s fraud was detected by young researchers who worked in his department. Whistleblowing needs courage. Universities and research institutes may try to cover up fraud out of fear for reputation damage. Fraudsters are often well-known in their field, and may vigorously oppose to whistleblowers. Nowadays, the reporting of fraud is facilitated by the founding of organizations that independently investigate fraud cases. Examples are the American Office of Research Integrity (ORI), the British Committee on Publication Ethics (COPE), the Danish Committees on Scientific Dishonesty (DCSD), and The Netherlands Board on Research Integrity (LOWI). Whistleblowers can report fraud to these organizations to investigate a case without revealing their identities.

Plagiarism
 is an infringement of copyright, and is suable under the applicable law. QRPs
 are applied with or without the intention to deceive. It is hard to prove that a QRP is intentional, but it is certainly intentional if a disclosure statement
 appears to be false. Intentional QRPs
 are qualified as torts in most countries. I think that fabrication
, falsification
, and intentional QRPs
 must be penalized under the law that is applicable.
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